Medical Microbiology and Immunology

, Volume 199, Issue 1, pp 11–25 | Cite as

Cellular immune response to Mycobacterium tuberculosis-specific antigen culture filtrate protein-10 in south India

  • Madhan Kumar
  • Jagadish C. Sundaramurthi
  • Narinder K. Mehra
  • Gurvinder Kaur
  • Alamelu Raja
Original Investigation


The Mycobacterium tuberculosis (M. tuberculosis)-specific culture filtrate protein-10 (CFP-10) is highly recognized by M. tuberculosis infected subjects. In the present study, the proliferative response and IFN-γ secretion was found for C-terminal peptides of the protein (Cfp651–70, Cfp761–80, Cfp871–90, and Cfp981–100). The alleles HLA DRB1 *04 and HLA DRB1 *10 recognized the C-terminal peptides Cfp7, Cfp8, and Cfp9 in HHC. Cfp6 was predominantly recognized by the alleles HLA DRB1 *03 and HLA DRB1 *15 by PTB. The minimal nonameric epitopes from the C-terminal region were CFP-1056–64 and CFP-1076–84. These two peptides deserve attention for inclusion in a vaccine against tuberculosis in this region.


CFP-10 HLA analysis Epitope mapping Overlapping peptides Proliferation Interferon gamma In silico CFP-10 IL-4 ELISA Tuberculosis 



Mr. Madhan Kumar is a recipient of Senior Research Fellowship from Council of Scientific and Industrial Research (CSIR), New Delhi, India. Overlapping peptides of CFP-10 were a kind gift from Dr. Thomas B Nutman, NIAID/NIH, USA (under ICER/TRC program). CFP-10 whole protein was a gift from Dr. Pawan Sharma, ICGEB (International Centre for Genetic Engineering and Biotechnology), New Delhi. We would like to thank Mr. Anbalagan and Mr. Murugesh for their help in acquiring samples in flow cytometry. We are grateful to patients, healthy household contacts, and treated patients who participated in this study and gave blood. The help rendered by the RNTCP staff Mrs. Kasthuri and Mrs. Thilagavathi in recruiting patients is kindly acknowledged. This project was not a funded project.

Conflict of interest statement


Supplementary material

430_2009_129_MOESM1_ESM.doc (170 kb)
Supplementary material 1 (DOC 170 kb)


