Medical Microbiology and Immunology

, Volume 196, Issue 1, pp 1–10 | Cite as

Streptococcus agalactiae CAMP factor binds to GPI-anchored proteins

  • Shenhui Lang
  • Jie Xue
  • Zhongwu Guo
  • Michael Palmer
Original Investigation


CAMP factor (protein B) is a pore-forming protein secreted by Streptococcus agalactiae. It causes lysis of sheep red blood cells when these have been sensitized with staphylococcal sphingomyelinase. We here show that CAMP factor binds to GPI-anchored proteins, and that this interaction involves the carbohydrate core of the GPI-anchor. Enzymatic cleavage of GPI-anchors with phosphatidylinositol-specific phospholipase C strongly reduces the sensitivity of erythrocytes to CAMP factor. Incorporation of alkaline phosphatase, a model GPI-anchored protein, into liposome membranes renders the latter susceptible to permeabilization by CAMP factor. GPI-anchored proteins therefore function as cellular receptors for CAMP factor.


Ceramide DPPC Calcein Sheep Erythrocyte Streptococcus Agalactiae 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Biotinamidohexanoic acid 3-sulfo-N-hydroxysulfosuccinimide ester




3-[(3-Cholamido propyl)-dimethylammonio]-1-propanesu1fonate








20 mM HEPES, 150 mM NaCl, 10 mM MgCl2, pH 7.5


20 mM potassium phosphate, 150 mM NaCl, pH 7.5


Phosphatidylinositol-specific phospholipase C


Placental alkaline phosphatase




Sodium dodecylsulfate polyacrylamide gel electrophoresis


100 mM Tris, 0.9% NaCl, pH 7.5


TBS with 0.1% (v/v) Tween 20




20 mM HEPES (pH 7.5) containing 0.06% Triton X-100



This work was supported by NSERC (grant No. 250265–2003 GSC-032). The synthesis of C16-GPI was supported by an NSF grant (CHE-0554777).


  1. 1.
    Bhakdi S, Tranum-Jensen J (1986) C5b-9 assembly: average binding of one C9 molecule to C5b-8 without poly-C9 formation generates a stable transmembrane pore. J Immunol 136:2999–3005PubMedGoogle Scholar
  2. 2.
    Bhakdi S, Tranum-Jensen J, Sziegoleit A (1985) Mechanism of membrane damage by streptolysin-O. Infect Immun 47:52–60PubMedGoogle Scholar
  3. 3.
    Bradley KA, Mogridge J, Jonah G, Rainey A, Batty S et al (2003) Binding of anthrax toxin to its receptor is similar to alpha integrin-ligand interactions. J Biol Chem 278:49342–49347PubMedCrossRefGoogle Scholar
  4. 4.
    Bradley KA, Mogridge J, Mourez M, Collier RJ, Young JA (2001) Identification of the cellular receptor for anthrax toxin. Nature 414:225–229PubMedCrossRefGoogle Scholar
  5. 5.
    Chang TC, Huang SM, Huang TM, Chang GG (1992) Human placental alkaline phosphatase. An improved purification procedure and kinetic studies. Eur J Biochem 209:241–247PubMedCrossRefGoogle Scholar
  6. 6.
    Christie R, Atkins NE, Munch-Petersen E (1944) A note on a lytic phenomenon shown by group B streptococci. Aust J Exp Biol Med Sci 22:197–200Google Scholar
  7. 7.
    Cremesti AE, Goni FM, Kolesnick R (2002) Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett 531:47–53PubMedCrossRefGoogle Scholar
  8. 8.
    Diep DB, Nelson KL, Raja SM, Pleshak EN, Buckley JT (1998) Glycosylphosphatidylinositol anchors of membrane glycoproteins are binding determinants for the channel-forming toxin aerolysin. J Biol Chem 273:2355–2360PubMedCrossRefGoogle Scholar
  9. 9.
    Fehrenbach F, Schmidt C, Sterzik B, Juergens D (1984) Interaction of amphiphilic bacterial polypeptides with artificial membranes. In: Alouf J, Fehrenbach F, Freer J, Jeljaszewicz J (eds) Bacterial protein toxins Academic, New York, pp 317–324Google Scholar
  10. 10.
    Giddings KS, Zhao J, Sims PJ, Tweten RK (2004) Human CD59 is a receptor for the cholesterol-dependent cytolysin intermedilysin. Nat Struct Mol Biol 11(12):1173–1178PubMedCrossRefGoogle Scholar
  11. 11.
    Gordon VM, Nelson KL, Buckley JT, Stevens VL, Tweten RK et al (1999) Clostridium septicum alpha toxin uses glycosylphosphatidylinositol-anchored protein receptors. J Biol Chem 274:27274–27280PubMedCrossRefGoogle Scholar
  12. 12.
    Griffith OH, Ryan M (1999) Bacterial phosphatidylinositol-specific phospholipase C: structure, function, and interaction with lipids. Biochim Biophys Acta 1441:237–254PubMedGoogle Scholar
  13. 13.
    Ikezawa H (2002) Glycosylphosphatidylinositol (GPI)-anchored proteins. Biol Pharm Bull 25:409–417PubMedCrossRefGoogle Scholar
  14. 14.
    Lang S, Palmer M (2003) Characterization of Streptococcus agalactiae CAMP factor as a pore-forming toxin. J Biol Chem 278:38167–38173PubMedCrossRefGoogle Scholar
  15. 15.
    MacDonald RI (1990) Characteristics of self-quenching of the fluorescence of lipid-conjugated rhodamine in membranes. J Biol Chem 265:13533–13539PubMedGoogle Scholar
  16. 16.
    Malley R, Henneke P, Morse SC, Cieslewicz MJ, Lipsitch M et al (2003) Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci USA 100:1966–1971PubMedCrossRefGoogle Scholar
  17. 17.
    Nelson KL, Buckley JT (2000) Channel formation by the glycosylphosphatidylinositol-anchored protein binding toxin aerolysin is not promoted by lipid rafts. J Biol Chem 275:19839–19843PubMedCrossRefGoogle Scholar
  18. 18.
    Nelson KL, Raja SM, Buckley JT (1997) The glycosylphosphatidylinositol-anchored surface glycoprotein Thy-1 is a receptor for the channel-forming toxin aerolysin. J Biol Chem 272:12170–12174PubMedCrossRefGoogle Scholar
  19. 19.
    Nosjean O, Roux B (1999) Ectoplasmic insertion of a glycosylphosphatidylinositol-anchored protein in glycosphingolipid- and cholesterol-containing phosphatidylcholine vesicles. Eur J Biochem 263:865–870PubMedCrossRefGoogle Scholar
  20. 20.
    Paternostre MT, Roux M, Rigaud JL (1988) Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes (prepared by reverse-phase evaporation) by triton X-100, octyl glucoside, and sodium cholate. Biochemistry 27:2668–2677PubMedCrossRefGoogle Scholar
  21. 21.
    Saslowsky DE, Lawrence J, Ren X, Brown DA, Henderson RM et al (2002) Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers. J Biol Chem 277:26966–26970PubMedCrossRefGoogle Scholar
  22. 22.
    Schroeder R, London E, Brown D (1994) Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci USA 91:12130–12134PubMedCrossRefGoogle Scholar
  23. 23.
    Scobie HM, Rainey GJA, Bradley KA, Young JAT (2003) Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc Natl Acad Sci USA 100:5170–5174PubMedCrossRefGoogle Scholar
  24. 24.
    Sharom FJ, Radeva G (2004) GPI-anchored protein cleavage in the regulation of transmembrane signals. Subcell Biochem 37:285–315PubMedGoogle Scholar
  25. 25.
    Srivastava A, Henneke P, Visintin A, Morse SC, Martin V et al (2005) The apoptotic response to pneumolysin is Toll-like receptor 4 dependent and protects against pneumococcal disease. Infect Immun 73:6479–6487PubMedCrossRefGoogle Scholar
  26. 26.
    Sterzik B, Fehrenbach FJ (1985) Reaction components influencing CAMP factor induced lysis. J Gen Microbiol 131:817–820PubMedGoogle Scholar
  27. 27.
    Wada A, Wang A, Isomoto H, Satomi Y, Takao T et al (2005) Placental and intestinal alkaline phosphatases are receptors for Aeromonas sobria hemolysin. Int J Med Microbiol 294:427–435PubMedCrossRefGoogle Scholar
  28. 28.
    Xue J, Shao N, Guo Z (2003) First total synthesis of a GPI-anchored peptide. J Org Chem 68:4020–4029PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Shenhui Lang
    • 1
  • Jie Xue
    • 2
  • Zhongwu Guo
    • 2
  • Michael Palmer
    • 1
  1. 1.Department of ChemistryUniversity of WaterlooWaterlooCanada
  2. 2.Department of ChemistryWayne State UniversityDetroitUSA

Personalised recommendations