Advertisement

Medical Microbiology and Immunology

, Volume 198, Issue 1, pp 5–11 | Cite as

Evaluation of a recombinant BCG expressing antigen Ag85B and PPE protein Rv3425 from DNA segment RD11 of Mycobacterium tuberculosis in C57BL/6 mice

  • Jiu ling Wang
  • Ya qing Qie
  • Bing dong Zhu
  • Hong mei Zhang
  • Ying Xu
  • Qing zhong Wang
  • Jia zhen Chen
  • Wei Liu
  • Hong hai WangEmail author
Original Investigation

Abstract

Antigen 85B (Ag85B) is an important immunodominant antigen of Mycobacterium tuberculosis, and is a very promising vaccine candidate molecule. Rv3425 is a member of the subgroup 3 of the PPE family, which does not exist in all BCG strains. In this study we constructed a new rBCG which included this united gene (Ag85B-Rv3425). The level of antigen-stimulated T cells expressing IFN-γ was significantly higher in the C57BL/6 mice vaccinated with rBCG::Ag85B-Rv3425 than with BCG. In addition, the sera from mice immunized with rBCG::Ag85B-Rv3425 revealed an increase in the specific immunoglobulin G titers than that from mice immunized with BCG. Antigen specific IgG subclass analysis showed that rBCG::Ag85B-Rv3425 tended to facilitate IgG2a production, suggesting enhancement of predominant Th1 response which in turn may facilitate increased production of protective IFN-γ. These results suggested that this rBCG::Ag85B-Rv3425 could be a strong vaccine candidate for further study.

Keywords

Mycobacterium tuberculosis Vaccine Ag85B Rv3425 

Notes

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (863 Program) (2006AA02Z445 and 2006AA02Z420).

References

  1. 1.
    Agger EM, Andersen P (2002) A novel TB vaccine; towards a strategy based on our understanding of BCG failure. Vaccine 21:7–14PubMedCrossRefGoogle Scholar
  2. 2.
    Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE III, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544. doi: 10.1038/31159 MedlinePubMedCrossRefGoogle Scholar
  3. 3.
    Ohara N, Yamada T (2001) Recombinant BCG vaccines. Vaccine 19:4089–4098. doi: 10.1016/S0264–410X(01)00155-4 MedlinePubMedCrossRefGoogle Scholar
  4. 4.
    Hovav AH, Mullerad J, Davidovitch L, Fishman Y, Bigi F, Cataldi A, Bercovier H (2003) The Mycobacterium tuberculosis recombinant 27-Kilodalton lipoprotein induces a strong Th1-type immune response deleterious to protectio. Infect Immun 71:3146–3154. doi: 10.1128/IAI.71.6.3146-3154.2003 MedlinePubMedCrossRefGoogle Scholar
  5. 5.
    Neeraj D, Vivek R, Anil KT (2003) Skewing of the Th1/Th2 responses in mice due to variation in the level of expression of an antigen in a recombinant BCG system. Immunol Lett 88:175–184. doi: 10.1016/S0165-2478(03)00043-9 MedlineCrossRefGoogle Scholar
  6. 6.
    Horwitz MA (1997) A new TB vaccine. Immunologist 5:15–20Google Scholar
  7. 7.
    Hess J, Kaufmann SHE (1993) Vaccination strategies against intracellular microbes. FEMS Microbiol Immunol 7:95–103. doi: 10.1111/j.1574-695X.1993.tb00387.x CrossRefGoogle Scholar
  8. 8.
    Wiker HG, Harboe M (1992) The antigen 85 complex: a major secretion product of Mycobacterium tuberculosis. Microbiol Rev 56:648–661 MedlinePubMedGoogle Scholar
  9. 9.
    Dhar N, Rao V, Tyagi AK (2004) Immunogenicity of recombinant BCG vaccine strains overexpressing components of the antigen 85 complex of Mycobacterium tuberculosis. Med Microbiol Immunol 193:19–25. doi: 10.1007/s00430-002-0170-x PubMedCrossRefGoogle Scholar
  10. 10.
    Baldwin SL, D’Souza C, Roberts AD, Kelly BP, Frank AA, Lui MA, Ulmer JB, Huygen K, McMurray DM, Orme IM (1998) Evaluation of new vaccines in the mouse and guinea pig model of tuberculosis. Infect Immun 66:2951–2959 MedlinePubMedGoogle Scholar
  11. 11.
    Horwitz MA, Lee BWE, Dillon BJ, Harth G (1995) Protective immunity against tuberculosis induced by vaccination with major extracellular proteins against Mycobacterium tuberculosis. Proc Natl Acad Sci USA 92:1530–1534. doi: 10.1073/pnas.92.5.1530 MedlinePubMedCrossRefGoogle Scholar
  12. 12.
    Behr MA, Wilson MA, Gill WP, Salamon H, Schoolnik GK, Rane S, Small PM (1999) Comparative genomics of BCG vaccines by whole genome DNA microarray. Science 284:1520–1523. doi: 10.1126/science.284.5419.1520 MedlinePubMedCrossRefGoogle Scholar
  13. 13.
    Choudhary RK, Mukhopadhyay S, Chakhaiyar P, Sharma M, Murthy KLR, Katoch VM, Hasnain SE (2003) PPE antigen Rv2430c of Mycobacterium tuberculosis induces a strong B-cell response. Infect Immun 71:6338–6343. doi: 10.1128/IAI.71.11.6338-6343.2003 MedlinePubMedCrossRefGoogle Scholar
  14. 14.
    Zhang H, Wang J, Lei J, Zhang M, Yang Y, Chen Y, Wang H (2007) PPE protein (Rv3425) from DNA segment RD11 of Mycobacterium tuberculosis: a potential B-cell antigen used for serological diagnosis to distinguish vaccinated controls from tuberculosis patients. Clin Microbiol Infect 13(2):139–145. doi: 10.1111/j.1469-0691.2006.01561.x MedlinePubMedCrossRefGoogle Scholar
  15. 15.
    Norazmi MN, Mustaffa M (2004) Approaches towards the development of a vaccine against tuberculosis: recombinant BCG and DNA vaccine. Tuberculosis 84:102–109. doi: 10.1016/j.tube.2003.08.011 MedlineCrossRefGoogle Scholar
  16. 16.
    Horwitz MA, Harth G, Dillon BJ, Maslesa-Galic’ S (2000) Recombinant bacillus Calmette–Gu’erin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc Natl Acad Sci USA 97:13853–13858. doi: 10.1073/pnas.250480397 MedlinePubMedCrossRefGoogle Scholar
  17. 17.