  1. 1.
    WHO Report (2006) Global tuberculosis control—surveillance, planning and financingGoogle Scholar
  2. 2.
    Zager EM, McNerney R (2008) Multidrug-resistant tuberculosis. BMC Infect Dis 8:10CrossRefPubMedGoogle Scholar
  3. 3.
    Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K et al (2002) A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci USA 99(6):3684–3689CrossRefPubMedGoogle Scholar
  4. 4.
    Pym AS, Brodin P, Brosch R, Huerre M, Cole ST (2002) Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol 46(3):709–717CrossRefPubMedGoogle Scholar
  5. 5.
    Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544CrossRefPubMedGoogle Scholar
  6. 6.
    Harboe M, Oettinger T, Wiker HG, Rosenkrands I, Andersen P (1996) Evidence for occurrence of the ESAT-6 protein in Mycobacterium tuberculosis and virulent Mycobacterium bovis and for its absence in Mycobacterium bovis BCG. Infect Immun 64(1):16–22PubMedGoogle Scholar
  7. 7.
    Sorensen AL, Nagai S, Houen G, Andersen P, Andersen AB (1995) Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infect Immun 63(5):1710–1717PubMedGoogle Scholar
  8. 8.
    Pym AS, Brodin P, Majlessi L, Brosch R, Demangel C, Williams A et al (2003) Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med 9(5):533–539CrossRefPubMedGoogle Scholar
  9. 9.
    Bulat-Kardum L, Etokebe GE, Knezevic J, Balen S, Matacovic-Mileusnic N, Zaputovic L et al (2006) Interferon-γ receptor-1 gene promoter polymorphisms (G-611A; T-56C) and susceptibility to tuberculosis. Scand J Immunol 63:142–150CrossRefPubMedGoogle Scholar
  10. 10.
    Arend SM, Geluk A, van Meijgaarden KE, van Dissel JT, Theisen M, Andersen P et al (2000) Antigenic equivalence of human T-cell responses to Mycobacterium tuberculosis-specific RD1-encoded protein antigens ESAT-6 and culture filtrate protein 10 and to mixtures of synthetic peptides. Infect Immun 68(6):3314–3321CrossRefPubMedGoogle Scholar
  11. 11.
    Lalvani A, Brookes R, Wilkinson RJ, Malin AS, Pathan AA, Andersen P et al (1998) Human cytolytic and interferon gamma-secreting CD8+ T lymphocytes specific for Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 95(1):270–275CrossRefPubMedGoogle Scholar
  12. 12.
    Brandt L, Oettinger T, Holm A, Andersen AB, Andersen P (1996) Key epitopes on the ESAT-6 antigen recognized in mice during the recall of protective immunity to Mycobacterium tuberculosis. J Immunol 157(8):3527–3533PubMedGoogle Scholar
  13. 13.
    Lalvani A, Nagvenkar P, Udwadia Z, Pathan AA, Wilkinson KA, Shastri JS et al (2001) Enumeration of T cells specific for RD1-encoded antigens suggests a high prevalence of latent Mycobacterium tuberculosis infection in healthy urban Indians. J Infect Dis 183(3):469–477CrossRefPubMedGoogle Scholar
  14. 14.
    Behr A, Hopewell PC, Paz EA, Kamamura LM, Schecter GF, Small PM (1998) Predictive value of contact investigation for identifying recent transmission of Mycobacterium tuberculosis. Am J Respir Crit Care Med 158:465–469PubMedGoogle Scholar
  15. 15.
    Selvakumar N, Vanajakumar PG, Gopi PG, Venkataramu KV, Datta M, Paramasivan N et al (1995) Isolation of tubercle bacilli from sputum samples of patients in the field studies by the cetylpyridinium chloride-sodium chloride and sodium hydroxide methods. Indian J Med Res 102:149–151PubMedGoogle Scholar
  16. 16.
    Trajkovic V, Singh G, Singh B, Singh S, Sharma P (2002) Effect of Mycobacterium tuberculosis-specific 10-kilodalton antigen on macrophage release of tumor necrosis factor alpha and nitric oxide. Infect Immun 70(12):6558–6566CrossRefPubMedGoogle Scholar
  17. 17.
    Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3):1215CrossRefPubMedGoogle Scholar
  18. 18.
    Bunce M, O’Neill CM, Barnardo MC, Krausa P, Browning MJ, Morris PJ et al (1995) Phototyping: comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 & DQB1 by PCR with 144 primer mixes utilizing sequence-specific primers (PCR-SSP). Tissue Antigens 46(5):355–367CrossRefPubMedGoogle Scholar
  19. 19.
    Wang P, Sidney J, Dow C, Mothe B, Sette A, Peters B (2008) A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol 4(4):e1000048CrossRefPubMedGoogle Scholar
  20. 20.
    Singh H, Raghava GP (2001) ProPred: prediction of HLA-DR binding sites. Bioinformatics 17(12):1236–1237CrossRefPubMedGoogle Scholar
  21. 21.
    Tavares RCO, Salgado J, Moreira VB, Ferreira MA, Mello FC, Leung JW et al (2007) Interferon gamma response to combinations 38 kDa/CFP-10, 38 kDa/MPT-64, ESAT-6/MPT-64 and ESAT-6/CFP-10, each related to a single recombinant antigen of Mycobacterium tuberculosis in individuals from tuberculosis endemic areas. Microbiol Immunol 51(3):289–296PubMedGoogle Scholar
  22. 22.
    Doherty TM, Demissie A, Menzies D, Andersen P, Rook G, Zumla A (2005) Effect of sample handling on analysis of cytokine responses to Mycobacterium tuberculosis in clinical samples using ELISA, ELISPOT and quantitative RT-PCR. J Immunol Methods 298(1–2):129–141CrossRefPubMedGoogle Scholar
  23. 23.
    Chapman AL, Munkanta M, Wilkinson KA, Pathan AA, Ewer K, Ayles H et al (2002) Rapid detection of active and latent tuberculosis infection in HIV-positive individuals by enumeration of Mycobacterium tuberculosis-specific T cells. AIDS 16(17):2285–2293CrossRefPubMedGoogle Scholar
  24. 24.
    Skjot RL, Oettinger T, Rosenkrands I, Ravn P, Brock I, Jacobsen S et al (2000) Comparative evaluation of low-molecular-mass proteins from Mycobacterium tuberculosis identifies members of the ESAT-6 family as immunodominant T-cell antigens. Infect Immun 68(1):214–220CrossRefPubMedGoogle Scholar
  25. 25.
    Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR (1993) An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178(6):2249–2254CrossRefPubMedGoogle Scholar
  26. 26.
    Jouanguy E, Altare F, Lamhamedi S, Revy P, Emile JF, Newport M et al (1996) Interferon-gamma-receptor deficiency in an infant with fatal bacilli Calmette-Guérin infection. N Engl J Med 335(26):1956–1961CrossRefPubMedGoogle Scholar
  27. 27.
    Havlir DV, Wallis RS, Boom WH, Daniel TM, Chervenak K, Ellner JJ (1991) Human immune response to Mycobacterium tuberculosis antigens. Infect Immun 9(2):665–670Google Scholar
  28. 28.
    Torres M, Herrera T, Villareal H, Rich EA, Sada E (1994) Cytokine profiles for peripheral blood lymphocytes from patients with active pulmonary tuberculosis and healthy household contacts in response to the 30-kilodalton antigen of Mycobacterium tuberculosis. Infect Immun 66(1):176–180Google Scholar
  29. 29.
    Grotzke JE, Lewinsohn DM (2005) Role of CD8+ T lymphocytes in control of Mycobacterium tuberculosis infection. Microbes Infect 7(4):776–788PubMedGoogle Scholar
  30. 30.
    Shams H, Klucar P, Weis SE, Lalvani A, Moonan PK, Safi H et al (2004) Characterization of a Mycobacterium tuberculosis peptide that is recognized by human CD4+ and CD8+ T cells in the context of multiple HLA alleles. J Immunol 173(3):1966–1977PubMedGoogle Scholar
  31. 31.
    Lewinsohn DM, Zhu L, Madison VJ, Dillon DC, Fling SP, Reed SG et al (2001) Classically restricted human CD8+ T lymphocytes derived from Mycobacterium tuberculosis-infected cells: definition of antigenic specificity. J Immunol 166(1):439–446PubMedGoogle Scholar
  32. 32.
    Kamath AB, Woodworth J, Xiong X, Taylor C, Weng Y, Behar SM (2004) Cytolytic CD8+ T cells recognizing CFP10 are recruited to the lung after Mycobacterium tuberculosis infection. J Exp Med 200(11):1479–1489CrossRefPubMedGoogle Scholar
  33. 33.
    Brock I, Munk ME, Kok-Jensen A, Andersen P (2001) Performance of whole blood IFN-γ test for tuberculosis diagnosis based on PPD or the specific antigens ESAT-6 and CFP-10. Int J. Tuberc Lung Dis 5:462–467PubMedGoogle Scholar
  34. 34.
    Jo EK, Kim HJ, Lim JH, Min D, Song Y, Song C et al (2000) Dysregulated production of interferon-γ, interleukin-4 and interleukin-6 in early tuberculosis patients in response to antigen 85B of Mycobacterium tuberculosis. Scand J Immunol 51:209–217CrossRefPubMedGoogle Scholar
  35. 35.
    Lee JS, Song CH, Kim CH, Kong SJ, Shon MH, Kim HJ et al (2002) Profiles of IFN-γ and its regulatory cytokines (IL-12, IL-18 and IL-10) in peripheral blood mononuclear cells from patients with multidrug-resistant tuberculosis. Clin Exp Immunol 128:16–524CrossRefGoogle Scholar
  36. 36.
    Pathan AA, Wilkinson KA, Klenerman P, McShane H, Davidson RN, Pasvol G et al (2001) Direct ex vivo analysis of antigen-specific IFN-gamma-secreting CD4 T cells in Mycobacterium tuberculosis-infected individuals: associations with clinical disease state and effect of treatment. J Immunol 167(9):5217–5225PubMedGoogle Scholar
  37. 37.
    Carrara S, Vincenti D, Petrosillo N, Amicosante M, Girardi E, Goletti D (2004) Use of a T cell-based assay for monitoring efficacy of antituberculosis therapy. Clin Infect Dis 38(5):754–756CrossRefPubMedGoogle Scholar
  38. 38.
    Eberl G, Renggli J, Men Y, Roggero MA, Lopez JA, Corradin G (1999) Extracellular processing and presentation of a 69-mer synthetic polypeptide to MHC class I-restricted T cells. Mol Immunol 36:103–112CrossRefPubMedGoogle Scholar
  39. 39.
    Hernandez-Pando R, Aguilar D, Garcia Hernandez ML, Orozco H, Rook GAW (2004) Pulmonary tuberculosis in Balb/c mice with non-functional IL-4 genes; changes in the inflammatory effects of TNF-α in the regulation of fibrosis. Eur J Immunol 34:174–183CrossRefPubMedGoogle Scholar
  40. 40.
    Ordway DJ, Costa L, Martins M, Silveira H, Amaral L, Arroz MJ et al (2004) Increased interleukin-4 production by CD8 and gamma delta T cells in health-care workers is associated with the subsequent development of active tuberculosis. J Infect Dis 190:756–766CrossRefPubMedGoogle Scholar
  41. 41.
    Bothamley GH (2002) Treatment, tuberculosis, and human leukocyte antigen. Am J Respir Crit Care Med 166(7):907–908CrossRefPubMedGoogle Scholar
  42. 42.
    Mustafa AS, Qvigstad E (1989) HLA-DR-restricted antigen-induced proliferation and cytotoxicity mediated by CD4+ T-cell clones from subjects vaccinated with killed M. leprae. Int J Lepr Other Mycobact Dis 57(1):1–11PubMedGoogle Scholar
  43. 43.
    Oftung F, Shinnick TM, Mustafa AS, Lundin KE, Godal T, Nerland AH (1990) Heterogeneity among human T cell clones recognizing an HLA-DR4, Dw4-restricted epitope from the 18-kDa antigen of Mycobacterium leprae defined by synthetic peptides. J Immunol 144(4):1478–1483PubMedGoogle Scholar
  44. 44.
    Mustafa AS, Lundin KE, Oftung F (1993) Human T cells recognize mycobacterial heat shock proteins in the context of multiple HLA-DR molecules: studies with healthy subjects vaccinated with Mycobacterium bovis BCG and Mycobacterium leprae. Infect Immun 61(12):5294–5301PubMedGoogle Scholar
  45. 45.
    Oftung F, Geluk A, Lundin KE, Meloen RH, Thole JE, Mustafa AS et al (1994) Mapping of multiple HLA class II-restricted T-cell epitopes of the mycobacterial 70-kilodalton heat shock protein. Infect Immun 62(12):5411–5418PubMedGoogle Scholar
  46. 46.
    De Groot AS, McMurry J, Marcon L, Franco J, Rivera D, Kutzler M et al (2005) Developing an epitope-driven tuberculosis (TB) vaccine. Vaccine 23(17–18):2121–2131PubMedGoogle Scholar
  47. 47.
    Ravikumar M, Dheenadhayalan V, Rajaram K, Lakshmi SS, Kumaran PP, Paramasivan CN et al (1999) Associations of HLA-DRB1, DQB1 and DPB1 alleles with pulmonary tuberculosis in south India. Tuber Lung Dis 79(5):309–317CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Madhan Kumar
    • 1
  • Jagadish C. Sundaramurthi
    • 2
  • Narinder K. Mehra
    • 3
  • Gurvinder Kaur
    • 3
  • Alamelu Raja
    • 1
  1. 1.Department of ImmunologyTuberculosis Research Centre (ICMR)Chetput, ChennaiIndia
  2. 2.Biomedical Informatics CentreTuberculosis Research Centre (ICMR)Chetput, ChennaiIndia
  3. 3.Department of Transplant Immunology and ImmunogeneticsAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations