Medical Microbiology and Immunology

, Volume 198, Issue 4, pp 221–238 | Cite as

Survival of the fittest: how Brucella strains adapt to their intracellular niche in the host

  • R. Martin RoopII
  • Jennifer M. Gaines
  • Eric S. Anderson
  • Clayton C. Caswell
  • Daniel W. Martin


Brucella strains produce abortion and infertility in their natural hosts and a zoonotic disease in humans known as undulant fever. These bacteria do not produce classical virulence factors, and their capacity to successfully survive and replicate within a variety of host cells underlies their pathogenicity. Extensive replication of the brucellae in placental trophoblasts is associated with reproductive tract pathology in natural hosts, and prolonged persistence in macrophages leads to the chronic infections that are a hallmark of brucellosis in both natural hosts and humans. This review describes how Brucella strains have efficiently adapted to their intracellular lifestyle in the host.


Brucella Brucellosis Macrophages 



Research in the laboratory of RMR is supported by grants (AI48499 and AI63516) from the National Institutes of Allergy and Infectious Disease.


  1. 1.
    Alcantara RB, Read RD, Valderas MW, Brown TD, Roop RM II (2004) Intact purine biosynthesis pathways are required for wild-type virulence of Brucella abortus 2308 in the BALB/c mouse model. Infect Immun 72:4911–4917PubMedCrossRefGoogle Scholar
  2. 2.
    Alexander B, Schnurrenberger PR, Brown RR (1981) Numbers of Brucella abortus in the placenta, umbilicus and fetal fluid of two naturally infected cows. Vet Rec 108:500PubMedGoogle Scholar
  3. 3.
    Allen CA, Adams LG, Ficht TA (1998) Transposon-derived Brucella abortus rough mutants are attenuated and exhibit reduced intracellular survival. Infect Immun 66:1008–1016PubMedGoogle Scholar
  4. 4.
    Almirón M, Martínez M, Sanjuan N, Ugalde RA (2001) Ferrochelatase is present in Brucella abortus and is critical for its intracellular survival and virulence. Infect Immun 69:6225–6230PubMedCrossRefGoogle Scholar
  5. 5.
    Alton GG (1990) Brucella melitensis. In: Nielsen K, Duncan JR (eds) Animal brucellosis. CRC, Boca Raton, pp 383–409Google Scholar
  6. 6.
    Alton GG (1990) Brucella suis. In: Nielsen K, Duncan JR (eds) Animal brucellosis. CRC, Boca Raton, pp 411–422Google Scholar
  7. 7.
    Anderson ES, Paulley JT, Gaines JM, Valderas MW, Martin DW, Menscher E, Brown TD, Burns CS, Roop RM II (2009) The manganese transporter MntH is a critical virulence determinant for Brucella abortus 2308 in experimentally infected mice. Infect Immun 77:3466–3474PubMedCrossRefGoogle Scholar
  8. 8.
    Arenas GN, Staskevich AS, Aballay J, Mayorga LS (2000) Intracellular trafficking of Brucella abortus in J774 macrophages. Infect Immun 68:4255–4263PubMedCrossRefGoogle Scholar
  9. 9.
    Arenas-Gamboa AM, Ficht TA, Kahl-McDonagh MM, Rice-Ficht AC (2008) Immunization with a single dose of a microencapsulated Brucella melitensis mutant enhances protection against wild-type challenge. Infect Immun 76:2448–2455PubMedCrossRefGoogle Scholar
  10. 10.
    Arrelano-Reynoso B, Lapaque N, Salcedo S, Briones G, Ciocchini AE, Ugalde R, Moreno E, Moriyón I, Gorvel JP (2005) Cyclic β-1, 2-glucan is a Brucella virulence factor required for intracellular survival. Nat Immunol 6:618–625CrossRefGoogle Scholar
  11. 11.
    Bahlawane C, McIntosh M, Krol E, Becker A (2008) Sinorhizobium meliloti regulator MucR couples exopolysaccharide synthesis and motility. Mol Plant Microbe Interact 21:1498–1509PubMedCrossRefGoogle Scholar
  12. 12.
    Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252PubMedCrossRefGoogle Scholar
  13. 13.
    Bandara AB, Contreras A, Contreras-Rodriguez A, Martins AM, Dobrean V, Poff-Richow S, Rajasekaran P, Sriranganathan N, Schurig GG, Boyle SM (2007) Brucella suis urease encoded by ure1 but not ure2 is necessary for intestinal infection of BALB/c mice. BMC Microbiol 7:57PubMedCrossRefGoogle Scholar
  14. 14.
    Barquero-Calvo E, Chaves-Olarte E, Weiss DS, Guzmán-Verri C, Chacón-Díaz C, Rucavado A, Moriyón I, Moreno E (2007) Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS ONE 7:e631CrossRefGoogle Scholar
  15. 15.
    Barquero-Calvo E, Conde-Alvarez R, Chacón-Díaz C, Quesada-Lobo L, Martirosyan A, Guzmán-Verri C, Iriarte M, Mancek-Keber M, Jerala R, Gorvel JP, Moriyón I, Moreno E, Chaves-Olarte E (2009) The differential interaction of Brucella and Ochrobactrum with innate immunity reveals traits related to the evolution of stealthy pathogens. PLoS ONE 4:e5893PubMedCrossRefGoogle Scholar
  16. 16.
    Batut J, Andersson SGE, O’Callaghan D (2004) The evolution of chronic infection strategies in the α-proteobacteria. Nat Rev Microbiol 2:933–945PubMedCrossRefGoogle Scholar
  17. 17.
    Bellaire BH, Elzer PH, Baldwin CL, Roop RM II (1999) The siderophore 2, 3-dihydroxybenzoic acid is not required for virulence of Brucella abortus in BALB/c mice. Infect Immun 67:2615–2618PubMedGoogle Scholar
  18. 18.
    Bellaire BH, Elzer PH, Hagius S, Walker J, Baldwin CL, Roop RM II (2003) Genetic organization and iron-responsive regulation of the Brucella abortus 2, 3-dihydoxybenzoic acid biosynthesis operon, a cluster of genes required for wild-type virulence in pregnant cattle. Infect Immun 71:1794–1803PubMedCrossRefGoogle Scholar
  19. 19.
    Bellaire BH, Elzer PH, Baldwin CL, Roop RM II (2003) Production of the siderophore 2, 3-dihydroxybenzoic acid is required for wild-type growth of Brucella abortus in the presence of erythritol under low-iron conditions in vitro. Infect Immun 71:2927–2932PubMedCrossRefGoogle Scholar
  20. 20.
    Bellaire BH, Roop RM II, Cardelli JA (2005) Opsonized virulent Brucella abortus replicates within nonacidic, endoplasmic reticulum-negative, LAMP-1-positive phagosomes in human monocytes. Infect Immun 73:3702–3713PubMedCrossRefGoogle Scholar
  21. 21.
    Billard E, Cazevieille C, Dornand J, Gross A (2005) High susceptibility of human dendritic cells to invasion by the intracellular pathogens Brucella suis, B. abortus and B. melitensis. Infect Immun 73:8418–8424PubMedCrossRefGoogle Scholar
  22. 22.