    Pym AS, Brodin P, Majlessi L, Brosch R, Demangel C, Williams A, Grifftths KE, Marchal G, Leclerc C, Cole ST (2003) Recombinant BCG exportiong ESAT-6 confers enhanced protection against tuberculosis. Nat Med 9:533–539. doi: 10.1038/nm859 MedlinePubMedCrossRefGoogle Scholar
  18. 18.
    Palendira U, Spratt JM, Britton WJ, Triccas JA (2005) Expanding the antigenic repertoire of BCG improves protective efficacy against aerosol Mycobacterium tuberculosis infection. Vaccine 23:1680–1685. doi: 10.1016/j.vaccine.2004.10.007 MedlinePubMedCrossRefGoogle Scholar
  19. 19.
    Stover CK, Bansal GP, Hanson MS, Burlein JE, Palaszynski SR, Young JF, Koenig S, Young DB, Sadziene A, Barbour AG (1993) Protective immunity elicited by recombinant Bacille Calmette-Guerin(BCG) expressing outer surface protein A (OspA) lipoprotein: a candidate Lyme disease vaccine. J Exp Med 178:197–209. doi: 10.1084/jem.178.1.197 MedlinePubMedCrossRefGoogle Scholar
  20. 20.
    Bao L, Chen W, Zhang HD, Wang XY (2003) Virulence, immunogenicity, and protective efficacy of two recombinant Mycobacterium bovis Bacillus Calmette-Guérin-tupe strains expressing the antigen ESAT-6 from Mycobacterium tuberculosis. Infect Immun 71:1656–1661. doi: 10.1128/IAI.71.4.1656-1661.2003 MedlinePubMedCrossRefGoogle Scholar
  21. 21.
    Brosch R, Gordon SV, Pym A, Eiglmeier K, Garnier T, Cole ST (2000) Comparative genomics of the mycobacteria. Int J Med Microbiol 290:143–152 MedlinePubMedGoogle Scholar
  22. 22.
    Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK (1996) Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178:1274–1282 MedlinePubMedGoogle Scholar
  23. 23.
    Xu Y, Zhu BD, Wang QZ, Chen JZ, Qie YQ, Wang JL, Wang HY, Wang BL, Wang HH (2007) Recombinant BCG coexpressing Ag85B, ESAT-6 and mouse-IFN-γ confers effective protection against Mycobacterium tuberculosis in C57BL/6mice. FEMS Immunol Med Microbiol 51:480–487. doi: 10.1111/j.1574-695X.2007.00322.x MedlinePubMedCrossRefGoogle Scholar
  24. 24.
    Howard RJ (1987) Vaccination against malaria: recent advances and the problems of antigenic diversity and other parasite evasion mechanisms. Int J Parasitol 17(1):17–29. doi: 10.1016/0020-7519(87)90023-3 MedlinePubMedCrossRefGoogle Scholar
  25. 25.
    Vipond J, Vipond R, Clark Allen-VercoeE, SO HatchGJ, Gooch KE, Bacon J, Hampshire T, Shuttleworth H, Minton NP, Blake K, Williams A, Marsh PD (2006) Selection of novel TB vaccine candidates and their evaluation as DNA vaccines against aerosol challenge. Vaccine 24:6340–6350. doi: 10.1016/j.vaccine.2006.05.025 MedlinePubMedCrossRefGoogle Scholar
  26. 26.
    Chaitra MG, Nayak R, Shaila MS (2007) Modulation of immune responses in mice to recombinant antigens from PE and PPE families of proteins of Mycobacterium tuberculosis by the Ribi adjuvant. Vaccine 25:7168–7176. doi: 10.1016/j.vaccine.2007.07.026 MedlinePubMedCrossRefGoogle Scholar
  27. 27.
    Jurado A, Carballido J, Griffel H, Hochkeppel HK, Wetzel GD (1989) The immunomodulatory effects of interferon-gamma on mature B lymphocyte responses. Experientia 45:521–526. doi: 10.1007/BF01990501 MedlinePubMedCrossRefGoogle Scholar
  28. 28.
    Tascon RE, Stavropoulos E, Lukacs KV, Colston MJ (1998) Protection against Mycobacterium tuberculosis infection by CD8+ T cells requires the production of gamma interferon. Infect Immun 66:830–834 MedlinePubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jiu ling Wang
    • 1
  • Ya qing Qie
    • 1
  • Bing dong Zhu
    • 2
  • Hong mei Zhang
    • 3
  • Ying Xu
    • 1
  • Qing zhong Wang
    • 1
  • Jia zhen Chen
    • 1
  • Wei Liu
    • 1
  • Hong hai Wang
    • 1
    • 4
    Email author
  1. 1.State Key Laboratory of Genetic Engineering, Institute of GeneticsFudan UniversityShanghaiPeople’s Republic of China
  2. 2.Lanzhou Center for Tuberculosis ResearchLanzhou UniversityLanzhouPeople’s Republic of China
  3. 3.Henan Institute of Medical SciencesHenanPeople’s Republic of China
  4. 4.Institute of Genetics, School of Life ScienceFudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations