Medical Microbiology and Immunology

, Volume 196, Issue 2, pp 103–114 | Cite as

Peptidomic analysis of human peripheral monocytes persistently infected by Chlamydia trachomatis

  • Birgit Krausse-Opatz
  • Annette Busmann
  • Harald Tammen
  • Christoph Menzel
  • Thomas Möhring
  • Nicolas Le Yondre
  • Cornelia Schmidt
  • Peter Schulz-Knappe
  • Henning Zeidler
  • Hartmut Selle
  • Lars Köhler
Original Investigation

Abstract

Peptidomic analysis using Differential Peptide Display (DPD) of human peripheral blood mononuclear cells (PBMC) mock-infected or persistently infected by Chlamydia trachomatis (CT) revealed 10 peptides, expressed upon CT infection. Analysis of these 10 candidates by tandem mass spectrometry enabled the determination of seven candidates as fragments from the precursors (I) ferritin heavy chain subunit, (II) HLA class II histocompatibility antigen, (III) vimentin, (IV) indoleamine 2,3-dioxygenase, (V and VI) pre-B cell enhancing factor (PBEF), and (VII) Interleukin-8 (CXCL8). The identified candidates proved the presence of anti-bacterial and immunologically active monocytic proteins after CT infection.

Keywords

Chlamydia trachomatis Monocytes Peptidomics 

References

  1. 1.
    Levitt D, Barol J (1987) The immunobiology of chlamydia. Immunology Today 8:246–251CrossRefGoogle Scholar
  2. 2.
    Kuipers JG, Jürgens-Saathoff B, Bialowons A, Wollenhaupt J, Köhler L, Zeidler H (1998) Detection of Chlamydia trachomatis in peripheral blood leukocytes in reactive arthritis by PCR. Arthritis Rheum 41:1894–1895PubMedCrossRefGoogle Scholar
  3. 3.
    Gérard HC, Branigan PJ, Schumacher HR, Hudson AP (1998) Synovial Chlamydia trachomatis in patients with reactive arthritis/Reiter’s syndrome are viable but show aberrant gene expression. J Rheumatol 25(4):734–742PubMedGoogle Scholar
  4. 4.
    Koehler L, Nettelnbreker E, Hudson AP, Ott N, Gérard HC, Branigan PJ, Schuhmacher HR, Drommer W, Zeidler H (1997) Ultrastructural and molecular analyses of the persistence of Chlamydia trachomatis (serovar K) in human monocytes. Microb Pathog 22:133–142PubMedCrossRefGoogle Scholar
  5. 5.
    Dreses-Werringloer U, Padubrin I, Jürgens-Saathoff B, Hudson AP, Zeidler H, Köhler L (2000) Persistence of Chlamydia trachomatis is induced by ciprofloxacin in vitro. Antimicrob Agents Chemother 44(12):3288–3297PubMedCrossRefGoogle Scholar
  6. 6.
    Johnson FWA, Hobson D (1977) The effect of penicillin on genital strains of Chlamydia trachomatis in tissue culture. J Antimicrob Chemother 3:49–56PubMedCrossRefGoogle Scholar
  7. 7.
    Coles AM, Reynolds DJ, Harper A, Devitt A, Pearce JH (1993) Low-nutrient induction of abnormal chlamydial development: a novel component of chlamydial pathogenesis. FEMS Microbiol Lett 106:193–200PubMedCrossRefGoogle Scholar
  8. 8.
    Raulston JE (1997) Response of Chlamydia trachomatis serovar E to iron restriction in vitro and evidence for iron-regulated chlamydial proteins. Infect Immun 65(11):4539–4547PubMedGoogle Scholar
  9. 9.
    Beatty WL, Byrne GI, Morrison RP (1993) Morphologic and antigenic characterization of interferon γ-mediated persistent Chlamydia trachomatis infection in vitro. Proc Natl Acad Sci USA 90:3998–4002PubMedCrossRefGoogle Scholar
  10. 10.
    Hogan RJ, Mathews SA, Mukhopadhyay S, Summersgill JT, Timms P (2004) Chlamydial persistence: beyond the biphasic paradigm. Infect Immun 72(4):1843–1855, ReviewGoogle Scholar
  11. 11.
    Gerard HC, Köhler L, Branigan PJ, Zeidler H, Schumacher HR, Hudson AP (1998) Viability and gene expression in Chlamydia trachomatis during persistent infection of cultured human monocytes. Med Microbiol Immunol 187:115–120PubMedCrossRefGoogle Scholar
  12. 12.
    Gérard HC, Whittum-Hudson JA, Schumacher HR, Hudson AP (2004) Differential expression of three Chlamydia trachomatis hsp60-encoding genes in active vs. persistent infections. Microb Pathog 36(1):35–39PubMedCrossRefGoogle Scholar
  13. 13.
    Gérard HC, Krauße-Opatz B, Wang Z, Rudy D, Rao JP, Zeidler H, Schumacher HR, Whittum-Hudson JA, Köhler L, Hudson AP (2001), Expression of Chlamydia trachomatis genes encoding products required for DNA synthesis and cell division during active versus persistent infection. Mol Microbiol 41(3):731–741PubMedCrossRefGoogle Scholar
  14. 14.
    Gérard HC, Whittum-Hudson JA, Schumacher HR, Hudson AP (2005) Synovial Chlamydia trachomatis up-regulates expression of a panel of genes similar to that transcribed by Mycobacterium tuberculosis during persistent infection. Ann Rheum Dis 65(3):321–327PubMedCrossRefGoogle Scholar
  15. 15.
    Rothermehl CD, Schachter J, Lavrich P, Lipsitz EC, Francius T (1989) Chlamydia trachomatis-induced production of interleukin-1 by human monocytes. Infect Immun 57(9):2705–2711Google Scholar
  16. 16.
    Jendro MC, Fingerle F, Deutsch T, Liese A, Kohler L, Kuipers JG, Raum E, Martin M, Zeidler H (2004) Chlamydia trachomatis-infected macrophages induce apoptosis of activated T cells by secretion of tumor necrosis factor-alpha in vitro. Med Microbiol Immunol (Berl) 193(1):45–52CrossRefGoogle Scholar
  17. 17.
    Krausse-Opatz B, Schmidt C, Fendrich U, Bialowons A, Kaever V, Zeidler H, Kuipers J, Koehler L (2004) Production of prostaglandin E2 in monocytes stimulated in vitro by Chlamydia trachomatis, Chlamydophila pneumoniae, and Mycoplasma fermentans. Microb Pathog 37(3):155–161PubMedCrossRefGoogle Scholar
  18. 18.
    Traub F, Jost M, Hess R, Schorn K, Menzel C, Budde P, Schulz-Knappe P, Lamping N, Pich A, Kreipe H, Tammen H (2006) Peptidomic analysis of breast cancer reveals a putative surrogate marker for estrogen receptor-negative carcinomas. Lab Invest 86:246–253PubMedCrossRefGoogle Scholar
  19. 19.
    Karas M (1996) Matrix-assisted laser desorption ionisation MS: a progress report. Biochem Soc Trans 24:897–900PubMedGoogle Scholar
  20. 20.
    Heine G, Zucht HD, Schuhmann MU, Burger K, Jurgens M, Zumkeller M Schneekloth CG, Hampel H, Schulz-Knappe P, Selle H (2002) High-resolution peptide mapping of cerebrospinal fluid: a novel concept for diagnosis and research in central nervous system diseases. J Chromatogr B Analyt Technol Biomed Life Sci 782:353–361PubMedCrossRefGoogle Scholar
  21. 21.
    Tammen H, Kreipe H, Hess R, Kellmann M, Lehmann U, Pich A Lamping N, Schulz-Knappe P, Zucht HD, Lilischkis R (2003) Expression profiling of breast cancer cells by differential peptide display. Breast Cancer Res Treat 79:83–93PubMedCrossRefGoogle Scholar
  22. 22.
    Schrader M, Schulz-Knappe P (2001) Peptidomics technologies for human body fluids. Trends Biotechnol 19: S55–S60PubMedCrossRefGoogle Scholar
  23. 23.
    Schulz-Knappe P, Zucht HD, Heine G, Jurgens M, Hess R, Schrader M (2001) Peptidomics: the comprehensive analysis of peptides in complex biological mixtures. Comb Chem High Throughput Screen 4:207–217PubMedGoogle Scholar
  24. 24.
    Lamerz J, Selle H, Scapozza L, Crameri R, Schulz-Knappe P, Mohring T Kellmann M, Khamenia V, Zucht HD (2005) Correlation-associated peptide networks of human cerebrospinal fluid. Proteomics 5:2789–2798PubMedCrossRefGoogle Scholar
  25. 25.
    Mohring T, Kellmann M, Jurgens M, Schrader M (2005) Top-down identification of endogenous peptides up to 9 kDa in cerebrospinal fluid and brain tissue by nanoelectrospray quadrupole time-of-flight tandem mass spectrometry. J Mass Spectrom 40:214–226PubMedCrossRefGoogle Scholar
  26. 26.
    Yates JR 3rd (1998) Mass spectrometry and the age of the proteome. J Mass Spectrom 33:1–19PubMedCrossRefGoogle Scholar
  27. 27.
    Bienvenut WV, Deon C, Pasquarello C, Campbell JM, Sanchez JC, Vestal ML, Hochstrasser DF (2002) Matrix-assisted laser desorption/ionization-tandem mass spectrometry with high resolution and sensitivity for identification and characterization of proteins. Proteomics 2:868–876PubMedCrossRefGoogle Scholar
  28. 28.
    Medzihradszky KF, Campbell JM, Baldwin MA, Falick AM, Juhasz P, Vestal ML, Burlingame AL (2000) The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal Chem 72:552–558PubMedCrossRefGoogle Scholar
  29. 29.
    Chernushevich IV, Loboda AV, Thomson BA (2001) An introduction to quadrupole-time-of-flight mass spectrometry. J Mass Spectrom 36:849–865PubMedCrossRefGoogle Scholar
  30. 30.
    Morris HR, Paxton T, Dell A, Langhorne J, Berg M, Bordoli RS Hoyes J, Bateman RH (1996) High sensitivity collisionally-activated decomposition tandem mass spectrometry on a novel quadrupole/orthogonal-acceleration time-of-flight mass spectrometer. Rapid Commun Mass Spectrom 10:889–896PubMedCrossRefGoogle Scholar
  31. 31.
    Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567PubMedCrossRefGoogle Scholar
  32. 32.
    Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207PubMedCrossRefGoogle Scholar
  33. 33.
    Krauße-Opatz B, Dollmann P, Zeidler H, Kuipers JG, Köhler L (2000) Frequent contamination of Chlamydia trachomatis and Chlamydia pneumoniae strains by mycoplasma, the biological relevance and selective eradication of mycoplasma from chlamydial cultures. Med Microbiol Immun 189:19–26CrossRefGoogle Scholar
  34. 34.
    Caldwell HD, Kromhout J, Schachter J (1981) Purification and partial characterization of the outer membrane protein of Chlamydia trachomatis. Infect Immun 31:1161–1176PubMedGoogle Scholar
  35. 35.
    Böyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Scand. J Clin Lab Invest 97(21 suppl):77–89Google Scholar
  36. 36.
    Tammen H, Schulte I, Hess R, Menzel C, Kellmann M, Mohring T, Schulz-Knappe P (2005) Peptidomic analysis of human blood specimens: comparison between plasma specimens and serum by differential peptide display. Proteomics 5:3414–3422PubMedCrossRefGoogle Scholar
  37. 37.
    Zucht HD, Lamerz J, Khamenia V, Appel A, Tammen H, Crameri R, Selle H (2005) Datamining methodology for LC-MALDI-MS based peptide profiling. Comb Chem High Throughput Screen 8:717–723PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang Z, Marshall AG (1998) A universal algorithm for fast and automated charge state deconvolution of electrospray mass-to-charge ratio spectra. J Am Soc Mass Spectrom 9:225–233PubMedCrossRefGoogle Scholar
  39. 39.
    Shapiro DE (1999) The interpretation of diagnostic tests. Stat Methods Med Res 8:113–134PubMedCrossRefGoogle Scholar
  40. 40.
    Bogdan P, Sherman F (2000) Nα-terminal acetylation of eukaryotic proteins. J Biol Chem 275:36479–36482CrossRefGoogle Scholar
  41. 41.
    Schmitz E, Nettelnbreker E, Zeidler H, Hammer M, Manor E, Wollenhaupt J (1993) Intracellular persistence of chlamydial major outer membrane protein, lipopolysaccharide and ribosomal RNA after non-productive infection of human monocytes with Chlamydia trachomatis serovar K. J Med Microbiol 38:278–285PubMedCrossRefGoogle Scholar
  42. 42.
    Lawson DM, Treffry A, Artymiuk PJ Harrison PM, Yewdall SJ, Luzzago A, Cesareni G, Levi S, Arosio P (1989) Identification of the ferrioxidase centre in ferritin. FEBS Lett 254:207–210PubMedCrossRefGoogle Scholar
  43. 43.
    Harrison PM, Arrosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275:161–203PubMedCrossRefGoogle Scholar
  44. 44.
    Cozzi A, Corsi B, Levi S, Santambrogio P, Alberini A, Arosio P (2000) Overexpression of wild type and mutated human ferritin H-chain in HeLa cells: in vivo role of ferritin derrioxidase activity. J Biol Chem 275:25122–25129PubMedCrossRefGoogle Scholar
  45. 45.
    Lim JS, Lee SH, Lee E, Khang Y, Kim JW, Kim JK, Kim HH Lee C, Kim SJ, Bai GH, Lee HG, Kim KD, Chung TW, Choe YK (1997) Differential expression of ferritin heavy chain in THP-1 cells infected with Mycobacterium bovis BCG. Biochem Mol Biol Int 43:981–988PubMedGoogle Scholar
  46. 46.
    Carlyon JA, Ryan D, Archer K, Fikrig E (2005) Effects of Anaplasma phagocytophilum on host cell ferritin mRNA and protein levels. Infect Immun 73:7629–7636PubMedCrossRefGoogle Scholar
  47. 47.
    Fahmy M, Young SP (1993) Modulation of iron metabolism in monocyte cell line U937 by inflammatory cytokines: changes in transferrin uptake, iron handling and ferritin mRNA. Biochem J 296:175–181PubMedGoogle Scholar
  48. 48.
    Ojcius DM, Hellio R, Dautry-Varsat AD (1997) Distribution of endosomal, lysosomal, and major histocompatability complex markers in a monocytic cell line infected with Chlamydia psittaci. Infect Immun 65(6):2437–2442PubMedGoogle Scholar
  49. 49.
    Zhong G, Fan T, Liu L (1999) Chlamydia inhibits interferon gamma-inducible major histocompatibility complex class II expression by degradation of upstream stimulatory factor 1. J Exp Med 189(12):1931–1938PubMedCrossRefGoogle Scholar
  50. 50.
    Pfefferkorn ER, Rebhun S, Eckel M (1986) Characterization of an indoleamine 2,3-dioxygenase induced by gamma-interferon in cultured human fibroblasts. J Interferon Res 6(3):267–279PubMedGoogle Scholar
  51. 51.
    Beatty WL, Belanger TA, Desai AA, Morrison RP, Byrne GI (1994) Tryptophan depletion as a mechanism of gamma interferon mediated chlamydial persistence. Infect Immun 62(9):3705–3711PubMedGoogle Scholar
  52. 52.
    Shemer Y, Sarov I (1985) Inhibition of growth of Chlamydia trachomatis by human gamma interferon. Infect Immun 48:592–596PubMedGoogle Scholar
  53. 53.
    Carlin JM, Borden EC, Sondel PM, Byrne GI (1989) Interferon induced indoleamine 2,3-dioxygenase activity in human mononuclear phagocytes. J Leucocyte Biol 45:29–34Google Scholar
  54. 54.
    Paguirigan AM, Byrne GI, Becht S, Carlin GM (1994) Cytokine mediated indoleamine 2,3-dioxygenase induction in response to Chlamydia infection in human macrophage cultures. Infect Immun 62:1131–1136PubMedGoogle Scholar
  55. 55.
    Grant RS, Naif H, Thuruthyil SJ, Nasr N, Littlejohn T, Takikawa O, Kapoor V (2000) Induction of indolamine 2,3-dioxygensae in primary human macrophages by human immunodeficiency virus type I is strain dependent. J Virol 74:4110–4115PubMedCrossRefGoogle Scholar
  56. 56.
    Jia SH, Li Y, Parodo J, Kapus A, Fan L, Rotstein OD, Marshall JC (2004) Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest 113:1318–1327PubMedCrossRefGoogle Scholar
  57. 57.
    Iking-Konert C, Cseko C, Wagner C, Stegmaier S, Andrassy K, Hansch GM (2001) Transdifferentiation of polymorphonuclear neutrophils: acquisition of CD83 and other functional characteristics of dendritic cells. J Mol Med 79(8):464–474PubMedCrossRefGoogle Scholar
  58. 58.
    Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, Matsuki Y, Murakami M, Ichisaka T, Murakami H, Watanabe E, Takagi T, Akiyoshi M, Ohtsubo T, Kihara S, Yamashita S, Makishima M, Funahashi T, Yamanaka S, Hiramatsu R, Matsuzawa Y, Shimomura I (2005) Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307(5708):426–430PubMedCrossRefGoogle Scholar
  59. 59.
    Koczan D, Guthke R, Thiesen HJ, Ibrahim SM, Kundt G, Krentz H, Gross G, Kunz M (2005) Gene expression profiling of peripheral mononuclear leukocytes from psoriasis patients identifies new immune regulatory molecules. Eur J Dermatol 15(4):251–257PubMedGoogle Scholar
  60. 60.
    Ye SQ, Simon BA, Maloney JP, Zambelli-Weiner A, Gao L, Grant A, Easley RB, McVerry BJ, Tuder RM, Standiford T, Brower RG, Barnes KC, Garcia JG (2005) Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury. Am J Respir Crit Care Med 171(4):361–370PubMedCrossRefGoogle Scholar
  61. 61.
    Ye SQ, Zhang LQ, Adyshev D, Usatyuk PV, Garcia AN, Lavoie TL, Verin AD, Natarajan V, Garcia JG (2005) Pre-B-cell colony-enhancing factor is critically involved in thrombin-induced lung endothelial cell barrier dysregulation. Microvasc Res 70(3):142–151PubMedCrossRefGoogle Scholar
  62. 62.
    Marie C, Fitting C, Cheval C, Losser M-R, Carlet J, Payen D., Foster K, Cavaillon JM (1997) Presence of high levels of leukocyte-associated interleukin-8 upon cell activation and in patients with sepsis syndrome. Infect Immun 65:865–871PubMedGoogle Scholar
  63. 63.
    Baggiolini M, Dewald B, Moser B (1993) Interleukin-8 and related chemotactic cytokines. Adv Immunol 55:97–179CrossRefGoogle Scholar
  64. 64.
    Gerard HC, Wang Z, Whittum-Hudson JA, El-Gabalawy H, Goldbach-Mansky R, Bardin T, Schumacher HR, Hudson AP (2002) Cytokine and chemokine mRNA produced in synovial tissue chronically infected with Chlamydia trachomatis and C. pneumoniae J Rheumatol 29(9):1827–1835PubMedGoogle Scholar
  65. 65.
    Franke WW, Grund C, Kuhn C, Lehto VP, Virtanen I (1984) Transient change of organization of vimentin filaments during mitosis as demonstrated by a monoclonal-antibody. Exp Cell Res 154:567–580PubMedCrossRefGoogle Scholar
  66. 66.
    Johnston JA, Ward CI, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143(7):1883–1898PubMedCrossRefGoogle Scholar
  67. 67.
    Stefanovic S, Windsor M, Nagata KI, Inagaki M, Wileman T (2005) Vimentin rearrangement during African swine fever virus infection involves retrograde transport along microtubules and phosphorylation of vimentin by calcium calmodulin kinase II. J Virol 79(18):11766–11775PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Birgit Krausse-Opatz
    • 1
    • 3
  • Annette Busmann
    • 2
  • Harald Tammen
    • 2
  • Christoph Menzel
    • 2
  • Thomas Möhring
    • 2
  • Nicolas Le Yondre
    • 2
  • Cornelia Schmidt
    • 1
  • Peter Schulz-Knappe
    • 2
  • Henning Zeidler
    • 1
  • Hartmut Selle
    • 2
  • Lars Köhler
    • 1
  1. 1.Division of Rheumatology, Department of Internal MedicineHannover Medical SchoolHannoverGermany
  2. 2.Digilab BioVisioN GmbHHannoverGermany
  3. 3.Department of Rheumatology (OE 6850)Hannover Medical SchoolHannoverGermany

Personalised recommendations