Medical Microbiology and Immunology

, Volume 195, Issue 4, pp 173–183 | Cite as

Interleukin-6 and its receptor: from bench to bedside

  • Jürgen Scheller
  • Stefan Rose-JohnEmail author


Interleukin-6 (IL-6) is an inflammatory cytokine with a well-documented role in inflammation and cancer. The cytokine binds to a membrane bound IL-6 receptor (IL-6R) and this complex associates with two molecules of the signal transducing protein gp130 thereby initiating intracellular signaling. While gp130 is present on most if not all cells of the body, the IL-6R is only present on some cells, mainly hepatocytes and several leukocytes. Cells, which only express gp130 and no IL-6R are refractory to IL-6 signals. We have shown earlier that the IL-6R can exist as a soluble protein generated by limited proteolysis of the membrane bound receptor or by translation from an alternatively spliced mRNA. This soluble IL-6R (sIL-6R) can bind the ligand IL-6 and the soluble complex of sIL-6R and IL-6 can bind to gp130 on cells which lack the membrane bound IL-6R and trigger gp130 signaling. We have named this process ‘trans-signaling’. We will review data, which clearly show that IL-6 uses classical signaling via the membrane bound receptor and trans-signaling via the soluble receptor in various physiological and pathophysiological situations. Furthermore, we have developed designer cytokines, which can specifically enhance or inhibit IL-6 trans-signaling. These designer cytokines have been shown to be extremely useful to in therapeutic applications ranging from the long-term culture of stem cells and enhancing liver regeneration up to the blockade of chronic inflammation and cancer.


Cytokine Cytokine receptor Hyper-interleukin-6 Soluble receptor Inflammation gp130 sgp130Fc fusion protein 


  1. 1.
    Bazan JF (1990) Haemopoietic receptors and helical cytokines. Immunol Today 11:350–354PubMedCrossRefGoogle Scholar
  2. 2.
    Hirano T, Kishimoto T (1992) Molecular biology and immunology of interleukin-6. Res Immunol 143:723–724PubMedCrossRefGoogle Scholar
  3. 3.
    Grötzinger J, Kernebeck T, Kallen K-J, Rose-John S (1999) IL-6 type cytokine receptor complexes: hexamer or tetramer or both? Biol Chem 380:803–813PubMedCrossRefGoogle Scholar
  4. 4.
    Grötzinger J, Kurapkat G, Wollmer A, Kalai M, Rose-John S (1997) The family of the IL-6-type cytokines: specificity and promiscuity of the receptor complexes. Proteins: Structure, Function, and Genetics 27:96–109CrossRefGoogle Scholar
  5. 5.
    Boulanger MJ, Chow D-C, .Brevnova EE, Garcia KC (2003) Hexameric structure and assembly of the interleukin-6/IL-6 a receptor/gp130 complex. Science 300:2101–2104PubMedCrossRefGoogle Scholar
  6. 6.
    Grötzinger J (2002) Molecular mechanisms of cytokine receptor activation. Biochim Biophys Acta 1592:215–223PubMedCrossRefGoogle Scholar
  7. 7.
    Schroers A, Hecht O, Kallen KJ, Pachta M, Rose-John S, Grötzinger J (2005) Dynamics of the gp130 cytokine complex: a model for assembly on the cellular membrane. Prot Sci 14:783–790CrossRefGoogle Scholar
  8. 8.
    Rose-John S, Scheller J, Elson G, Jones S (2006) Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer. J Leuk Biol (in press)Google Scholar
  9. 9.
    Scheller J, Grötzinger J, Rose-John S (2006) Updating IL-6 classic- and trans-signaling. Signal Transduct (in press)Google Scholar
  10. 10.
    Scheller J, Ohnesorge N, Rose-John S (2006) Interleukin-6 trans-signaling in chronic inflammation and cancer. Scand J Immunol 63:321–329PubMedCrossRefGoogle Scholar
  11. 11.
    Taga T (1992) IL6 signalling through IL6 receptor and receptor-associated signal transducer, gp130. Res Immunol 143:737–739PubMedCrossRefGoogle Scholar
  12. 12.
    Müllberg J, Schooltink H, Stoyan T, Gunther M, Graeve L, Buse G, Mackiewicz A, Heinrich PC, Rose-John S (1993) The soluble interleukin-6 receptor is generated by shedding. Eur J Immunol 23:473–480PubMedGoogle Scholar
  13. 13.
    Müllberg J, Schooltink H, Stoyan T, Heinrich PC, Rose-John S (1992) Protein kinase C activity is rate limiting for shedding of the interleukin-6 receptor. Biochem Biophys Res Commun 189:794–800PubMedCrossRefGoogle Scholar
  14. 14.
    Lust JA, Donovan KA, Kline MP, Greipp PR, Kyle RA, Maihle NJ (1992) Isolation of an mRNA encoding a soluble form of the human interleukin-6 receptor. Cytokine 4:96–100PubMedCrossRefGoogle Scholar
  15. 15.
    Horiuchi S, Koyanagi Y, Zhou Y, Miyamoto H, Tanaka Y, Waki M, Matsumoto A, Yamamoto M, Yamamoto N (1994) Soluble interleukin-6 receptors released from T cell or granulocyte/macrophage cell lines and human peripheral blood mononuclear cells are generated through an alternative splicing mechanism. Eur J Immunol 24:1945–1948PubMedGoogle Scholar
  16. 16.
    Mackiewicz A, Schooltink H, Heinrich PC, Rose-John S (1992) Complex of soluble human IL-6-receptor/IL-6 up-regulates expression of acute-phase proteins. J Immunol 149:2021–2027PubMedGoogle Scholar
  17. 17.
    Rose-John S, Heinrich PC (1994) Soluble receptors for cytokines and growth factors: generation and biological function. Biochem J 300:281–290PubMedGoogle Scholar
  18. 18.
    Peters M, Müller A, Rose-John S (1998) Interleukin-6 and soluble interleukin-6 receptor: direct stimulation of gp130 and hematopoiesis. Blood 92:3495–3504PubMedGoogle Scholar
  19. 19.
    Peters M, Jacobs S, Ehlers M, Vollmer P, Müllberg J, Wolf E, Brem G, Meyer zum Büschenfelde KH, Rose-John S (1996) The function of the soluble interleukin 6 (IL-6) receptor in vivo: sensitization of human soluble IL-6 receptor transgenic mice towards IL-6 and prolongation of the plasma half-life of IL-6. J Exp Med 183:1399–1406PubMedCrossRefGoogle Scholar
  20. 20.
    Peters M, Schirmacher P, Goldschmitt J, Odenthal M, Peschel C, Dienes HP, Fattori E, Ciliberto G, Meyer zum Büschenfelde KH, Rose-John S (1997) Extramedullary expansion of hematopoietic progenitor cells in IL-6/sIL-6R double transgenic mice. J Exp Med 185:755–766PubMedCrossRefGoogle Scholar
  21. 21.
    Schirmacher P, Peters M, Ciliberto G, Fattori E, Lotz J, Meyer zum Büschenfelde KH, Rose-John S (1998) Hepatocellular hyperplasia, plasmacytoma formation, and extracellular hematopoiesis in interleukin (IL)-6/soluble IL-6 receptor double-transgenic mice. Am J Pathol 153:639–648PubMedGoogle Scholar
  22. 22.
    Peters M, Solem F, Schirmacher P, Rose-John S (2001) IL-6 and soluble IL-6R induce stem cell factor (SCF) and Flt-3 ligand expression in vivo and in vitro. Exp Hematol 29:146–155PubMedCrossRefGoogle Scholar
  23. 23.
    Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266:1865–1869PubMedCrossRefGoogle Scholar
  24. 24.
    Staskus KA, Sun R, Miller G, Racz P, Jaslowski A, Metroka C, Brett-Smith H, Haase AT (1999) Cellular tropism and viral interleukin-6 expression distinguish human herpesvirus 8 involvement in Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. J Virol 73:4181–4187PubMedGoogle Scholar
  25. 25.
    Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 332:1186–1191PubMedCrossRefGoogle Scholar
  26. 26.
    Nador RG, Cesarman E, Chadburn A, Dawson DB, Ansari MQ, Sald J, Knowles DM (1996) Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi’s sarcoma-associated herpes virus. Blood 88:645–656PubMedGoogle Scholar
  27. 27.
    Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals Hatem D, Babinet P, d’Agay MF, Clauvel JP, Raphael M, Degos L et al (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood 86:1276–1280PubMedGoogle Scholar
  28. 28.
    Staskus KA, Zhong W, Gebhard K, Herndier B, Wang H, Renne R, Beneke J, Pudney J, Anderson DJ, Ganem D, Haase AT (1997) Kaposi’s sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J Virol 71:715–719PubMedGoogle Scholar
  29. 29.
    Rettig MB, Ma HJ, Vescio RA, Pold M, Schiller G, Belson D, Savage A, Nishikubo C, Wu C, Fraser J et al (1997) Kaposi’s sarcoma-associated herpesvirus infection of bone marrow dendritic cells from multiple myeloma patients. Science 276:1851–1854PubMedCrossRefGoogle Scholar
  30. 30.
    Berenson JR, Vescio RA (1999) HHV-8 is present in multiple myeloma patients. Blood 93:3157–3159PubMedGoogle Scholar
  31. 31.
    Tarte K, Chang Y, Klein B (1999) Kaposi’s sarcoma-associated herpesvirus and multiple myeloma: lack of criteria for causality. Blood 93:3159–3163PubMedGoogle Scholar
  32. 32.
    Moore PS, Boshoff C, Weiss RA, Chang Y (1996) Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 274:1739–1744PubMedCrossRefGoogle Scholar
  33. 33.
    Neipel F, Albrecht JC, Ensser A, Huang YQ, Li JJ, Friedman Kien AE, Fleckenstein B (1997) Human herpesvirus 8 encodes a homolog of interleukin-6. J Virol 71:839–842PubMedGoogle Scholar
  34. 34.
    Burger R, Neipel F, Fleckenstein B, Savino R, Ciliberto G, Kalden JR, Gramatzki M (1998) Human herpesvirus type 8 interleukin-6 homologue is functionally active on human myeloma cells. Blood 91:1858–1863PubMedGoogle Scholar
  35. 35.
    Molden J, Chang Y, You Y, Moore PS, Goldsmith MA (1997) A Kaposi’s sarcoma-associated herpesvirus-encoded cytokine homolog (vIL-6) activates signaling through the shared gp130 receptor subunit. J Biol Chem 272:19625–19631PubMedCrossRefGoogle Scholar
  36. 36.
    Aoki Y, Jaffe ES, Chang Y, Jones K, Teruya-Feldstein J, Moore PS, Tosato G (1999) Angiogenesis and hematopoiesis induced by Kaposi’s sarcoma-associated herpesvirus-encoded interleukin-6. Blood 93:4034–4043PubMedGoogle Scholar
  37. 37.
    Müllberg J, Geib T, Jostock T, Hoischen SH, Vollmer P, Voltz N, Heinz D, Galle PR, Klouche M, Rose-John S (2000) IL-6-receptor independent stimulation of human gp130 by viral IL-6. J Immunol 164:4672–4677PubMedGoogle Scholar
  38. 38.
    Chow D-C, He X-L, Snow AL, Rose-John S, Garcia KC (2001) Structure of an extracellular gp130-cytokine receptor signalling complex. Science 291:2150–2155PubMedCrossRefGoogle Scholar
  39. 39.
    Chatterjee M, Osborne J, Bestetti G, Yuan Chang Y, Moore PS (2002) Viral IL-6-induced cell proliferation and immune evasion of interferon activity. Science 298:1433–1435CrossRefGoogle Scholar
  40. 40.
    Rose-John S, Schooltink H, Lenz D, Hipp E, Dufhues G, Schmitz H, Schiel X, Hirano T, Kishimoto T, Heinrich PC (1990) Studies on the structure and regulation of the human hepatic interleukin-6 receptor. Eur J Biochem 190:79–83PubMedCrossRefGoogle Scholar
  41. 41.
    Fischer M, Goldschmitt J, Peschel C, Kallen KJ, Brakenhoff JPJ, Wollmer A, Grötzinger J, Rose-John S (1997) A designer cytokine with high activity on human hematopoietic progenitor cells. Nat Biotechnol 15:142–145PubMedCrossRefGoogle Scholar
  42. 42.
    Audet J, Miller CL, Rose-John S, Piret JM, Eaves CJ (2001) Distinct role of gp130 activation in promoting self-renewal divisions by mitogenically stimulated murine hematopoietic cells. Proc Natl Acad Sci USA 98:1757–1762PubMedCrossRefGoogle Scholar
  43. 43.
    Hacker C, Kirsch RD, Ju X-S, Hieronymus T, Gust TC, Kuhl C, Jorgas T, Kurz SM, Rose-John S, Yokota Y, Zenke M (2003) Transcriptional profiling identifies Id2 function in dendritic cell development. Nat Immunol 4:380–386PubMedCrossRefGoogle Scholar
  44. 44.
    Ju X-S, Hacker C, Madruga J, Kurz SM, Knespel S, Blendinger G, Rose-John S, Zenke M (2003) Differentiation of human dendritic cells fron hematopoietic progenitor cells assessed by transcriptional imaging with DNA microarrays. Eur J Cell Biol 82:75–86PubMedCrossRefGoogle Scholar
  45. 45.
    Hieronymus T, Gust TC, Kirsch RD, Jorgas T, Blendinger G, Goncharenko M, Rose-John S, Müller A, Zenke M (2005) Progressive and controlled development of mouse dendritic cells from Flt3+ CD11b+ progenitors in vitro. J Immunol 174:2552–2562PubMedGoogle Scholar
  46. 46.
    Humphrey RK, Beattie GM, Lopez AD, Bucay N, King CC, Firpo M, Rose-John S, Hayek A (2004) Maintenance of pluripotency in human embryonic stem cells is Stat3 independent. Stem Cells 22:522–530PubMedCrossRefGoogle Scholar
  47. 47.
    Viswanathan S, Benatar T, Rose-John S, Lauffenburger D, Zandstra P (2002) Maintenance of ES cell pluripotentiality is regulated by the number and types of gp130-mediated signaling complexes. Stem Cells 20:119–138PubMedCrossRefGoogle Scholar
  48. 48.
    Galun E, Zeira E, Shouval D, Pappo O, Peters M, Rose-John S (2000) Liver regeneration induced by a designed hIL-6/shIL-6R fusion protein reverses severe hepatocellular injury. FASEB J 14:1979–1987PubMedCrossRefGoogle Scholar
  49. 49.
    Peters M, Blinn G, Jostock T, Schirmacher P, Meyer zum Büschenfelde KH, Galle PR, Rose-John S (2000) Combined Interleukin-6 and soluble interleukin-6 receptor accelerates murine liver regeneration. Gastroenterol 119:1663–1671CrossRefGoogle Scholar
  50. 50.
    Hecht N, Pappo O, Shouval D, Rose-John S, Galun E, Axelrod JH (2001) Hyper-IL-6 gene therapy reverses fulminant hepatic failure. Mol Therap 3:683–687CrossRefGoogle Scholar
  51. 51.
    März P, Cheng J-C, Gadient RA, Patterson P, Stoyan T, Otten U, Rose-John S (1998) Sympathetic Neurons can produce and respond to interleukin-6. Proc Natl Acad Sci USA 95:3251–3256PubMedCrossRefGoogle Scholar
  52. 52.
    März P, Otten U, Rose-John S (1999a) Neuronal activities of IL-6 type cytokines often depend on soluble cytokine receptors. Eur J Neurosci 11:2995–3004CrossRefGoogle Scholar
  53. 53.
    März P, Heese K, Dimitriades-Schmutz B, Rose-John S, Otten U (1999b) Role of interleukin-6 and soluble IL-6 receptor in region specific induction of astrocytic differentiation and neurotrophin expression. Glia 26:191–200CrossRefGoogle Scholar
  54. 54.
    Schäfer KH, Mestres P, März P, Rose-John S (1999) The IL-6/sIL-6R fusion protein promotes neurite outgrowth and neuronal survival in cultured enteric neurons. J Interferon Cytokine Res 19:527–532PubMedCrossRefGoogle Scholar
  55. 55.
    Sun Y, März P, Otten U, Ge J, Rose-John S (2002) The effect of gp130 stimulation on glutamate-induced excitotoxicity in primary hippocampal neurons. Biochem Biophys Res Commun 295:532–539PubMedCrossRefGoogle Scholar
  56. 56.
    Narazaki M, Yasukawa K, Saito T, Ohsugi Y, Fukui H, Koishihara Y, Yancopoulos GD, Taga T, Kishimoto T (1993) Soluble forms of the interleukin-6 signal-transducing receptor component gp130 in human serum possessing a potential to inhibit signals through membrane-anchored gp130. Blood 82:1120–1126PubMedGoogle Scholar
  57. 57.
    Jostock T, Müllberg J, Özbek S, Atreya R, Blinn G, Voltz N, Fischer M, Neurath MF, Rose-John S (2001) Soluble gp130 is the natural inhibitor of soluble IL-6R transsignaling responses. Eur J Biochem 268:160–167PubMedCrossRefGoogle Scholar
  58. 58.
    Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L, Fernandez-Luna JL, Nunez G, et al (1999) Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10:105–115PubMedCrossRefGoogle Scholar
  59. 59.
    Rawat R, Rainey GJ, Thompson CD, Frazier-Jessen MR, Brown RT, Nordan RP (2000) Constitutive activation of STAT3 is associated with the acquisition of an interleukin 6 independent phenotype by murine plasmacytomas and hybridomas. Blood 96:3514–3521PubMedGoogle Scholar
  60. 60.
    Palmer J, Ernst M, Hammacher A, Hertzog PJ 2005 Constitutive activation of gp130 leads to neuroendocrine differentiation in vitro and in vivo. Prostate 62:282–289PubMedCrossRefGoogle Scholar
  61. 61.
    Stuhlmann-Laeisz C, Lang S, Chalaris A, Sudarman E, Eichler J, Klingmüller U, Samuel M, Ernst M, Rose-John S, Scheller J (2006) Forced dimerization of gp130 leads to constitutive STAT3 activation, cytokine independent growth and blockade of differentiation of embryonic stem cells. Mol Biol Cell (in press)Google Scholar
  62. 62.
    Bromberg J (2002) Stat proteins and oncogenesis. J Clin Invest 109:1139–1142PubMedCrossRefGoogle Scholar
  63. 63.
    Croker BA, Krebs DL, Zhang J-G, Wormald S, Willson TA, Stanley EG, Robb L, Greenhalgh CJ, Förster I, Clausen BE, et al (2003) SOCS3 negatively regulates IL-6 signaling in vivo. Nat Immunol 4:540–545PubMedCrossRefGoogle Scholar
  64. 64.
    Mori H, Hanada R, Hanada T, Aki D, Mashima R, Nishinakamura H, Torisu T, Chien KR, Yasukawa H, Yoshimura A (2004) Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med 10:739–743PubMedCrossRefGoogle Scholar
  65. 65.
    Watt MJ, Dzamko N, Thomas WG, Rose-John S, Ernst M, Carling D, Kemp BE, Febbraio MA, Steinberg GR (2006) Ciliary neurotrophic factor reverses obesity-induced insulin resistance by activating skeletal muscle AMPK. Nat Med 12:541–548PubMedCrossRefGoogle Scholar
  66. 66.
    Feldmann M, Steinman L (2005) Design of effective immunotherapy for human autoimmunity. Nature 435:612–619PubMedCrossRefGoogle Scholar
  67. 67.
    Kallen K-J (2002) The role of transsignalling via the agonistic soluble IL-6 receptor. Biochim Biophys Acta 1592:323–343PubMedCrossRefGoogle Scholar
  68. 68.
    Nowell MA, Richards PJ, Horiuchi S, Yamamoto N, Rose-John S, Topley N, Williams AS, Jones SA (2003) Soluble IL-6 receptor governs IL-6 activity in experimental arthritis: blockade of arthritis severity by soluble glycoprotein 130. J Immunol 171:3202–3209PubMedGoogle Scholar
  69. 69.
    Ohshima S, Saeki Y, Mima T, Sasai M, Nishioka K, Nomura S, Kopf M, Katada Y, Tanaka T, Suemura M, Kishimoto T (1998) Interleukin 6 plays a key role in the development of antigen-induced arthritis. Proc Natl Acad Sci USA 95:8222–8226PubMedCrossRefGoogle Scholar
  70. 70.
    Mihara M, Takagi N, Takeda Y, Ohsugi Y (1998) IL-6 receptor blockage inhibits the onset of autoimmune kidney disease in NZB/W F1 mice. Clin Exp Immunol 112:397–402PubMedCrossRefGoogle Scholar
  71. 71.
    Alonzi T, Fattori E, Lazzaro D, Costa P, Probert L, Kollias G, De Benedetti F, Poli V, Ciliberto G (1998) Interleukin 6 is required for the development of collagen-induced arthritis. J Exp Med 187:461–468PubMedCrossRefGoogle Scholar
  72. 72.
    Choy EH, Isenberg DA, Garrood T, Farrow S, Ioannou Y, Bird H, Cheung N, Williams B, Hazleman B, Price R, et al (2002) Therapeutic benefit of blocking interleukin-6 activity with an anti-interleukin-6 receptor monoclonal antibody in rheumatoid arthritis: a randomized, double-blind, placebo-controlled, dose-escalation trial. Arthritis Rheum 46:3143–3150PubMedCrossRefGoogle Scholar
  73. 73.
    Ito H, Takazoe M, Fukuda Y, Hibi T, Kusugami K, Andoh A, Matsumoto T, Yamamura T, Azuma J, Nishimoto N, et al (2004) A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn’s disease. Gastroenterol 126:989–996CrossRefGoogle Scholar
  74. 74.
    Nakahara H, Song J, Sugimoto M, Hagihara K, Kishimoto T, Yoshizaki K, Nishimoto N (2003) Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum 48:1521–1529PubMedCrossRefGoogle Scholar
  75. 75.
    Wendling D, Racadot E, Wijdenes J (1993) Treatment of severe rheumatoid arthritis by anti-interleukin 6 monoclonal antibody. J Rheumatol 20:259–262PubMedGoogle Scholar
  76. 76.
    Yoshizaki K, Nishimoto N, Mihara M, Kishimoto T (1998) Therapy of rheumatoid arthritis by blocking IL-6 signal transduction with a humanized anti-IL-6 receptor antibody. Springer Semin Immunopathol 20:247–259PubMedCrossRefGoogle Scholar
  77. 77.
    Boe A, Baiocchi M, Carbonatto M, Papoian R, Serlupi-Crescenzi O (1999) Interleukin-6 knock-out mice are resistant to antigen-induced experimental arthritis. Cytokine 11:1057–1064PubMedCrossRefGoogle Scholar
  78. 78.
    Sasai M, Saeki Y, Ohshima S, Nishioka K, Mima T, Tanaka T, Katada Y, Yoshizaki K, Suemura M, Kishimoto T (1999) Delayed onset and reduced severity of collagen-induced arthritis in interleukin-6-deficient mice. Arthritis Rheum 42:1635–1643PubMedCrossRefGoogle Scholar
  79. 79.
    de Hooge AS, van De Loo FA, Arntz OJ, van Den Berg WB (2000) Involvement of IL-6, apart from its role in immunity, in mediating a chronic response during experimental arthritis. Am J Pathol 157:2081–2089PubMedGoogle Scholar
  80. 80.
    Kyo F, Futani H, Matsui K, Terada M, Adachi K, Nagata K, Sano H, Tateishi H, Tsutsui H, Nakanishi K (2005) Endogenous interleukin-6, but not tumor necrosis factor alpha, contributes to the development of toll-like receptor 4/myeloid differentiation factor 88-mediated acute arthritis in mice. Arthritis Rheum 52:2530–2540PubMedCrossRefGoogle Scholar
  81. 81.
    Wong PK, Quinn JM, Sims NA, van Nieuwenhuijze A, Campbell IK, Wicks IP (2006) Interleukin-6 modulates production of T lymphocyte-derived cytokines in antigen-induced arthritis and drives inflammation-induced osteoclastogenesis. Arthritis Rheum 54:158–168PubMedCrossRefGoogle Scholar
  82. 82.
    Desgeorges A, Gabay C, Silacci P, Novick D, Roux-Lombard P, Grau G, Dayer JM, Vischer T, Guerne PA (1997) Concentrations and origins of soluble interleukin 6 receptor-alpha in serum and synovial fluid. J Rheumatol 24:1510–1516PubMedGoogle Scholar
  83. 83.
    Kotake S, Sato K, Kim KJ, Takahashi N, Udagawa N, Nakamura I, Yamaguchi A, Kishimoto T, Suda T, Kashiwazaki S (1996) Interleukin-6 and soluble interleukin-6 receptors in the synovial fluids from rheumatoid arthritis patients are responsible for osteoclast-like cell formation. J Bone Miner Res 11:88–95PubMedCrossRefGoogle Scholar
  84. 84.
    Keul R, Heinrich PC, Muller-Newen G, Muller K, Woo P (1998) A possible role for soluble IL-6 receptor in the pathogenesis of systemic onset juvenile chronic arthritis. Cytokine 10:729–734PubMedCrossRefGoogle Scholar
  85. 85.
    Robak T, Gladalska A, Stepien H, Robak E (1998) Serum levels of interleukin-6 type cytokines and soluble interleukin-6 receptor in patients with rheumatoid arthritis. Mediators Inflamm 7:347–353PubMedCrossRefGoogle Scholar
  86. 86.
    Hurst SM, Wilkinson TS, McLoughlin RM, Jones S, Horiuchi S, Yamamoto N, Rose-John S, Fuller GM, Topley N, Jones SA (2001) Control of leukocyte infiltration during inflammation: IL-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment. Immunity 14:705–714PubMedCrossRefGoogle Scholar
  87. 87.
    Atreya R, Mudter J, Finotto S, Müllberg J, Jostock T, Wirtz S, Schütz M, Bartsch B, Holtmann M, Becker C et al (2000) Blockade of IL-6 transsignaling abrogates established experimental colitis in mice by suppression of the antiapoptotic resistance of lamina propria T cells. Nat Med 6:583–588PubMedCrossRefGoogle Scholar
  88. 88.
    Becker C, Fantini MC, Schramm C, Lehr HA, Wirtz S, Nikolaev A, Burg J, Strand S, Kiesslich R, Huber S et al (2004) TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 21:491–501PubMedCrossRefGoogle Scholar
  89. 89.
    Doganci A, Eigenbrod T, Krug N, De Sanctis GT, Hausding M, Erpenbeck VJ, El-Bdaoui H, Schmitt E, Bopp T, Kallen KJ, et al (2005a) The IL-6R alpha chain controls lung CD4+CD4+CD25+T regulatory cell development and function during allergic airway inflammation in vivo. J Clin Invest 115:313 –325CrossRefGoogle Scholar
  90. 90.
    McLoughlin RM, Jenkins BJ, Grail D, Williams AS, Fielding CA, Parker CR, Ernst M, Topley N, Jones SA (2005) IL-6 trans-signaling via STAT3 directs T cell infiltration in acute inflammation. Proc Natl Acad Sci U S A 102:9589–9594PubMedCrossRefGoogle Scholar
  91. 91.
    Richards PJ, Nowell MA, Horiuchi S, McLoughlin RM, Fielding CA, Grau S, Yamamoto N, Ehrmann M, Williams AS, Rose-John S et al (2006) Baculovirus expression and functional characterisation of a recombinant human soluble gp130 isoform and its role in the regulation of L-6 trans-signaling. Arthritis Rheum 54:1662–1672PubMedCrossRefGoogle Scholar
  92. 92.
    Doganci A, Sauer K, Karwot R, Finotto S (2005b) Pathological role of IL-6 in the experimental allergic bronchial asthma in mice. Clin Rev Allergy Immunol 28:257–270CrossRefGoogle Scholar
  93. 93.
    Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299:1033–1036PubMedCrossRefGoogle Scholar
  94. 94.
    Nishimoto N, Kanakura Y, Aozasa K, Johkoh T, Nakamura M, Nakano S, Nakano N, Ikeda Y, Sasaki T, Nishioka K, et al (2005) Humanized anti-interleukin-6 receptor antibody treatment of multicentric Castleman disease. Blood 106:2627–2623PubMedCrossRefGoogle Scholar
  95. 95.
    Mitsuyama K, Tomiyasu N, Suzuki A, Takaki K, Takedatsu H, Masuda J, Yamasaki H, Matsumoto S, Tsuruta O, Toyonaga A, Sata M (2005) A form of circulating interleukin-6 receptor component soluble gp130 as a potential interleukin-6 inhibitor in inflammatory bowel disease. Clin Exp Immunol 143:125–131CrossRefGoogle Scholar
  96. 96.
    Matthews V, Schuster B, Schütze S, Bußmeyer I, Ludwig A, Hundhausen C, Sadowski T, Saftig P, Hartmann D, Kallen K-J, Rose-John S (2003) Cellular cholesterol depletion triggers shedding of the human interleukin-6 receptor by ADAM10 and ADAM17 (TACE). J Biol Chem 278:38829–38839PubMedCrossRefGoogle Scholar
  97. 97.
    Becker C, Fantini MC, Wirtz S, Nikolaev A, Lehr HA, Galle PR, Rose-John S, Neurath MF (2005) IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle 4:217–220PubMedGoogle Scholar
  98. 98.
    Nishimoto N, Yoshizaki K, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, Hashimoto J, Azuma J, Kishimoto T (2004) Treatment of rheumatoid arthritis with humanized anti–interleukin-6 receptor antibody. A multicenter, double-blind, placebo-controlled trial. Arthritis Rheum 50:1761–1769PubMedCrossRefGoogle Scholar
  99. 99.
    Heinrich PC, Castell JV, Andus T (1990) Interleukin-6 and the acute phase response. Biochem J 265:621–636PubMedGoogle Scholar
  100. 100.
    Hochepied T, Van Molle W, Bergeri FG, Baumann H, Libert C (2000) Involvement of the acute phase protein a1-acid glycoprotein in nonspecific resistance to a lethal gram-negative infection. J Biol Chem 275:14903–14909PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institut für BiochemieChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations