Medical Microbiology and Immunology

, Volume 196, Issue 4, pp 213–225 | Cite as

The threat of avian influenza A (H5N1). Part IV: development of vaccines

Review

Abstract

Among emerging and re-emerging infectious diseases, influenza constitutes one of the major threats to mankind. In this review series epidemiologic, virologic and pathologic concerns raised by infections of humans with avian influenza virus A/H5N1 are discussed. This fourth part focuses on vaccine development. Several phase I clinical studies with vaccines against H5 viruses have demonstrated limited efficacy compared to seasonal influenza vaccines. To induce protective immunity two immunisations with increased amounts of H5N1 vaccine were required. Novel vaccination strategies that are egg- and adjuvant-independent, broadly cross-reactive and long-lasting are highly desirable.

References

  1. 1.
    Webster RG, Govorkova EA (2006) H5N1 influenza—continuing evolution and spread. N Engl J Med 335:2174–2177Google Scholar
  2. 2.
    Cinatl J Jr, Michaelis M, Doerr HW (2007) The threat of avian influenza a (H5N1). Part I: epidemiologic concerns and virulence determinants. Med Microbiol Immunol. 2007 [Epub ahead of print]Google Scholar
  3. 3.
    Cinatl J Jr, Michaelis M, Doerr HW (2007) The threat of avian influenza a (H5N1). Part II: clues to pathogenicity and pathology. Med Microbiol Immunol. 2007 [Epub ahead of print]Google Scholar
  4. 4.
    The Writing Committee of the World Health Organization (WHO) Consultation on Human Influenza A/H5 (2005) Avian influenza A (H5N1) infection in humans. N Engl J Med 353:1374–1385Google Scholar
  5. 5.
    Schunemann HJ, Hill SR, Kakad M, Bellamy R, Uyeki TM, Hayden FG, Yazdanpanah Y, Beigel J, Chotpitayasunondh T, Del Mar C, Farrar J, Tran TH, Ozbay B, Sugaya N, Fukuda K, Shindo N, Stockman L, Vist GE, Croisier A, Nagjdaliyev A, Roth C, Thomson G, Zucker H, Oxman AD, WHO Rapid Advice Guideline Panel on Avian Influenza (2007) WHO rapid advice guidelines for pharmacological management of sporadic human infection with avian influenza A (H5N1) virus. Lancet Infect Dis 7:21–31PubMedGoogle Scholar
  6. 6.
    Cinatl J Jr, Michaelis M, Doerr HW (2007) The threat of avian influenza A (H5N1). Part III: antiviral therapy. Med Microbiol Immunol 2007 [Epub ahead of print]Google Scholar
  7. 7.
    World Health Organization (2006) Antigenic and genetic characteristics of H5N1 viruses and H5N1 vaccine viruses developed for potential use as pre-pandemic vaccine. Wkly Epidemiol Rec 81(34/35):328–330Google Scholar
  8. 8.
    Subbarao K, Murphy BR, Fauci AS (2006) Development of effective vaccines against pandemic influenza. Immunity 24:5–9PubMedGoogle Scholar
  9. 9.
    Stephenson I, Gust I, Pervikov Y, Kieny MP (2006) Development of vaccines against influenza H5. Lancet Infect Dis 6:458–460PubMedGoogle Scholar
  10. 10.
    Subbarao K, Luke C (2007) H5N1 viruses and vaccines. PLoS Pathog 3:e40PubMedGoogle Scholar
  11. 11.
    Johansson BE, Bucher DJ, Kilbourne ED (1989) Purified influenza virus hemagglutinin and neuraminidase are equivalent in stimulation of antibody response but induce contrasting types of immunity to infection. J Virol 63:1239–1246PubMedGoogle Scholar
  12. 12.
    Tamura S, Tanimoto T, Kurata T (2005) Mechanisms of broad cross-protection provided by influenza virus infection and their application to vaccines. Jpn J Infect Dis 58:195–207PubMedGoogle Scholar
  13. 13.
    Powers DC, Kilbourne ED, Johansson BE (1996) Neuraminidase-specific antibody responses to inactivated influenza virus vaccine in young and elderly adults. Clin Diagn Lab Immunol 3:511–516PubMedGoogle Scholar
  14. 14.
    Black RA, Rota PA, Gorodkova N, Klenk HD, Kendal AP (1993) Antibody response to the M2 protein of influenza A virus expressed in insect cells. J Gen Virol 74:143–146PubMedGoogle Scholar
  15. 15.
    Murphy BR, Clements ML (1989) The systemic and mucosal immune response of humans to influenza A virus. Curr Top Microbiol Immunol 146:107–116PubMedGoogle Scholar
  16. 16.
    McMichael AJ, Gotch FM, Noble GR, Beare PA (1983) Cytotoxic T-cell immunity to influenza. N Engl J Med 309:13–17PubMedCrossRefGoogle Scholar
  17. 17.
    Bender BS, Croghan T, Zhang L, Small PA Jr (1992) Transgenic mice lacking class I major histocompatibility complex-restricted T cells have delayed viral clearance and increased mortality after influenza virus challenge. J Exp Med 175:1143–1145PubMedGoogle Scholar
  18. 18.
    Yewdell JW, Bennink JR, Smith GL, Moss B (1985) Influenza A virus nucleoprotein is a major target antigen for cross-reactive anti-influenza A virus cytotoxic T lymphocytes. Proc Natl Acad Sci USA 82:1785–1789PubMedGoogle Scholar
  19. 19.
    Wang M, Lamberth K, Harndahl M, Roder G, Stryhn A, Larsen MV, Nielsen M, Lundegaard C, Tang ST, Dziegiel MH, Rosenkvist J, Pedersen AE, Buus S, Claesson MH, Lund O (2007) CTL epitopes for influenza A including the H5N1 bird flu; genome-, pathogen-, and HLA-wide screening. Vaccine 25(15):2823–2831PubMedGoogle Scholar
  20. 20.
    Jameson J, Cruz J, Ennis FA (1998) Human cytotoxic T-lymphocyte repertoire to influenza A viruses. J Virol 72:8682–8689PubMedGoogle Scholar
  21. 21.
    Nakajima K, Desselberger U, Palese P (1978) Recent human influenza A (H1N1) viruses are closely related genetically to strains isolated in 1950. Nature 274:334–339PubMedGoogle Scholar
  22. 22.
    Horimoto T, Kawaoka Y (2006) Strategies for developing vaccines against H5N1 influenza A viruses. Trends Mol Med 12:506–514PubMedGoogle Scholar
  23. 23.
    Couch RB, Kasel JA (1983) Immunity to influenza in man. Annu Rev Microbiol 37:529–549PubMedGoogle Scholar
  24. 24.
    Epstein SL (2006) Prior H1N1 influenza infection and susceptibility of Cleveland Family Study participants during the H2N2 pandemic of 1957: an experiment of nature. J Infect Dis 193:49–53PubMedGoogle Scholar
  25. 25.
    Murphy BR, Kasel JA, Chanock RM (1972) Association of serum anti-neuraminidase antibody with resistance to influenza in man. N Engl J Med 286:1329–1332PubMedCrossRefGoogle Scholar
  26. 26.
    Gillim-Ross L, Subbarao K (2007) Can immunity induced by the human influenza virus N1 neuraminidase provide some protection from Avian Influenza H5N1 Viruses? PLoS Med 4:e91PubMedGoogle Scholar
  27. 27.
    Sandbulte MR, Jimenez GS, Boon AC, Smith LR, Treanor JJ, Webby RJ (2007) Cross-reactive neuraminidase antibodies afford partial protection against H5N1 in mice and are present in unexposed humans. PLoS Med 4:e59PubMedGoogle Scholar
  28. 28.
    Ulmer JB, Valley U, Rappuoli R (2006) Vaccine manufacturing: challenges and solutions. Nat Biotechnol 24:1377–1383PubMedGoogle Scholar
  29. 29.
    Hehme N, Engelmann H, Kunzel W, Neumeier E, Sanger R (2002) Pandemic preparedness: lessons learnt from H2N2 and H9N2 candidate vaccines. Med Microbiol Immunol 191:203–208PubMedGoogle Scholar
  30. 30.
    Hehme N, Engelmann H, Kuenzel W, Neumeier E, Saenger R (2004) Immunogenicity of a monovalent, aluminum-adjuvanted influenza whole virus vaccine for pandemic use. Virus Res 103:163–171PubMedGoogle Scholar
  31. 31.
    Nonacs R, Humborg C, Tam JP, Steinman RM (1992) Mechanisms of mouse spleen dendritic cell function in the generation of influenza-specific, cytolytic T lymphocytes. J Exp Med 176:519–529PubMedGoogle Scholar
  32. 32.
    Bhardwaj N, Bender A, Gonzalez N, Bui LK, Garrett MC, Steinman RM (1994) Influenza virus-infected dendritic cells stimulate strong proliferative and cytolytic responses from human CD8+ T cells. J Clin Invest 94:797–807PubMedCrossRefGoogle Scholar
  33. 33.
    Heath WR, Carbone FR (2001) Cross-presentation in viral immunity and self-tolerance. Nat Rev Immunol 1:126–134PubMedGoogle Scholar
  34. 34.
    Takada A, Kuboki N, Okazaki K, Ninomiya A, Tanaka H, Ozaki H, Itamura S, Nishimura H, Enami M, Tashiro M, Shortridge KF, Kida H (1999) Avirulent Avian influenza virus as a vaccine strain against a potential human pandemic. J Virol 73:8303–8307PubMedGoogle Scholar
  35. 35.
    Webby RJ, Perez DR, Coleman JS, Guan Y, Knight JH, Govorkova EA, McClain-Moss LR, Peiris JS, Rehg JE, Tuomanen EI, Webster RG (2004) Responsiveness to a pandemic alert: use of reverse genetics for rapid development of influenza vaccines. Lancet 363:1099–1103PubMedGoogle Scholar
  36. 36.
    Wood JM, Robertson JS (2004) From lethal virus to life-saving vaccine: developing inactivated vaccines for pandemic influenza. Nat Rev Microbiol 2:842–847PubMedGoogle Scholar
  37. 37.
    Horimoto T, Takada A, Fujii K, Goto H, Hatta M, Watanabe S, Iwatsuki-Horimoto K, Ito M, Tagawa-Sakai Y, Yamada S, Ito H, Ito T, Imai M, Itamura S, Odagiri T, Tashiro M, Lim W, Guan Y, Peiris M, Kawaoka Y (2006) The development and characterization of H5 influenza virus vaccines derived from a 2003 human isolate. Vaccine 24:3669–3676PubMedGoogle Scholar
  38. 38.
    Nicolson C, Major D, Wood JM, Robertson JS (2005) Generation of influenza vaccine viruses on Vero cells by reverse genetics: an H5N1 candidate vaccine strain produced under a quality system. Vaccine 23:2943–2952PubMedGoogle Scholar
  39. 39.
    Horimoto T, Kawaoka Y (2005) Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol 3:591–600PubMedGoogle Scholar
  40. 40.
    Lin J, Zhang J, Dong X, Fang H, Chen J, Su N, Gao Q, Zhang Z, Liu Y, Wang Z, Yang M, Sun R, Li C, Lin S, Ji M, Liu Y, Wang X, Wood J, Feng Z, Wang Y, Yin W (2006) Safety and immunogenicity of an inactivated adjuvanted whole-virion influenza A (H5N1) vaccine: a phase I randomised controlled trial. Lancet 368:991–997PubMedGoogle Scholar
  41. 41.
    Nicholson KG, Tyrrell DA, Harrison P, Potter CW, Jennings R, Clark A, Schild GC, Wood JM, Yetts R, Seagroatt V, Huggins A, Anderson SG (1979) Clinical studies of monovalent inactivated whole virus and subunit A/USSR/77 (H1N1) vaccine: serological responses and clinical reactions. J Biol Stand 7:123–136PubMedGoogle Scholar
  42. 42.
    Wright PF, Thompson J, Vaughn WK, Folland DS, Sell SH, Karzon DT (1977) Trials of influenza A/New Jersey/76 virus vaccine in normal children: an overview of age-related antigenicity and reactogenicity. J Infect Dis 136(Suppl):S731–S741PubMedGoogle Scholar
  43. 43.
    Ninomiya A, Imai M, Tashiro M, Odagiri T (2007) Inactivated influenza H5N1 whole-virus vaccine with aluminum adjuvant induces homologous and heterologous protective immunities against lethal challenge with highly pathogenic H5N1 avian influenza viruses in a mouse model. Vaccine 25(18):3554–3560PubMedGoogle Scholar
  44. 44.
    Govorkova EA, Webby RJ, Humberd J, Seiler JP, Webster RG (2006) Immunization with reverse-genetics-produced H5N1 influenza vaccine protects ferrets against homologous and heterologous challenge. J Infect Dis 194:159–167PubMedGoogle Scholar
  45. 45.
    Lipatov AS, Hoffmann E, Salomon R, Yen HL, Webster RG (2006) Cross-protectiveness and immunogenicity of influenza A/Duck/Singapore/3/97(H5) vaccines against infection with A/Vietnam/1203/04(H5N1) virus in ferrets. J Infect Dis 194:1040–1043PubMedGoogle Scholar
  46. 46.
    Couch RB, Keitel WA, Cate TR (1997) Improvement of inactivated influenza virus vaccines. J Infect Dis 176(Suppl 1):S38–S44PubMedGoogle Scholar
  47. 47.
    Hilleman MR (2002) Realities and enigmas of human viral influenza: pathogenesis, epidemiology and control. Vaccine 20:3068–3087PubMedGoogle Scholar
  48. 48.
    Stephenson I, Nicholson KG, Wood JM, Zambon MC, Katz JM (2004) Confronting the avian influenza threat: vaccine development for a potential pandemic. Lancet Infect Dis 4:499–509PubMedGoogle Scholar
  49. 49.
    Bresson JL, Perronne C, Launay O, Gerdil C, Saville M, Wood J, Hoschler K, Zambon MC (2006) Safety and immunogenicity of an inactivated split-virion influenza A/Vietnam/1194/2004 (H5N1) vaccine: phase I randomised trial. Lancet 367:1657–1664PubMedGoogle Scholar
  50. 50.
    Nicholson KG, Colegate AE, Podda A, Stephenson I, Wood J, Ypma E, Zambon MC (2001) Safety and antigenicity of non-adjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a randomised trial of two potential vaccines against H5N1 influenza. Lancet 357:1937–1943PubMedGoogle Scholar
  51. 51.
    Stephenson I, Bugarini R, Nicholson KG, Podda A, Wood JM, Zambon MC, Katz JM (2005) Cross-reactivity to highly pathogenic avian influenza H5N1 viruses after vaccination with nonadjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a potential priming strategy. J Infect Dis 191:1210–1215PubMedGoogle Scholar
  52. 52.
    Treanor JJ, Campbell JD, Zangwill KM, Rowe T, Wolff M (2006) Safety and immunogenicity of an inactivated subvirion influenza A (H5N1)vaccine. N Engl J Med 2354:1343–1351Google Scholar
  53. 53.
    Stephenson I (2006) H5N1 vaccines: how prepared are we for a pandemic? Lancet 368:965–966PubMedGoogle Scholar
  54. 54.
    Treanor JJ, Schiff GM, Couch RB, Cate TR, Brady RC, Hay CM, Wolff M, She D, Cox MM (2006) Dose-related safety and immunogenicity of a trivalent baculovirus-expressed influenza-virus hemagglutinin vaccine in elderly adults. J Infect Dis 193:1223–1228PubMedGoogle Scholar
  55. 55.
    Wang K, Holtz KM, Anderson K, Chubet R, Mahmoud W, Cox MM (2006) Expression and purification of an influenza hemagglutinin—one step closer to a recombinant protein-based influenza vaccine. Vaccine 24:2176–2185PubMedGoogle Scholar
  56. 56.
    Treanor JJ, Wilkinson BE, Masseoud F, Hu-Primmer J, Battaglia R, O’Brien D, Wolff M, Rabinovich G, Blackwelder W, Katz JM (2001) Safety and immunogenicity of a recombinant hemagglutinin vaccine for H5 influenza in humans. Vaccine 19:1732–1737PubMedGoogle Scholar
  57. 57.
    Kendal AP (1997) Cold-adapted live attenuated influenza vaccines developed in Russia: can they contribute to meeting the needs for influenza control in other countries? Eur J Epidemiol 13:591–609PubMedGoogle Scholar
  58. 58.
    Jin H, Lu B, Zhou H, Ma C, Zhao J, Yang CF, Kemble G, Greenberg H (2003) Multiple amino acid residues confer temperature sensitivity to human influenza virus vaccine strains (FluMist) derived from cold-adapted A/Ann Arbor/6/60. Virology 306:18–24PubMedGoogle Scholar
  59. 59.
    Hoffmann E, Mahmood K, Chen Z, Yang CF, Spaete J, Greenberg HB, Herlocher ML, Jin H, Kemble G (2005) Multiple gene segments control the temperature sensitivity and attenuation phenotypes of ca B/Ann Arbor/1/66. J Virol 79:11014–11021PubMedGoogle Scholar
  60. 60.
    Belshe RB, Nichol KL, Black SB, Shinefield H, Cordova J, Walker R, Hessel C, Cho I, Mendelman PM (2004) Safety, efficacy, and effectiveness of live, attenuated, cold-adapted influenza vaccine in an indicated population aged 5–49 years. Clin Infect Dis 39:920–927PubMedGoogle Scholar
  61. 61.
    Belshe RB, Edwards KM, Vesikari T, Black SV, Walker RE, Hultquist M, Kemble G, Connor EM; CAIV-T Comparative Efficacy Study Group (2007) Live attenuated versus inactivated influenza vaccine in infants and young children. N Engl J Med 356:685–696PubMedGoogle Scholar
  62. 62.
    Youngner JS, Treanor JJ, Betts RF, Whitaker-Dowling P (1994) Effect of simultaneous administration of cold-adapted and wild-type influenza A viruses on experimental wild-type influenza infection in humans. J Clin Microbiol 32:750–754PubMedGoogle Scholar
  63. 63.
    Buonagurio DA, Bechert TM, Yang CF, Shutyak L, D’Arco GA, Kazachkov Y, Wang HP, Rojas EA, O’Neill RE, Spaete RR, Coelingh KL, Zamb TJ, Sidhu MS, Udem SA (2006) Genetic stability of live, cold-adapted influenza virus components of the FluMist/CAIV-T vaccine throughout the manufacturing process. Vaccine 24:2151–2160PubMedGoogle Scholar
  64. 64.
    Li S, Liu C, Klimov A, Subbarao K, Perdue ML, Mo D, Ji Y, Woods L, Hietala S, Bryant M (1999) Recombinant influenza A virus vaccines for the pathogenic human A/Hong Kong/97 (H5N1) viruses. J Infect Dis 179:1132–1138PubMedGoogle Scholar
  65. 65.
    Suguitan AL Jr, McAuliffe J, Mills KL, Jin H, Duke G, Lu B, Luke CJ, Murphy B, Swayne DE, Kemble G, Subbarao K (2006) Live, attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets. PLoS Med 3:e360PubMedGoogle Scholar
  66. 66.
    Lu X, Edwards LE, Desheva JA, Nguyen DC, Rekstin A, Stephenson I, Szretter K, Cox NJ, Rudenko LG, Klimov A, Katz JM (2006) Cross-protective immunity in mice induced by live-attenuated or inactivated vaccines against highly pathogenic influenza A (H5N1) viruses. Vaccine 24:6588–6593PubMedGoogle Scholar
  67. 67.
    Desheva JA, Lu XH, Rekstin AR, Rudenko LG, Swayne DE, Cox NJ, Katz JM, Klimov AI (2006) Characterization of an influenza A H5N2 reassortant as a candidate for live-attenuated and inactivated vaccines against highly pathogenic H5N1 viruses with pandemic potential. Vaccine 24:6859–6866PubMedGoogle Scholar
  68. 68.
    Ada G, Ramshaw I (2003) DNA vaccination. Expert Opin Emerg Drugs 8:27–35PubMedGoogle Scholar
  69. 69.
    Ulmer JB (2002) Influenza DNA vaccines. Vaccine 20(Suppl 2):S74–S76PubMedGoogle Scholar
  70. 70.
    Hoare M, Levy MS, Bracewell DG, Doig SD, Kong S, Titchener-Hooker N, Ward JM, Dunnill P (2005) Biprocess engineering issues that would be faced in producing a DNA vaccine at up to 100m3 fermentation scale for an influenza pandemic. Biotechnol Prog 21:1577–1592PubMedGoogle Scholar
  71. 71.
    Liu MA, McClements W, Ulmer JB, Shiver J, Donnelly J (1997) Immunization of non-human primates with DNA vaccines. Vaccine 15:909–912PubMedGoogle Scholar
  72. 72.
    Pertmer TM, Eisenbraun MD, McCabe D, Prayaga SK, Fuller DH, Haynes JR (1995) Gene gun-based nucleic acid immunization: elicitation of humoral and cytotoxic T lymphocyte responses following epidermal delivery of nanogram quantities of DNA. Vaccine 13:1427–1430PubMedGoogle Scholar
  73. 73.
    Robinson HL, Hunt LA, Webster RG (1993) Protection against a lethal influenza virus challenge by immunization with a haemagglutinin-expressing plasmid DNA. Vaccine 11:957–960PubMedGoogle Scholar
  74. 74.
    Ulmer JB, Fu TM, Deck RR, Friedman A, Guan L, DeWitt C, Liu X, Wang S, Liu MA, Donnelly JJ, Caulfield MJ (1998) Protective CD4+ and CD8+ T cells against influenza virus induced by vaccination with nucleoprotein DNA. J Virol 72:5648–5653PubMedGoogle Scholar
  75. 75.
    Ulmer JB, Donnelly JJ, Parker SE, Rhodes GH, Felgner PL, Dwarki VJ, Gromkowski SH, Deck RR, DeWitt CM, Friedman A et al (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259:1745–1749PubMedGoogle Scholar
  76. 76.
    Kodihalli S, Kobasa DL, Webster RG (2000) Strategies for inducing protection against avian influenza A virus subtypes with DNA vaccines. Vaccine 18:2592–2599PubMedGoogle Scholar
  77. 77.
    Epstein SL, Tumpey TM, Misplon JA, Lo CY, Cooper LA, Subbarao K, Renshaw M, Sambhara S, Katz JM (2002) DNA vaccine expressing conserved influenza virus proteins protective against H5N1 challenge infection in mice. Emerg Infect Dis 8:796–801PubMedGoogle Scholar
  78. 78.
    Kodihalli S, Goto H, Kobasa DL, Krauss S, Kawaoka Y, Webster RG (1999) DNA vaccine encoding hemagglutinin provides protective immunity against H5N1 influenza virus infection in mice. J Virol 73:2094–2098PubMedGoogle Scholar
  79. 79.
    Laddy DJ, Yan J, Corbitt N, Kobasa D, Kobinger GP, Weiner DB (2007) Immunogenicity of novel consensus-based DNA vaccines against avian influenza. Vaccine 25(16):2984–2989PubMedGoogle Scholar
  80. 80.
    Gao W, Soloff AC, Lu X, Montecalvo A, Nguyen DC, Matsuoka Y, Robbins PD, Swayne DE, Donis RO, Katz JM, Barratt-Boyes SM, Gambotto A (2006) Protection of mice and poultry from lethal H5N1 avian influenza virus through adenovirus-based immunization. J Virol 80:1959–1964PubMedGoogle Scholar
  81. 81.
    Hoelscher MA, Garg S, Bangari DS, Belser JA, Lu X, Stephenson I, Bright RA, Katz JM, Mittal SK, Sambhara S (2006) Development of adenoviral-vector-based pandemic influenza vaccine against antigenically distinct human H5N1 strains in mice. Lancet 367:475–481PubMedGoogle Scholar
  82. 82.
    Karaca K, Swayne DE, Grosenbaugh D, Bublot M, Robles A, Spackman E, Nordgren R (2005) Immunogenicity of fowlpox virus expressing the avian influenza virus H5 gene (TROVAC AIV-H5) in cats. Clin Diagn Lab Immunol 12:1340–1342PubMedGoogle Scholar
  83. 83.
    Veits J, Wiesner D, Fuchs W, Hoffmann B, Granzow H, Starick E, Mundt E, Schirrmeier H, Mebatsion T, Mettenleiter TC, Romer-Oberdorfer A (2006) Newcastle disease virus expressing H5 hemagglutinin gene protects chickens against Newcastle disease and avian influenza. Proc Natl Acad Sci USA 103:8197–8202PubMedGoogle Scholar
  84. 84.
    Ge J, Deng G, Wen Z, Tian G, Wang Y, Shi J, Wang X, Li Y, Hu S, Jiang Y, Yang C, Yu K, Bu Z, Chen H (2007) Newcastle disease virus-based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologous and heterologous H5N1 avian influenza viruses. J Virol 81:150–158PubMedGoogle Scholar
  85. 85.
    Bukreyev A, Huang Z, Yang L, Elankumaran S, St Claire M, Murphy BR, Samal SK, Collins PL (2005) Recombinant newcastle disease virus expressing a foreign viral antigen is attenuated and highly immunogenic in primates. J Virol 79:13275–13284PubMedGoogle Scholar
  86. 86.
    Egorov A, Brandt S, Sereinig S, Romanova J, Ferko B, Katinger D, Grassauer A, Alexandrova G, Katinger H, Muster T (1998) Transfectant influenza A viruses with long deletions in the NS1 protein grow efficiently in Vero cells. J Virol 72:6437–6441PubMedGoogle Scholar
  87. 87.
    Garcia-Sastre A, Egorov A, Matassov D, Brandt S, Levy DE, Durbin JE, Palese P, Muster T (1998) Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252:324–330PubMedGoogle Scholar
  88. 88.
    Talon J, Salvatore M, O’Neill RE, Nakaya Y, Zheng H, Muster T, Garcia-Sastre A, Palese P (2000) Influenza A and B viruses expressing altered NS1 proteins: A vaccine approach. Proc Natl Acad Sci USA 97:4309–4314PubMedGoogle Scholar
  89. 89.
    Ferko B, Stasakova J, Romanova J, Kittel C, Sereinig S, Katinger H, Egorov A (2004) Immunogenicity and protection efficacy of replication-deficient influenza A viruses with altered NS1 genes. J Virol 78:13037–13045PubMedGoogle Scholar
  90. 90.
    Proietti E, Bracci L, Puzelli S, Di Pucchio T, Sestili P, De Vincenzi E, Venditti M, Capone I, Seif I, De Maeyer E, Tough D, Donatelli I, Belardelli F (2002) Type I IFN as a natural adjuvant for a protective immune response: lessons from the influenza vaccine model. J Immunol 169:375–383PubMedGoogle Scholar
  91. 91.
    Bracci L, Canini I, Puzelli S, Sestili P, Venditti M, Spada M, Donatelli I, Belardelli F, Proietti E (2005) Type I IFN is a powerful mucosal adjuvant for a selective intranasal vaccination against influenza virus in mice and affects antigen capture at mucosal level. Vaccine 23:2994–3004PubMedGoogle Scholar
  92. 92.
    Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou WM, Fiers W (1999) A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med 5:1157–1163PubMedGoogle Scholar
  93. 93.
    Ernst WA, Kim HJ, Tumpey TM, Jansen AD, Tai W, Cramer DV, Adler-Moore JP, Fujii G (2006) Protection against H1, H5, H6 and H9 influenza A infection with liposomal matrix 2 epitope vaccines. Vaccine 24:5158–5168PubMedGoogle Scholar
  94. 94.
    Gerhard W (2006) Influenza A virus infection engenders a poor antibody response against the ectodomain of matrix protein 2. Virol J 3:102PubMedGoogle Scholar
  95. 95.
    Kilbourne ED, Couch RB, Kasel JA, Keitel WA, Cate TR, Quarles JH, Grajower B, Pokorny BA, Johansson BE (1995) Purified influenza A virus N2 neuraminidase vaccine is immunogenic and non-toxic in humans. Vaccine 13:1799–1803PubMedGoogle Scholar
  96. 96.
    Johansson BE, Kilbourne ED (1993) Dissociation of influenza virus hemagglutinin and neuraminidase eliminates their intravirionic antigenic competition. J Virol 67:5721–5723PubMedGoogle Scholar
  97. 97.
    Feng J, Zhang M, Mozdzanowska K, Zharikova D, Hoff H, Wunner W, Couch RB, Gerdil C (2003) The annual production cycle for influenza vaccine. Vaccine 21:1776–1779Google Scholar
  98. 98.
    De Filette M, Ramne A, Birkett A, Lycke N, Lowenadler B, Min Jou W, Saelens X, Fiers W (2006) The universal influenza vaccine M2e-HBc administered intranasally in combination with the adjuvant CTA1-DD provides complete protection. Vaccine 24:544–551PubMedGoogle Scholar
  99. 99.
    Fan J, Liang X, Horton MS, Perry HC, Citron MP, Heidecker GJ, Fu TM, Joyce J, Przysiecki CT, Keller PM, Garsky VM, Ionescu R, Rippeon Y, Shi L, Chastain MA, Condra JH, Davies ME, Liao J, Emini EA, Shiver JW (2004) Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys. Vaccine 22:2993–3003PubMedGoogle Scholar
  100. 100.
    Jegerlehner A, Schmitz N, Storni T, Bachmann MF (2004) Influenza A vaccine based on the extracellular domain of M2: weak protection mediated via antibody-dependent NK cell activity. J Immunol 172:5598–5605PubMedGoogle Scholar
  101. 101.
    Gerdil C (2003) The annual production cycle for influenza vaccine. Vaccine 21:1776–1779PubMedGoogle Scholar
  102. 102.
    Cinatl J Jr, Cinatl J, Rabenau H, Rapp J, Kornhuber B, Doerr HW (1993) Protein-free culture of Vero cells: a substrate for replication of human pathogenic viruses. Cell Biol Int 17:885–895PubMedGoogle Scholar
  103. 103.
    Katz JM, Wang M, Webster RG (1990) Direct sequencing of the HA gene of influenza (H3N2) virus in original clinical samples reveals sequence identity with mammalian cell-grown virus. J Virol 64:1808–1811PubMedGoogle Scholar
  104. 104.
    Schild GC, Oxford JS, de Jong JC, Webster RG (1983) Evidence for host-cell selection of influenza virus antigenic variants. Nature 303:706–709PubMedGoogle Scholar
  105. 105.
    Alymova IV, Kodihalli S, Govorkova EA, Fanget B, Gerdil C, Webster RG (1998) Immunogenicity and protective efficacy in mice of influenza B virus vaccines grown in mammalian cells or embryonated chicken eggs. J Virol 72:4472–4477PubMedGoogle Scholar
  106. 106.
    Pau MG, Ophorst C, Koldijk MH, Schouten G, Mehtali M, Uytdehaag F (2001) The human cell line PER.C6 provides a new manufacturing system for the production of influenza vaccines. Vaccine 19:2716–2721PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute for Medical VirologyHospital of the Johann Wolfgang Goethe UniversityFrankfurt/MGermany

Personalised recommendations