    Billard E, Dornand J, Gross A (2007) Brucella suis prevents human dendritic cell maturation and antigen presentation through regulation of tumor necrosis factor alpha secretion. Infect Immun 75:4980–4989PubMedCrossRefGoogle Scholar
  23. 23.
    Blasco JM (2003) Epididymite contagieuse du belier ou infection à Brucella ovis. In: Lefevre PC, Blancou J, Chermette R (eds) Principales maladies infectieuses et parasitaires du bétail. Lavoiser, Paris, pp 905–917Google Scholar
  24. 24.
    Boschiroli ML, Ouahrani-Bettache S, Foulongne V, Michaux-Charachon S, Bourg G, Allardet-Servent A, Cazevieille C, Liautard JP, Ramuz M, O’Callaghan D (2002) The Brucella suis virB operon is induced intracellularly in macrophages. Proc Natl Acad Sci USA 99:1544–1549PubMedCrossRefGoogle Scholar
  25. 25.
    Boussau B, Karlberg EO, Frank AC, Legault BA, Andersson SGE (2004) Computational inference of scenarios for α-proteobacterial genome evolution. Proc Natl Acad Sci USA 101:9722–9727PubMedCrossRefGoogle Scholar
  26. 26.
    Briones G, Iñón de Iannino N, Roset M, Vigliocco A, Paulo PS, Ugalde RA (2001) Brucella abortus cyclic α-1, 2-glucan mutants have reduced virulence in mice and are defective in intracellular replication in HeLa cells. Infect Immun 69:4528–4535PubMedCrossRefGoogle Scholar
  27. 27.
    Brown TD (2007) The glutamate decarboxylase genes, gadBC, are not required for Brucella abortus resistance to low pH or virulence in the mouse model. MS thesis, East Carolina UniversityGoogle Scholar
  28. 28.
    Bryk R, Griffin P, Nathan C (2000) Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407:211–215PubMedCrossRefGoogle Scholar
  29. 29.
    Burkhardt S, Jiménez de Bagüés MP, Liautard JP, Köhler S (2005) Analysis of the behavior of eryC mutants of Brucella suis attenuated in macrophages. Infect Immun 73:6782–6790PubMedCrossRefGoogle Scholar
  30. 30.
    Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311:1113–1116PubMedCrossRefGoogle Scholar
  31. 31.
    Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW (1999) Control of acid resistance in Escherichia coli. J Bacteriol 181:3525–3535PubMedGoogle Scholar
  32. 32.
    Celli J, de Chastellier C, Franchini DM, Pizarro-Cerda J, Moreno E, Gorvel JP (2003) Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med 198:545–556PubMedCrossRefGoogle Scholar
  33. 33.
    Cellier MF, Courville P, Campion C (2007) Nramp1 phagocytic intracellular metal withdrawal defense. Microbes Infect 9:1662–1670PubMedCrossRefGoogle Scholar
  34. 34.
    Charles TC, Nester EW (1993) A chromosomally encoded two-component sensory transduction system is required for virulence of Agrobacterium tumefaciens. J Bacteriol 175:6614–6625PubMedGoogle Scholar
  35. 35.
    Chen H, Gao K, Kondrosi E, Kondrosi A, Rolfe BG (2005) Functional genomic analysis of global regulator NolR in Sinorhizobium meliloti. Mol Plant Microbe Interact 18:1340–1352PubMedCrossRefGoogle Scholar
  36. 36.
    Cheng HP, Walker GC (1998) Succinoglycan production by Rhizobium meliloti is regulated through the ExoS-ChvI two-component regulatory system. J Bacteriol 180:20–26PubMedGoogle Scholar
  37. 37.
    Cheville NF, Jensen AE, Halling SM, Tatum FM, Morfitt DC, Hennager SG, Frerichs WM, Schurig G (1992) Bacterial survival, lymph node changes, and immunologic responses of cattle vaccinated with standard and mutant strains of Brucella abortus. Am J Vet Res 53:1881–1888PubMedGoogle Scholar
  38. 38.
    Cheville NF, Olsen SC, Jensen AE, Stevens MG, Florance AM, Houng HSH, Drazek ES, Warren RL, Hadfield TL, Hoover DL (1996) Bacterial persistence and immunity in goats vaccinated with a purE deletion mutant or the parental 16M strain of Brucella melitensis. Infect Immun 64:2431–2439PubMedGoogle Scholar
  39. 39.
    Cirl C, Wieser A, Yadav M, Duerr S, Schubert S, Fischer H, Stappert D, Wantia N, Rodriguez N, Wagner H, Svanborg C, Miethke T (2008) Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat Med 14:399–406PubMedCrossRefGoogle Scholar
  40. 40.
    Comerci DJ, Martinez-Lorenzo MJ, Sieira R, Gorvel JP, Ugalde RA (2001) Essential role of the VirB machinery in the maturation of the Brucella abortus-containing vacuole. Cell Microbiol 3:159–168PubMedCrossRefGoogle Scholar
  41. 41.
    Comerci DJ, Altabe S, de Mendoza D, Ugalde RA (2006) Brucella abortus synthesizes phosphatidylcholine from choline provided by the host. J Bacteriol 188:1929–1934PubMedCrossRefGoogle Scholar
  42. 42.
    Conde-Alvarez R, Grilló MJ, Salcedo SP, de Miguel MJ, Fugier E, Gorvel JP, Moriyón I, Iriarte M (2006) Synthesis of phosphatidylcholine, a typical eukaryotic phospholipid, is necessary for full virulence of the intracellular bacterial parasite Brucella abortus. Cell Microbiol 8:1322–1335PubMedCrossRefGoogle Scholar
  43. 43.
    Conover GM, Martinez-Morales F, Heidtman MI, Luo ZQ, Tang M, Chen C, Geiger O, Isberg RR (2008) Phosphatidylcholine synthesis is required for optimal functions of Legionella pneumophila virulence determinants. Cell Microbiol 10:514–528PubMedGoogle Scholar
  44. 44.
    Corbel MJ (1997) Brucellosis: an overview. Emerg Infect Dis 3:213–221PubMedCrossRefGoogle Scholar
  45. 45.
    Crawford RM, van der Verg L, Yuan L, Hadfield TL, Warren RL, Drazek ES, Houng HSH, Hammack C, Sasala K, Polsinelli T, Thompson J, Hoover DL (1996) Deletion of purE attenuates Brucella melitensis in mice. Infect Immun 64:2188–2192PubMedGoogle Scholar
  46. 46.
    Crawford RP, Huber JD, Adams BS (1990) Epidemiology and surveillance. In: Nielsen K, Duncan JR (eds) Animal brucellosis. CRC, Boca Raton, pp 131–151Google Scholar
  47. 47.
    Crichton RR, Wilmet S, Legssyer R, Ward RJ (2002) Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J Inorg Biochem 91:9–18PubMedCrossRefGoogle Scholar
  48. 48.
    Dawson CE, Stubberfield EJ, Perrett LL, King AC, Whatmore AM, Bashiruddin JB, Stack JA, MacMillan AP (2008) Phenotypic and molecular characterization of Brucella isolates from marine mammals. BMC Microbiol 8:224PubMedCrossRefGoogle Scholar
  49. 49.
    de Jong MF, Sun YH, den Hartigh AB, van Dijl JM, Tsolis RM (2008) Identification of VceA and VceC, two members of the VjbR regulon that are translocated into macrophages by the Brucella type IV secretion system. Mol Microbiol 70:1378–1396PubMedCrossRefGoogle Scholar
  50. 50.
    Delrue RM, Martinez-Lorenzo M, Lestrate P, Danese I, Bielarz V, Mertens P, de Bolle X, Tibor A, Gorvel JP, Letesson JJ (2001) Identification of Brucella spp. genes involved in intracellular trafficking. Cell Microbiol 3:487–497PubMedCrossRefGoogle Scholar
  51. 51.
    Delrue RM, Deschamps C, Leonard S, Nijksens C, Danese I, Schaus JM, Bonnot S, Ferooz J, Tibor A, de Bolle X, Letesson JJ (2005) A quorum-sensing regulator controls expression of both the type IV secretion system and the flagellar apparatus of Brucella melitensis. Cell Microbiol 7:1151–1161PubMedCrossRefGoogle Scholar
  52. 52.
    Detilleux PG, Deyoe BL, Cheville NF (1990) Entry and intracellular localization of Brucella spp. in Vero cells: fluorescence and electron microscopy. Vet Pathol 27:317–328PubMedCrossRefGoogle Scholar
  53. 53.
    Detilleux PG, Deyoe BL, Cheville NF (1991) Effect of endocytic and metabolic inhibitors on the internalization and intracellular growth of Brucella abortus in Vero cells. Am J Vet Res 52:1658–1664PubMedGoogle Scholar
  54. 54.
    D’mello R, Hill S, Poole RK (1996) The cytochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two oxygen-binding haems: implications for regulation of activity in vivo by oxygen inhibition. Microbiology 142:755–763PubMedCrossRefGoogle Scholar
  55. 55.
    Dozot M, Boigegrain RA, Delrue RM, Hallez R, Ouahrani-Bettache S, Danese I, Letesson JJ, de Bolle X, Köhler S (2006) The stringent response mediator Rsh is required for Brucella melitensis and Brucella suis virulence, and for expression of the type IV secretion system virB. Cell Microbiol 8:1791–1802PubMedCrossRefGoogle Scholar
  56. 56.
    Drazek ES, Houng HSH, Crawford RM, Hadfield TL, Hoover DL, Warren RL (1995) Deletion of purE attenuates Brucella melitensis 16M for growth in human monocyte-derived macrophages. Infect Immun 63:3297–3301PubMedGoogle Scholar
  57. 57.
    Dylan T, Ielpi L, Stanfield S, Kashyap L, Douglas C, Yanofsky M, Nester EW, Helinski DR, Ditta G (1986) Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 83:4403–4407PubMedCrossRefGoogle Scholar
  58. 58.
    Elzer PH, Enright FM, McQuiston JR, Boyle SM, Schurig GG (1998) Evaluation of a rough mutant of Brucella melitensis in pregnant goats. Res Vet Sci 64:259–260PubMedCrossRefGoogle Scholar
  59. 59.
    Endley S, McMurray D, Ficht TA (2001) Interruption of the cydB locus in Brucella abortus attenuates intracellular survival and virulence in the mouse model of infection. J Bacteriol 183:2454–2462PubMedCrossRefGoogle Scholar
  60. 60.
    Enright FM (1990) The pathogenesis and pathobiology of Brucella infection in domestic animals. In: Nielsen K, Duncan JR (eds) Animal brucellosis. CRC, Boca Raton, pp 301–320Google Scholar
  61. 61.
    Essenberg RC, Seshadri R, Nelson K, Paulsen I (2002) Sugar metabolism by brucellae. Vet Microbiol 90:249–261PubMedCrossRefGoogle Scholar
  62. 62.
    Fang FC (2004) Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2:820–832PubMedCrossRefGoogle Scholar
  63. 63.
    Ferguson GP, Datta A, Baumgartner J, Roop RM II, Carlson RW, Walker GC (2004) Similarity to peroxisomal-membrane protein family reveals that Sinorhizobium and Brucella BacA affect lipid-A fatty acids. Proc Natl Acad Sci USA 101:5012–5017PubMedCrossRefGoogle Scholar
  64. 64.
    Ferrero MC, Fossati CA, Baldi PC (2009) Smooth Brucella strains invade and replicate in human lung epithelial cells without inducing cell death. Microbes Infect 11:476–483PubMedCrossRefGoogle Scholar
  65. 65.
    Forestier C, Moreno E, Pizarro-Cerda J, Gorvel JP (1999) Lysosomal accumulation and recycling of lipopolysaccharide to the cell surface of murine macrophages, an in vitro and in vivo study. J Immunol 162:6784–6791PubMedGoogle Scholar
  66. 66.
    Forestier C, Deleuil F, Lapaque N, Moreno E, Gorvel JP (2000) Brucella abortus lipopolysaccharide in murine peritoneal macrophages acts as a down-regulator of T cell activation. J Immunol 165:5202–5210PubMedGoogle Scholar
  67. 67.
    Foulongne V, Bourg G, Cazevieille C, Michaux-Charachon S, O’Callaghan D (2000) Identification of Brucella suis genes affecting intracellular survival in an in vitro human macrophage infection model by signature-tagged transposon mutagenesis. Infect Immun 68:1297–1303PubMedCrossRefGoogle Scholar
  68. 68.
    Foulongne V, Walravens K, Bourg G, Boschiroli ML, Godfroid J, Ramuz M, O’Callaghan D (2001) Aromatic compound-dependent Brucella suis is attenuated in both cultured cells and mouse models. Infect Immun 69:547–550PubMedCrossRefGoogle Scholar
  69. 69.
    Franz DR, Jahrling PB, Friedlander AM, McClain DJ, Hoover DL, Bryne WR, Pavlin JA, Christopher GW, Eitzen EM (1997) Clinical recognition and management of patients exposed to biological warfare agents. JAMA 278:399–411PubMedCrossRefGoogle Scholar
  70. 70.
    Fretin D, Fauconnier A, Köhler S, Halling S, Leonard S, Nisjkens C, Ferooz J, Lestrate P, Delrue RM, Danese I, Vandenhaute J, Tibor A, de Bolle X, Letesson JJ (2005) The sheathed flagellum of Brucella melitensis is involved in persistence in a murine model of infection. Cell Microbiol 7:687–698PubMedCrossRefGoogle Scholar
  71. 71.
    Gaines J, Tjaden B, Carroll B, Baumgartner J, Anderson E, Roop R (2009) The small RNA regulatory twist on expression of sodC in Brucella abortus 2308. Abstr 109th Gen Meet Am Soc Microbiol, Abstr B-042Google Scholar
  72. 72.
    Gajiwala KS, Burley SK (2000) HdeA, a periplasmic protein that supports acid resistance in pathogenic enteric bacteria. J Mol Biol 295:605–612PubMedCrossRefGoogle Scholar
  73. 73.
    Gee JM, Kovach ME, Grippe VK, Hagius S, Walker JV, Elzer PH, Roop RM II (2004) Role of catalase in the virulence of Brucella melitensis in pregnant goats. Vet Microbiol 102:111–115PubMedCrossRefGoogle Scholar
  74. 74.
    Gee JM, Valderas MW, Kovach ME, Grippe VK, Robertson GT, Ng WL, Richardson JM, Winkler ME, Roop RM II (2005) The Brucella abortus Cu, Zn superoxide dismutase is required for optimal resistance to oxidative killing by murine macrophages and wild-type virulence in experimentally infected mice. Infect Immun 73:2873–2880PubMedCrossRefGoogle Scholar
  75. 75.
    Ghosh P (2004) Process of protein transport by the Type III secretion system. Microbiol Mol Biol Rev 68:771–795PubMedCrossRefGoogle Scholar
  76. 76.
    Godfroid F, Taminiau B, Danese I, Denoel P, Tibor A, Weynants V, Cloeckaert A, Godfroid J, Letesson JJ (1998) Identification of the perosamine synthetase gene of Brucella melitensis 16M and involvement of lipopolysaccharide O side chain in Brucella survival in mice and in macrophages. Infect Immun 66:5485–5493PubMedGoogle Scholar
  77. 77.
    González-Carreró MI, Sangari FJ, Agüero J, García-Lobo JM (2002) Brucella abortus 2308 produces brucebactin, a highly efficient catecholic siderophore. Microbiology 148:353–360PubMedGoogle Scholar
  78. 78.
    Gross A, Spiesser S, Terraza A, Rouot B, Caron E, Dornand J (1998) Expression and bactericidal activity of nitric oxide synthase in Brucella suis-infected murine macrophages. Infect Immun 66:1309–1316PubMedGoogle Scholar
  79. 79.
    Gross A, Terraza A, Ouahrani-Bettache S, Liautard JP, Dornand J (2000) In vitro Brucella suis infection prevents the programmed cell death of human monocytic cells. Infect Immun 68:342–351PubMedCrossRefGoogle Scholar
  80. 80.
    Guzmán-Verri C, Manterola L, Sola-Landa A, Parra A, Cloeckaert A, Garin J, Gorvel JP, Moriyón I, Moreno E, López-Goñi I (2002) The two-component system BvrR/BvrS essential for Brucella abortus virulence regulates the expression of outer membrane proteins with counterparts in members of the Rhizobiaceae. Proc Natl Acad Sci USA 99:12375–12380PubMedCrossRefGoogle Scholar
  81. 81.
    Haine V, Sinon A, Van Steen F, Rousseau S, Dozot M, Lestrate P, Lambert C, Letesson JJ, de Bolle X (2005) Systematic targeted mutagenesis of Brucella melitensis 16M reveals a major role for GntR regulators in the control of virulence. Infect Immun 73:5578–5586PubMedCrossRefGoogle Scholar
  82. 82.
    Haine V, Dozot M, Dornand J, Letesson JJ, de Bolle X (2006) NnrA is required for full virulence and regulates several Brucella melitensis denitrification genes. J Bacteriol 188:1615–1619PubMedCrossRefGoogle Scholar
  83. 83.
    Hernandez-Mora G, Gonzalez-Barrientos R, Morales JA, Chaves-Olarte E, Guzman-Verri C, Baquero-Calvo E, De-Miguel MJ, Marin CM, Blasco JM, Moreno E (2008) Neurobrucellosis in stranded dolphins, Costa Rica. Emerg Infect Dis 14:1430–1433PubMedCrossRefGoogle Scholar
  84. 84.
    Hong PC, Tsolis RM, Ficht TA (2000) Identification of genes required for chronic persistence of Brucella abortus in mice. Infect Immun 68:4102–4107PubMedCrossRefGoogle Scholar
  85. 85.
    Hornback ML, Roop RM II (2006) The Brucella abortus xthA-1 gene product participates in base excision repair and resistance to oxidative killing but is not required for wild-type virulence in the mouse model. J Bacteriol 188:1295–1300PubMedCrossRefGoogle Scholar
  86. 86.
    Igwebuike UM (2006) Trophoblast cells of ruminant placentas—a minireview. Anim Reprod Sci 93:185–198PubMedCrossRefGoogle Scholar
  87. 87.
    Iñón de Iannino N, Briones G, Tomalsky M, Ugalde RA (1998) Molecular cloning and characterization of cgs, the Brucella abortus cyclic β(1–2) glucan synthetase gene: genetic complementation of Rhizobium meliloti ndvB and Agrobacterium tumefaciens chvB mutants. J Bacteriol 180:4392–4400PubMedGoogle Scholar
  88. 88.
    Iriarte M, González D, Delrue RM, Monreal D, Conde R, López-Goñi I, Letesson JJ, Moriyón I (2004) Brucella lipopolysaccharide: structure, biosynthesis and genetics. In: López-Goñi I, Moriyón I (eds) Brucella: molecular and cellular biology. Horizon Bioscience, Norfolk, pp 159–191Google Scholar
  89. 89.
    Jain V, Kumar M, Chatterji D (2006) ppGpp: stringent response and survival. J Microbiol 44:1–10PubMedGoogle Scholar
  90. 90.
    Jiang X, Leonard B, Benson R, Baldwin CL (1993) Macrophage control of Brucella abortus: role of reactive oxygen intermediates and nitric oxide. Cell Immunol 151:309–319PubMedCrossRefGoogle Scholar
  91. 91.
    Jiménez de Bagüés MP, Loisel-Meyer S, Liautard JP, Jubier-Maurin V (2007) Different roles of the two high-oxygen-affinity terminal oxidases of Brucella suis: cytochrome c oxidase, but not ubiquinol oxidase, is required for persistence in mice. Infect Immun 75:531–535PubMedCrossRefGoogle Scholar
  92. 92.
    Kahl-McDonough MM, Ficht TA (2006) Evaluation of protection afforded by Brucella abortus and Brucella melitensis unmarked deletion mutants exhibiting different rates of clearance in BALB/c mice. Infect Immun 74:4048–4057CrossRefGoogle Scholar
  93. 93.
    Kahl-McDonough MM, Elzer PH, Hagius SD, Walker JV, Perry QL, Seabury CM, den Hartigh AB, Tsolis RM, Adams LG, Davis DS, Ficht TA (2006) Evaluation of novel Brucella melitensis unmarked deletion mutants for safety and efficacy in the goat model of brucellosis. Vaccine 24:5169–5177CrossRefGoogle Scholar
  94. 94.
    Kikuchi H, Kim S, Watanabe K, Watarai M (2006) Brucella abortus D-alanyl-D-alanine carboxypeptidase contributes to its intracellular replication and resistance against nitric oxide. FEMS Microbiol Lett 259:120–125PubMedCrossRefGoogle Scholar
  95. 95.
    Kim JA, Sha Z, Mayfield JE (2000) Regulation of Brucella abortus catalase. Infect Immun 68:3681–3866Google Scholar
  96. 96.
    Kim S, Watarai M, Makino S, Shirahata T (2002) Membrane sorting during swimming internalization of Brucella is required for phagosome trafficking decisions. Microb Pathog 33:225–237PubMedCrossRefGoogle Scholar
  97. 97.
    Kim S, Watarai M, Kondo Y, Erdenebaatar J, Makino S, Shirahata T (2003) Isolation and characterization of mini-Tn5Km2 insertion mutants of Brucella abortus deficient in internalization and intracellular growth in HeLa cells. Infect Immun 71:3020–3027PubMedCrossRefGoogle Scholar
  98. 98.
    Kim S, Watanabe K, Shirahata T, Watarai M (2004) Zinc uptake system (znuA locus) of Brucella abortus is essential for intracellular survival and virulence in mice. J Vet Med Sci 66:1059–1063PubMedCrossRefGoogle Scholar
  99. 99.
    Kim S, Watanabe K, Suzuki H, Watarai M (2005) Roles of Brucella abortus SpoT in morphological differentiation and intramacrophagic replication. Microbiology 151:1607–1617PubMedCrossRefGoogle Scholar
  100. 100.
    Köhler S, Foulongne V, Ouahrani-Bettache S, Bourg G, Teyssier J, Ramuz M, Liautard JP (2002) The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell. Proc Natl Acad Sci USA 99:15711–15716PubMedCrossRefGoogle Scholar
  101. 101.
    Köhler S, Michaux-Charachon S, Porte F, Ramuz M, Liautard JP (2003) What is the nature of the replicative niche of a stealthy bug named Brucella? Trends Microbiol 11:215–219PubMedGoogle Scholar
  102. 102.
    Lamontagne J, Butler H, Chaves-Olarte E, Hunter J, Schirm M, Paquet C, Tian M, Kearney P, Hamaidi L, Chelsky D, Moriyón I, Moreno E, Paramithiotis E (2007) Extensive cell envelope modulation is associated with virulence in Brucella abortus. J Proteome Res 6:1519–1529PubMedCrossRefGoogle Scholar
  103. 103.
    Lamontagne J, Forest A, Marazzo E, Denis F, Butler H, Michaud JF, Boucher L, Pedro I, Villeneuve A, Sitnikov D, Trudel K, Nassif N, Boudjelti D, Tomaki F, Chaves-Olarte E, Guzmán-Verri C, Brunet S, Côté-Martin A, Hunter J, Moreno E, Paramithiotis E (2009) Intracellular adaptation of Brucella abortus. J Proteome Res 8:1594–1609PubMedCrossRefGoogle Scholar
  104. 104.
    Lapaque N, Takeuchi S, Corrales F, Akira A, Moriyón I, Howard JC, Gorvel JP (2006) Differential inductions of TNF-α and IGTP, IIGP by structurally diverse classic and non-classic lipopolysaccharides. Cell Microbiol 8:401–413PubMedCrossRefGoogle Scholar
  105. 105.
    Lavigne JP, O’Callaghan D, Blanc-Potard AB (2005) Requirement of MgtC for Brucella suis intramacrophage growth: a potential mechanism shared by Salmonella enterica and Mycobacterium tuberculosis for adaptation to a low-Mg2+ environment. Infect Immun 73:3160–3163PubMedCrossRefGoogle Scholar
  106. 106.
    Lavigne JP, Patey G, Sangari FJ, Bourg G, Ramuz M, O’Callaghan D, Michaux-Charachon S (2005) Identification of a new virulence factor, BvfA, in Brucella suis. Infect Immun 73:5524–5529PubMedCrossRefGoogle Scholar
  107. 107.
    Léonard S, Ferooz J, Haine V, Danese I, Fretin D, Tibor A, de Walque S, de Bolle X, Letesson JJ (2007) FtcR is a new master regulator of the flagellar system of Brucella melitensis 16M with homologs in Rhizobiaceae. J Bacteriol 189:131–141PubMedCrossRefGoogle Scholar
  108. 108.
    Lestrate P, Delrue RM, Danese I, Didembourg C, Taminiau B, Mertens P, de Bolle X, Tibor A, Tang CM, Letesson JJ (2000) Identification and characterization of in vivo attenuated mutants of Brucella melitensis. Mol Microbiol 38:543–551PubMedCrossRefGoogle Scholar
  109. 109.
    Lestrate P, Dricot A, Delrue RM, Lambert C, Martinelli V, de Bolle X, Letesson JJ, Tibor A (2003) Attenuated signature-tagged mutagenesis mutants of Brucella melitensis identified during the acute phage of infection in mice. Infect Immun 71:7053–7060PubMedCrossRefGoogle Scholar
  110. 110.
    LeVier K, Phillips RW, Grippe VK, Roop RM II, Walker GC (2000) Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival. Science 287:2492–2493PubMedCrossRefGoogle Scholar
  111. 111.
    Li L, Jia Y, Hou Q, Charles TC, Nester EW, Pan SQ (2002) A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid. Proc Natl Acad Sci USA 99:12369–12374PubMedCrossRefGoogle Scholar
  112. 112.
    Lin J, Ficht TA (1995) Protein synthesis in Brucella abortus induced during macrophage infection. Infect Immun 63:1409–1414PubMedGoogle Scholar
  113. 113.
    Loisel-Meyer S, Jiménez de Bagüés MP, Bassères E, Dornand J, Köhler S, Liautard JP, Jubier-Maurin V (2006) Requirement of norD for Brucella suis virulence in a murine model of in vitro and in vivo infection. Infect Immun 74:1973–1976PubMedCrossRefGoogle Scholar
  114. 114.
    López-Goñi I, Moriyón I, Neilands JB (1992) Identification of 2, 3-dihydroxybenzoic acid as a Brucella abortus siderophore. Infect Immun 60:4496–4503PubMedGoogle Scholar
  115. 115.
    Lynch M, Kuramitsu H (2000) Expression and role of superoxide dismutases (SOD) in pathogenic bacteria. Microbes Infect 2:1245–1255PubMedCrossRefGoogle Scholar
  116. 116.
    Magnusson LU, Farewell A, Nyström T (2005) ppGpp: a global regulator in Escherichia coli. Trends Microbiol 13:236–242PubMedCrossRefGoogle Scholar
  117. 117.
    Manterola L, Moriyón I, Moreno E, Sola-Landa A, Weiss DS, Koch MHJ, Howe J, Brandenburg K, López-Goñi I (2005) The lipopolysaccharide of Brucella abortus BvrS/BvrR mutants contains lipid modifications and has higher affinity for bactericidal cationic peptides. J Bacteriol 187:5631–5639PubMedCrossRefGoogle Scholar
  118. 118.
    Manterola L, Guzmán-Verri C, Chaves-Olarte E, Barquero-Calvo E, de Miguel MJ, Moriyón I, Grilló MJ, López-Goñi I, Moreno E (2007) BvrR/BvrS-controlled outer membrane proteins Omp3a and Omp3b are not essential for Brucella abortus virulence. Infect Immun 75:4867–4874PubMedCrossRefGoogle Scholar
  119. 119.
    Martín-Martín AI, Caro-Hernández P, Orduña A, Vizcaíno N, Fernández-Lago L (2008) Importance of the Omp25/Omp31 family in the internalization and intracellular replication of virulent B. ovis in murine macrophages and HeLa cells. Microbes Infect 10:706–710PubMedCrossRefGoogle Scholar
  120. 120.
    Martínez de Tejada G, Pizarro-Cerdá J, Moreno E, Moriyón I (1995) The outer membranes of Brucella spp. are resistant to bactericidal cationic peptides. Infect Immun 63:3054–3061PubMedGoogle Scholar
  121. 121.
    Master SS, Springer B, Sander P, Boettger EC, Deretic V, Timmins GS (2002) Oxidative stress response genes in Mycobacterium tuberculosis: role of ahpC in resistance to peroxynitrite and stage-specific survival in macrophages. Microbiology 148:3139–3144PubMedGoogle Scholar
  122. 122.
    McQuiston JR, Vemulapalli R, Inzana TJ, Schurig GG, Sriranganathan N, Fritzinger D, Hadfield TL, Warren RL, Snellings N, Hoover D, Halling SM, Boyle SM (1999) Genetic characterization of a Tn5-disrupted glycosyltransferase gene homolog in Brucella abortus and its effect on lipopolysaccharide composition and virulence. Infect Immun 67:3830–3835PubMedGoogle Scholar
  123. 123.
    Meador VP, Deyoe BL (1989) Intracellular localization of Brucella abortus in bovine placenta. Vet Pathol 26:513–515PubMedCrossRefGoogle Scholar
  124. 124.
    Minder AC, de Rudder KEE, Narberhaus F, Fischer HM, Hennecke H, Geiger O (2001) Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant. Mol Microbiol 39:1186–1198PubMedCrossRefGoogle Scholar
  125. 125.
    Moreno E, Berman DT, Boettcher LA (1981) Biological activities of Brucella abortus lipopolysaccharides. Infect Immun 31:362–370PubMedGoogle Scholar
  126. 126.
    Moreno E, Stackenbrandt E, Dorsch M, Wolters J, Busch M, Mayer H (1990) Brucella abortus 16S rRNA and lipid A reveal a phylogenetic relationship with members of the alpha-2 subdivision of the Class Proteobacteria. J Bacteriol 172:3569–3576PubMedGoogle Scholar
  127. 127.
    Moreno E, Moriyón I (2002) Brucella melitensis: a nasty bug with hidden credentials for virulence. Proc Natl Acad Sci USA 99:1–3PubMedCrossRefGoogle Scholar
  128. 128.
    Moreno E, Gorvel JP (2004) Invasion, intracellular trafficking and replication of Brucella organisms in professional and non-professional phagocytes. In: López-Goñi I, Moriyón I (eds) Brucella: molecular and cellular biology. Horizon Bioscience, Norfolk, pp 287–312Google Scholar
  129. 129.
    Naroeni A, Jouy N, Ouahrani-Bettache S, Liautard JP, Porte F (2001) Brucella suis-impaired specific recognition of phagosomes by lysosomes due to phagosomal membrane modifications. Infect Immun 69:486–493PubMedCrossRefGoogle Scholar
  130. 130.
    Nicoletti PL (1989) Relationship between animal and human disease. In: Young EJ, Corbel MJ (eds) Brucellosis: clinical and laboratory aspects. CRC, Boca Raton, pp 41–51Google Scholar
  131. 131.
    O’Callaghan D, Cazevieille C, Allardet-Servent A, Boschiroli ML, Bourg G, Foulongne V, Frutos P, Kulakov Y, Ramuz M (1999) A homologue of the Agrobacterium tumefaciens VirB and Bordetella Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol Microbiol 33:1210–1220PubMedCrossRefGoogle Scholar
  132. 132.
    O’Neill LAJ, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7:353–364PubMedCrossRefGoogle Scholar
  133. 133.
    Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos EV (2006) The new global map of human brucellosis. Lancet Infect Dis 6:91–99PubMedCrossRefGoogle Scholar
  134. 134.
    Pappas G, Panagopoulou P, Christou L, Akritidis N (2006) Brucella as a biological weapon. Cell Mol Life Sci 63:2229–2236PubMedCrossRefGoogle Scholar
  135. 135.
    Parent MA, Bellaire BH, Murphy EA, Roop RM II, Elzer PH, Baldwin CL (2002) Brucella abortus siderophore 2, 3-dihydroxybenzoic acid (DHBA) facilitates intracellular survival of the bacteria. Microb Pathog 32:239–248PubMedCrossRefGoogle Scholar
  136. 136.
    Parent MA, Goenka R, Murphy E, LeVier K, Carreiro N, Golding B, Ferguson G, Roop RM II, Walker GC, Baldwin CL (2007) Brucella bacA mutant induces greater pro-inflammatory cytokines than the wild-type parent. Microbes Infect 9:55–62PubMedCrossRefGoogle Scholar
  137. 137.
    Paulley JT, Anderson ES, Roop RM II (2007) Brucella abortus requires the heme transporter BhuA for maintenance of chronic infection in BALB/c mice. Infect Immun 75:5248–5254PubMedCrossRefGoogle Scholar
  138. 138.
    Pei J, Ficht TA (2004) Brucella abortus rough mutants are cytopathic for macrophages in culture. Infect Immun 72:440–450PubMedCrossRefGoogle Scholar
  139. 139.
    Pizarro-Cerda J, Meresse S, Parton RG, van der Goot G, Sola-Landa A, López-Goñi I, Moreno E, Gorvel JP (1998) Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect Immun 66:5711–5724PubMedGoogle Scholar
  140. 140.
    Porte F, Liautard JP, Köhler S (1999) Early acidification of phagosomes containing Brucella suis is essential for intracellular survival in murine macrophages. Infect Immun 67:4041–4047PubMedGoogle Scholar
  141. 141.
    Porte F, Naroeni A, Ouahrani-Bettache S, Liautard JP (2003) Role of the Brucella suis lipopolysaccharide O antigen in phagosomal genesis and in inhibition of phagosome-lysosome fusion in murine macrophages. Infect Immun 71:1481–1490PubMedCrossRefGoogle Scholar
  142. 142.
    Posey JE, Gherardini FC (2000) Lack of a role for iron in the Lyme disease pathogen. Science 288:1651–1653PubMedCrossRefGoogle Scholar
  143. 143.
    Preisig O, Zufferey R, Thöny-Meyer L, Appleby CA, Hennecke H (1996) A high-affinity cbb 3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. J Bacteriol 178:1532–1538PubMedGoogle Scholar
  144. 144.
    Puvanesarajah V, Schell FM, Stacey G, Douglas CJ, Nester EW (1985) Role for 2-linked β-D-glucan in the virulence of Agrobacterium tumefaciens. J Bacteriol 164:102–106PubMedGoogle Scholar
  145. 145.
    Radhakrishnan GK, Yu Q, Harms JS, Splitter GA (2009) Brucella TIR domain-containing protein mimics properties of the Toll-like receptor adaptor protein TIRAP. J Biol Chem 284:9892–9898PubMedCrossRefGoogle Scholar
  146. 146.
    Rajashekara G, Glover DA, Banai M, O’Callaghan D, Splitter GA (2006) Attenuated bioluminescent Brucella melitensis mutants GR109 (virB4), GR024 (galE), and GR026 (BEMI1090-BMEI1091) confer protection in mice. Infect Immun 74:2925–2936PubMedCrossRefGoogle Scholar
  147. 147.
    Rambow-Larsen AA, Rajashekara G, Petersen E, Splitter G (2008) Putative quorum-sensing regulator BlxR of Brucella melitensis regulates virulence factors including the Type IV secretion system and flagella. J Bacteriol 190:3274–3282PubMedCrossRefGoogle Scholar
  148. 148.
    Rasool O, Freer E, Moreno E, Jarstrand C (1992) Effect of Brucella abortus lipopolysaccharide on oxidative metabolism and lysozyme release by human neutrophils. Infect Immun 60:1699–1702PubMedGoogle Scholar
  149. 149.
    Rest RF, Robertson DC (1975) Characterization of the electron transport system in Brucella abortus. J Bacteriol 122:139–144PubMedGoogle Scholar
  150. 150.
    Rittig M, Alvarez-Martinez MT, Porte F, Liautard JP, Rouot B (2001) Intracellular survival of Brucella spp. in human monocytes involves conventional uptake but special phagosomes. Infect Immun 69:3995–4006PubMedCrossRefGoogle Scholar
  151. 151.
    Rittig MG, Kaufmann A, Robins A, Shaw B, Sprenger H, Gemsa D, Foulongne V, Rouot B, Dornand J (2003) Smooth and rough lipopolysaccharide phenotypes of Brucella induce different intracellular trafficking and cytokine/chemokine release in human monocytes. J Leukoc Biol 74:1045–1055PubMedCrossRefGoogle Scholar
  152. 152.
    Robertson GT, Roop RM II (1999) The Brucella abortus host factor I (HF-I) protein contributes to stress resistance during stationary phase and is a major determinant of virulence in mice. Mol Microbiol 34:690–700PubMedCrossRefGoogle Scholar
  153. 153.
    Roop RM II, Jeffers G, Bagchi T, Walker J, Enright FM, Schurig GG (1991) Experimental infection of goat fetuses in utero with a stable, rough mutant of Brucella abortus. Res Vet Sci 51:123–127PubMedGoogle Scholar
  154. 154.
    Roop RM II, Robertson GT, Grippe VK, Kovach ME, LeVier K, Hagius S, Walker JV, Booth N, Fulton T, Elzer PH, Walker GC (2000) Virulence of Brucella melitensis hfq, katE and bacA mutants in pregnant goats. Proc Brucellosis 2000 Meet, Abstr 93, p 89Google Scholar
  155. 155.
    Roop RM II, Gee JM, Robertson GT, Richardson JM, Ng WL, Winkler ME (2003) Brucella stationary-phase gene expression and virulence. Annu Rev Microbiol 57:57–76PubMedCrossRefGoogle Scholar
  156. 156.
    Roop RM II, Bellaire BH, Valderas MW, Cardelli JA (2004) Adaptation of the brucellae to their intracellular niche. Mol Microbiol 52:621–630PubMedCrossRefGoogle Scholar
  157. 157.
    Roop RM II, Bellaire BH, Anderson E, Paulley JT (2004) Iron metabolism in Brucella. In: López-Goñi I, Moriyón I (eds) Brucella: molecular and cellular biology. Horizon Bioscience, Norfolk, pp 243–262Google Scholar
  158. 158.
    Roux CM (2003) Characterization of DNA repair networks of Brucella abortus: analysis of their role in pathogenesis. Doctoral dissertation, University of Louisiana at LafayetteGoogle Scholar
  159. 159.
    Salcedo SP, Marchesini MI, Lelouard H, Fugier E, Jolly G, Balor S, Muller A, Lapaque N, Demaria O, Alexapoulou L, Comerci DJ, Ugalde RA, Pierre P, Gorvel JP (2008) Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btp1. PLoS Pathog 4:e21PubMedCrossRefGoogle Scholar
  160. 160.
    Samartino LE, Enright FM (1993) Pathogenesis of abortion of bovine brucellosis. Comp Immunol Microbiol Infect Dis 16:95–101PubMedCrossRefGoogle Scholar
  161. 161.
    Sanchez-Contrerase M, Bauer WD, Gao M, Robinson JB, Downie JA (2007) Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes. Phil Trans R Soc B 362:1149–1163CrossRefGoogle Scholar
  162. 162.
    Sangari FJ, Agüero J (1996) Molecular basis of Brucella pathogenicity: an update. Microbiologia 12:207–218PubMedGoogle Scholar
  163. 163.
    Sangari FJ, Seoane A, Rodríguez MC, Agüero J, García Lobo JM (2007) Characterization of the urease operon of Brucella abortus and assessment of its role in virulence of the bacterium. Infect Immun 75:774–780PubMedCrossRefGoogle Scholar
  164. 164.
    Sangari FJ, Grilló MJ, Jiménez de Bagües MP, González-Carreró MI, García-Lobo JM, Blasco JM, Agüero J (1998) The defect in the metabolism of erythritol of the Brucella abortus B19 vaccine strain is unrelated with its attenuated virulence in mice. Vaccine 16:1640–1645PubMedCrossRefGoogle Scholar
  165. 165.
    Sha Z, Stabel TJ, Mayfield JE (1994) Brucella abortus catalase is a periplasmic protein lacking a standard signal sequence. J Bacteriol 176:7375–7377PubMedGoogle Scholar
  166. 166.
    Shepard CC (1959) Nonacid-fast bacteria and HeLa cells: their uptake and subsequent intracellular growth. J Bacteriol 77:701–714PubMedGoogle Scholar
  167. 167.
    Shin S, Roy CR (2008) Host cell processes that influence the intracellular survival of Legionella pneumophila. Cell Microbiol 10:1209–1220PubMedCrossRefGoogle Scholar
  168. 168.
    Sieira R, Comerci DJ, Sánchez DO, Ugalde RA (2000) A homologue of an operon required for DNA transfer in Agrobacterium is required in Brucella abortus for virulence and intracellular multiplication. J Bacteriol 182:4849–4855PubMedCrossRefGoogle Scholar
  169. 169.
    Smith H, Williams AE, Pearce JH, Keppie J, Harris-Smith PW, Fitzgeorge RB, Witt K (1962) Foetal erythritol: a cause of the localization of Brucella abortus in bovine contagious abortion. Nature 193:47–49PubMedCrossRefGoogle Scholar
  170. 170.
    Sohlenkamp C, Lopez-Lara IM, Geiger O (2003) Biosynthesis of phosphatidylcholine in bacteria. Prog Lipid Res 42:115–162PubMedCrossRefGoogle Scholar
  171. 171.
    Sohn AH, Probert WS, Glaser CA, Gupta N, Bollen AW, Wong JD, Grace EM, McDonald WC (2003) Human neurobrucellosis with intracerebral granuloma caused by a marine mammal Brucella spp. Emerg Infect Dis 9:485–488PubMedGoogle Scholar
  172. 172.
    Sola-Landa A, Pizarro-Cerdá J, Grilló MJ, Moriyón E, Blasco JM, Gorvel JP, López-Goñi I (1998) A two-component regulatory system playing a critical role in plant pathogens and endosymbionts is present in Brucella abortus and controls cell invasion and virulence. Mol Microbiol 29:125–138PubMedCrossRefGoogle Scholar
  173. 173.
    Spera JM, Ugalde JE, Mucci J, Comerci DJ, Ugalde RA (2006) A B lymphocyte mitogen is a Brucella abortus virulence factor required for persistent infection. Proc Natl Acad Sci USA 103:16514–16519PubMedCrossRefGoogle Scholar
  174. 174.
    Sperry JF, Robertson DC (1975) Erythritol catabolism by Brucella abortus. J Bacteriol 121:619–630PubMedGoogle Scholar
  175. 175.
    Sriranganathan N, Boyle SM, Schurig G, Misra H (1991) Superoxide dismutases of virulent and avirulent strains of Brucella abortus. Vet Microbiol 26:359–366PubMedCrossRefGoogle Scholar
  176. 176.
    Starr T, Ng TW, Wehrly TD, Knodler LA, Celli J (2008) Brucella intracellular replication requires trafficking through the late endosomal/lysosomal compartment. Traffic 9:678–694PubMedCrossRefGoogle Scholar
  177. 177.
    Storz G, Opdyke JA, Zhang A (2004) Controlling mRNA stability and translation with small, noncoding RNAs. Curr Opin Microbiol 7:140–144PubMedCrossRefGoogle Scholar
  178. 178.
    Swartz TE, Tseng TS, Frederickson MA, Paris G, Comerci DJ, Rajashekara G, Kim JG, Mudgett MB, Splitter GA, Ugalde RA, Goldbaum FA, Briggs WR, Bogomolni RA (2007) Blue-light-activated histidine kinases: two-component sensors in bacteria. Science 317:1090–1093PubMedCrossRefGoogle Scholar
  179. 179.
    Taketani S (2005) Acquisition, mobilization and utilization of cellular iron and heme: endless findings and growing evidence of tight regulation. Tohoku J Exp Med 205:297–318PubMedCrossRefGoogle Scholar
  180. 180.
    Taminiau B, Daykin M, Swift S, Boschiroli ML, Tibor A, Lestrate P, de Bolle X, O’Callaghan D, Williams P, Letesson JJ (2002) Identification of a quorum-sensing signal molecule in the facultative intracellular pathogen Brucella melitensis. Infect Immun 70:3004–3011PubMedCrossRefGoogle Scholar
  181. 181.
    Tatum FM, Detilleux PG, Sacks JM, Halling SM (1992) Construction of a Cu/Zn superoxide dismutase deletion mutant of Brucella abortus: analysis of survival in vitro in epithelial and phagocytic cells and in vivo in mice. Infect Immun 60:2863–2869PubMedGoogle Scholar
  182. 182.
    Tatum FM, Morfitt DC, Halling SM (1993) Construction of a Brucella abortus RecA mutant and its survival in mice. Microb Pathog 14:177–185PubMedCrossRefGoogle Scholar
  183. 183.
    Ugalde JE, Czibener C, Feldman MF, Ugalde RA (2000) Identification and characterization of the Brucella abortus phosphoglucomutase gene: role of lipopolysaccharide in virulence and intracellular multiplication. Infect Immun 68:5716–5723PubMedCrossRefGoogle Scholar
  184. 184.
    Uzureau S, Godefroid M, Deschamps C, Lemaire J, de Bolle X, Letesson JJ (2007) Mutations of the quorum sensing-dependent regulator VjbR lead to drastic surface modifications in Brucella melitensis. J Bacteriol 189:6035–6047PubMedCrossRefGoogle Scholar
  185. 185.
    Valderas M, Alcantara RB, Baumgartner JE, Bellaire BH, Robertson GT, Ng WL, Richardson JM, Winkler ME, Roop RM II (2005) Role of HdeA in acid resistance and virulence in Brucella abortus 2308. Vet Microbiol 107:307–312PubMedCrossRefGoogle Scholar
  186. 186.
    Valentin-Hansen P, Eriksen M, Udesen C (2004) The bacterial Sm-like protein: a key player in RNA transactions. Mol Microbiol 51:1525–1533PubMedCrossRefGoogle Scholar
  187. 187.
    Wanke MM (2004) Canine brucellosis. Anim Reprod Sci 82–83:195–207PubMedCrossRefGoogle Scholar
  188. 188.
    Waterman SR, Small PLC (1996) Identification of σS-dependent genes associated with the stationary-phase acid-resistance phenotype of Shigella flexneri. Mol Microbiol 21:925–940PubMedCrossRefGoogle Scholar
  189. 189.
    Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346PubMedCrossRefGoogle Scholar
  190. 190.
    Weinberg ED (1997) The Lactobacillus anomaly: total iron abstinence. Perspect Biol Med 40:578–583PubMedGoogle Scholar
  191. 191.
    Wessel M, Klüener S, Gödeke J, Fritz C, Hacker S, Narberhaus F (2006) Virulence of Agrobacterium tumefaciens requires phosphatidylcholine in the bacterial membrane. Mol Microbiol 62:906–915PubMedCrossRefGoogle Scholar
  192. 192.
    Wilson T, de Lisle GW, Marcinkeviciene JA, Blanchard JS, Collins DM (1998) Antisense RNA to ahpC, an oxidative stress defence gene involved in isoniazid resistance, indicates that AhpC of Mycobacterium bovis has virulence properties. Microbiology 144:2687–2695PubMedCrossRefGoogle Scholar
  193. 193.
    Winter AJ, Schurig GG, Boyle SM, Sriranganathan N, Bevins JS, Enright FM, Elzer PH, Kopec JD (1996) Protection of BALB/c mice against homologous and heterologous species of Brucella by rough strain vaccines derived from Brucella melitensis and Brucella suis biovar 4. Am J Vet Res 57:677–683PubMedGoogle Scholar
  194. 194.
    Wu Q, Pei J, Turse C, Ficht TA (2006) Mariner mutagenesis of Brucella melitensis reveals genes with previously uncharacterized roles in virulence and survival. BMC Microbiol 6:102PubMedCrossRefGoogle Scholar
  195. 195.
    Yang X, Becker T, Walters N, Pascual DW (2006) Deletion of znuA virulence factor attenuates Brucella abortus and confers protection against wild-type challenge. Infect Immun 74:3874–3879PubMedCrossRefGoogle Scholar
  196. 196.
    Young EJ (2005) Brucella species. In: Mandell GL, Bennett JE, Dolin R (eds) Mandell, Douglas and Bennett’s principles and practice of infectious diseases, 6th edn. Elsevier Churchill Livingstone, Philadelphia, pp 2669–2685Google Scholar
  197. 197.
    Zarahik ML, Cullen VL, Fung AM, Libby SJ, Choy SLK, Coburn B, Kehres DG, Maguire ME, Fang FC, Finlay BB (2004) The Salmonella enterica serovar Typhimurium divalent cation transport systems MntH and SitABCD are essential for virulence in an Nramp1 G169 murine typhoid model. Infect Immun 72:5522–5525CrossRefGoogle Scholar
  198. 198.
    Zygmunt MS, Hagius SD, Walker JV, Elzer PH (2006) Identification of Brucella melitensis 16M genes required for bacterial survival in the caprine host. Microbes Infect 8:2849–2854PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • R. Martin RoopII
    • 1
  • Jennifer M. Gaines
    • 1
  • Eric S. Anderson
    • 1
  • Clayton C. Caswell
    • 1
  • Daniel W. Martin
    • 1
  1. 1.Department of Microbiology and Immunology, Brody School of MedicineEast Carolina UniversityGreenvilleUSA

Personalised recommendations