Medical Microbiology and Immunology

, Volume 195, Issue 1, pp 11–19 | Cite as

Apoptosis in infectious disease: how bacteria interfere with the apoptotic apparatus

  • Georg Häcker
  • Susanne Kirschnek
  • Silke F. Fischer
Original Investigation


Cell death by apoptosis is a common response of a human cell to many extrinsic stimuli. A cell’s sensitivity to apoptotic triggers is affected by its activation and differentiation status. Bacteria are recognised by cellular receptors and elicit a multitude of signal transduction events that can, among other effects, alter the cell’s response towards apoptotic stimuli. Many different bacteria and bacterial products have been recognised as agents that can act in this way and either induce or inhibit cell death. Besides these common and, as we argue, indirect activities, chlamydiae have been described to have a more specific capacity. These specialists of intracellular life can directly attack the host cell’s apoptotic pathway. Here, we will attempt to structure the field of bacterial inhibition of apoptosis and discuss recent advancements in our knowledge of how chlamydiae interfere with the host cell’s capacity to undergo apoptosis.


Apoptosis Bacteria Toll-like receptors Chlamydia 


  1. 1.
    Ashkenazi A, Dixit VM (1999) Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11:255–260CrossRefPubMedGoogle Scholar
  2. 2.
    Wajant H (2003) Death receptors. Essays Biochem 39:53–71PubMedGoogle Scholar
  3. 3.
    Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629PubMedGoogle Scholar
  4. 4.
    Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897–907CrossRefPubMedGoogle Scholar
  5. 5.
    Boatright KM, Deis C, Denault JB, Sutherlin DP, Salvesen GS (2004) Activation of caspases-8 and—10 by FLIP(L). Biochem J 382:651–657CrossRefPubMedGoogle Scholar
  6. 6.
    Adams JM, Cory S (2001) Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 26:61–66CrossRefPubMedGoogle Scholar
  7. 7.
    Bouillet P, Strasser A (2002) BH3-only proteins—evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. J Cell Sci 115:1567–1574PubMedGoogle Scholar
  8. 8.
    Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Kontgen F, Adams JM, Strasser A (1999) Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286:1735–1738CrossRefPubMedGoogle Scholar
  9. 9.
    Hildeman DA, Zhu Y, Mitchell TC, Bouillet P, Strasser A, Kappler J, Marrack P (2002) Activated T cell death in vivo mediated by proapoptotic bcl-2 family member bim. Immunity 16:759–767CrossRefPubMedGoogle Scholar
  10. 10.
    Aliprantis AO, Yang RB, Weiss DS, Godowski P, Zychlinsky A (2000) The apoptotic signaling pathway activated by Toll-like receptor-2. EMBO J 19:3325–3336CrossRefPubMedGoogle Scholar
  11. 11.
    Ruckdeschel K, Pfaffinger G, Haase R, Sing A, Weighardt H, Hacker G, Holzmann B, Heesemann J (2004) Signaling of apoptosis through TLRs critically involves toll/IL-1 receptor domain-containing adapter inducing IFN-beta, but not MyD88, in bacteria-infected murine macrophages. J Immunol 173:3320–3328PubMedGoogle Scholar
  12. 12.
    Fischer SF, Rehm M, Bauer A, Hofling F, Kirschnek S, Rutz M, Bauer S, Wagner H, Hacker G (2005) Toll-like receptor 9 signaling can sensitize fibroblasts for apoptosis. Immunol Lett 97:115–122CrossRefPubMedGoogle Scholar
  13. 13.
    Hoebe K, Du X, Georgel P, Janssen E, Tabeta K, Kim SO, Goode J, Lin P, Mann N, Mudd S, Crozat K, Sovath S, Han J, Beutler B (2003) Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424:743–748PubMedGoogle Scholar
  14. 14.
    Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511PubMedGoogle Scholar
  15. 15.
    Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D (1995) Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 376:167–170CrossRefPubMedGoogle Scholar
  16. 16.
    Makris C, Godfrey VL, Krahn-Senftleben G, Takahashi T, Roberts JL, Schwarz T, Feng L, Johnson RS, Karin M (2000) Female mice heterozygous for IKK gamma/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol Cell 5:969–979CrossRefPubMedGoogle Scholar
  17. 17.
    Li Q, Van Antwerp D, Mercurio F, Lee KF, Verma IM (1999) Severe liver degeneration in mice lacking the IkappaB kinase 2 gene. Science 284:321–325CrossRefPubMedGoogle Scholar
  18. 18.
    Kreuz S, Siegmund D, Scheurich P, Wajant H (2001) NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol 21:3964–3973CrossRefPubMedGoogle Scholar
  19. 19.
    Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J (2001) NF-kappaB signals induce the expression of c-FLIP. Mol Cell Biol 21:5299–5305CrossRefPubMedGoogle Scholar
  20. 20.
    Karin M, Lin A (2002) NF-kappaB at the crossroads of life and death. Nat Immunol 3:221–227CrossRefPubMedGoogle Scholar
  21. 21.
    Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25:280–288CrossRefPubMedGoogle Scholar
  22. 22.
    Colotta F, Re F, Polentarutti N, Sozzani S, Mantovani A (1992) Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 80:2012–2020PubMedGoogle Scholar
  23. 23.
    Yamamoto C, Yoshida S, Taniguchi H, Qin MH, Miyamoto H, Mizuguchi Y (1993) Lipopolysaccharide and granulocyte colony-stimulating factor delay neutrophil apoptosis and ingestion by guinea pig macrophages. Infect Immun 61:1972–1979PubMedGoogle Scholar
  24. 24.
    Yoshiie K, Kim HY, Mott J, Rikihisa Y (2000) Intracellular infection by the human granulocytic ehrlichiosis agent inhibits human neutrophil apoptosis. Infect Immun 68:1125–1133CrossRefPubMedGoogle Scholar
  25. 25.
    Kim JS, Kim JM, Jung HC, Song IS, Kim CY (2001) Inhibition of apoptosis in human neutrophils by Helicobacter pylori water-soluble surface proteins. Scand J Gastroenterol 36:589–600CrossRefPubMedGoogle Scholar
  26. 26.
    Ozaki K, Hanazawa S (2001) Porphyromonas gingivalis fimbriae inhibit caspase-3-mediated apoptosis of monocytic THP-1 cells under growth factor deprivation via extracellular signal-regulated kinase-dependent expression of p21 Cip/WAF1. Infect Immun 69:4944–4950CrossRefPubMedGoogle Scholar
  27. 27.
    Feterowski C, Weighardt H, Emmanuilidis K, Hartung T, Holzmann B (2001) Immune protection against septic peritonitis in endotoxin-primed mice is related to reduced neutrophil apoptosis. Eur J Immunol 31:1268–1277CrossRefPubMedGoogle Scholar
  28. 28.
    Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD, Klimpel GR, Godowski P, Zychlinsky A (1999) Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285:736–739CrossRefPubMedGoogle Scholar
  29. 29.
    Ruckdeschel K, Harb S, Roggenkamp A, Hornef M, Zumbihl R, Kohler S, Heesemann J, Rouot B (1998) Yersinia enterocolitica impairs activation of transcription factor NF-kappaB: involvement in the induction of programmed cell death and in the suppression of the macrophage tumor necrosis factor alpha production. J Exp Med 187:1069–1079CrossRefPubMedGoogle Scholar
  30. 30.
    Binnicker MJ, Williams RD, Apicella MA (2004) Gonococcal porin IB activates NF-kappaB in human urethral epithelium and increases the expression of host antiapoptotic factors. Infect Immun 72:6408–6417CrossRefPubMedGoogle Scholar
  31. 31.
    Clifton DR, Goss RA, Sahni SK, van Antwerp D, Baggs RB, Marder VJ, Silverman DJ, Sporn LA (1998) NF-kappa B-dependent inhibition of apoptosis is essential for host cellsurvival during Rickettsia rickettsii infection. Proc Natl Acad Sci USA 95:4646–4651CrossRefPubMedGoogle Scholar
  32. 32.
    Joshi SG, Francis CW, Silverman DJ, Sahni SK (2003) Nuclear factor kappa B protects against host cell apoptosis during Rickettsia rickettsii infection by inhibiting activation of apical and effector caspases and maintaining mitochondrial integrity. Infect Immun 71:4127–4136CrossRefPubMedGoogle Scholar
  33. 33.
    Joshi SG, Francis CW, Silverman DJ, Sahni SK (2004) NF-kappaB activation suppresses host cell apoptosis during Rickettsia rickettsii infection via regulatory effects on intracellular localization or levels of apoptogenic and anti-apoptotic proteins. FEMS Microbiol Lett 234:333–341CrossRefPubMedGoogle Scholar
  34. 34.
    Kempf VA, Schairer A, Neumann D, Grassl GA, Lauber K, Lebiedziejewski M, Schaller M, Kyme P, Wesselborg S, Autenrieth IB (2005) Bartonella henselae inhibits apoptosis in Mono Mac 6 cells. Cell Microbiol 7:91–104CrossRefPubMedGoogle Scholar
  35. 35.
    Schmid MC, Schulein R, Dehio M, Denecker G, Carena I, Dehio C (2004) The VirB type IV secretion system of Bartonella henselae mediates invasion, proinflammatory activation and antiapoptotic protection of endothelial cells. Mol Microbiol 52:81–92CrossRefPubMedGoogle Scholar
  36. 36.
    Wahl C, Oswald F, Simnacher U, Weiss S, Marre R, Essig A (2001) Survival of Chlamydia pneumoniae-infected Mono Mac 6 cells is dependent on NF-kappaB binding activity. Infect Immun 69:7039–7045CrossRefPubMedGoogle Scholar
  37. 37.
    Fischer SF, Schwarz C, Vier J, Hacker G (2001) Characterization of antiapoptotic activities of Chlamydia pneumoniae in human cells. Infect Immun 69:7121–7129CrossRefPubMedGoogle Scholar
  38. 38.
    Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927CrossRefPubMedGoogle Scholar
  39. 39.
    Arbibe L, Mira JP, Teusch N, Kline L, Guha M, Mackman N, Godowski PJ, Ulevitch RJ, Knaus UG (2000) Toll-like receptor 2-mediated NF-kappa B activation requires a Rac1-dependent pathway. Nat Immunol 1:533–540CrossRefPubMedGoogle Scholar
  40. 40.
    Strassheim D, Asehnoune K, Park JS, Kim JY, He Q, Richter D, Kuhn K, Mitra S, Abraham E (2004) Phosphoinositide 3-kinase and Akt occupy central roles in inflammatory responses of Toll-like receptor 2-stimulated neutrophils. J Immunol 172:5727–5733PubMedGoogle Scholar
  41. 41.
    Yilmaz O, Jungas T, Verbeke P, Ojcius DM (2004) Activation of the phosphatidylinositol 3-kinase/Akt pathway contributes to survival of primary epithelial cells infected with the periodontal pathogen Porphyromonas gingivalis. Infect Immun 72:3743–3751CrossRefPubMedGoogle Scholar
  42. 42.
    Knodler LA, Finlay BB, Steele-Mortimer O (2005) The Salmonella effector protein SopB protects epithelial cells from apoptosis by sustained activation of Akt. J Biol Chem 280(10):9058–9064CrossRefPubMedGoogle Scholar
  43. 43.
    Teodoro JG, Branton PE (1997) Regulation of apoptosis by viral gene products. J Virol 71:1739–1746PubMedGoogle Scholar
  44. 44.
    Xu XN, Screaton GR, McMichael AJ (2001) Virus infections: escape, resistance, and counterattack. Immunity 15:867–870CrossRefPubMedGoogle Scholar
  45. 45.
    Prebeck S, Kirschning C, Durr S, da Costa C, Donath B, Brand K, Redecke V, Wagner H, Miethke T (2001) Predominant role of toll-like receptor 2 versus 4 in Chlamydia pneumoniae-induced activation of dendritic cells. J Immunol 167:3316–3323PubMedGoogle Scholar
  46. 46.
    Byrne GI, Ojcius DM (2004) Chlamydia and apoptosis: life and death decisions of an intracellular pathogen. Nat Rev Microbiol 2:802–808CrossRefPubMedGoogle Scholar
  47. 47.
    Miller WC, Ford CA, Morris M, Handcock MS, Schmitz JL, Hobbs MM, Cohen MS, Harris KM, Udry JR (2004) Prevalence of chlamydial and gonococcal infections among young adults in the United States. Jama 291:2229–2236CrossRefPubMedGoogle Scholar
  48. 48.
    Thylefors B, Negre AD, Pararajasegaram R, Dadzie KY (2005) Global data on blindness. Bull World Health Organ 73:115Google Scholar
  49. 49.
    Kuo CC, Jackson LA, Campbell LA, Grayston JT (1995) Chlamydia pneumoniae (TWAR). Clin Microbiol Rev 8:451–461PubMedGoogle Scholar
  50. 50.
    Greene W, Xiao Y, Huang Y, McClarty G, Zhong G (2004) Chlamydia-infected cells continue to undergo mitosis and resist induction of apoptosis. Infect Immun 72:451–460CrossRefPubMedGoogle Scholar
  51. 51.
    Fan T, Lu H, Hu H, Shi L, McClarty GA, Nance DM, Greenberg AH, Zhong G (1998) Inhibition of Apoptosis in Chlamydia-infected Cells: Blockade of Mitochondrial Cytochrome c Release and Caspase Activation. J Exp Med 187:487–496CrossRefPubMedGoogle Scholar
  52. 52.
    Rajalingam K, Al Younes H, Muller A, Meyer TF, Szczepek AJ, Rudel T (2001) Epithelial cells infected with Chlamydophila pneumoniae (Chlamydia pneumoniae) are resistant to apoptosis. Infect Immun 69:7880–7888CrossRefPubMedGoogle Scholar
  53. 53.
    Dean D, Powers VC (2001) Persistent Chlamydia trachomatis infections resist apoptotic stimuli. Infect Immun 69:2442–2447CrossRefPubMedGoogle Scholar
  54. 54.
    Rottenberg ME, Gigliotti-Rothfuchs A, Wigzell H (2002) The role of IFN-gamma in the outcome of chlamydial infection. Curr Opin Immunol 14:444–451CrossRefPubMedGoogle Scholar
  55. 55.
    Al-Younes HM, Rudel T, Brinkmann V, Szczepek AJ, Meyer TF (2001) Low iron availability modulates the course of Chlamydia pneumoniae infection. Cell Microbiol 3:427–437CrossRefPubMedGoogle Scholar
  56. 56.
    Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656CrossRefPubMedGoogle Scholar
  57. 57.
    Coultas L, Bouillet P, Stanley EG, Brodnicki TC, Adams JM, Strasser A (2004) Proapoptotic BH3-only Bcl-2 family member Bik/Blk/Nbk is expressed in hemopoietic and endothelial cells but is redundant for their programmed death. Mol Cell Biol 24:1570–1581CrossRefPubMedGoogle Scholar
  58. 58.
    Xiao Y, Zhong Y, Greene W, Dong F, Zhong G (2004) Chlamydia trachomatis infection inhibits both Bax and Bak activation induced by staurosporine. Infect Immun 72:5470–5474CrossRefPubMedGoogle Scholar
  59. 59.
    Fischer SF, Vier J, Kirschnek S, Klos A, Hess S, Ying S, Hacker G (2004) Chlamydia Inhibit Host Cell Apoptosis by Degradation of Proapoptotic BH3-only Proteins. J Exp Med 200:905–916CrossRefPubMedGoogle Scholar
  60. 60.
    Ying S, Seiffert BM, Hacker G, Fischer SF (2005) Broad degradation of BH3-only proteins during infection with Chlamydia trachomatis. Infect Immun (In press)Google Scholar
  61. 61.
    McDonnell JM, Fushman D, Milliman CL, Korsmeyer SJ, Cowburn D (1999) Solution structure of the proapoptotic molecule BID: a structural basis for apoptotic agonists and antagonists. Cell 96:625–634CrossRefPubMedGoogle Scholar
  62. 62.
    Fischer SF, Harlander T, Vier J, Hacker G (2004) Protection against CD95-induced apoptosis by chlamydial infection at a mitochondrial step. Infect Immun 72:1107–1115CrossRefPubMedGoogle Scholar
  63. 63.
    Fields KA, Mead DJ, Dooley CA, Hackstadt T (2003) Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early-cycle development. Mol Microbiol 48:671–683CrossRefPubMedGoogle Scholar
  64. 64.
    Zhong G, Fan P, Ji H, Dong F, Huang Y (2001) Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors. J Exp Med 193:935–942CrossRefPubMedGoogle Scholar
  65. 65.
    Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068CrossRefPubMedGoogle Scholar
  66. 66.
    Hoyt MA, Coffino P (2004) Ubiquitin-free routes into the proteasome. Cell Mol Life Sci 61:1596–1600CrossRefPubMedGoogle Scholar
  67. 67.
    Everett KD, Bush RM, Andersen AA (1999) Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 49(Pt 2):415–440PubMedGoogle Scholar
  68. 68.
    Friedman MG, Dvoskin B, Kahane S (2003) Infections with the chlamydia-like microorganism Simkania negevensis, a possible emerging pathogen. Microbes Infect 5:1013–1021CrossRefPubMedGoogle Scholar
  69. 69.
    Amann R, Springer N, Schonhuber W, Ludwig W, Schmid EN, Muller KD, Michel R (1997) Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp. Appl Environ Microbiol 63:115–121PubMedGoogle Scholar
  70. 70.
    Horn M, Collingro A, Schmitz-Esser S, Beier CL, Purkhold U, Fartmann B, Brandt P, Nyakatura GJ, Droege M, Frishman D, Rattei T, Mewes HW, Wagner M (2004) Illuminating the evolutionary history of chlamydiae. Science 304:728–730CrossRefPubMedGoogle Scholar
  71. 71.
    Ojcius DM, Souque P, Perfettini JL, Dautry-Varsat A (1998) Apoptosis of epithelial cells and macrophages due to infection with the obligate intracellular pathogen Chlamydia psittaci. J Immunol 161:4220–4226PubMedGoogle Scholar
  72. 72.
    Perfettini JL, Reed JC, Israel N, Martinou JC, Dautry-Varsat A, Ojcius DM (2002) Role of Bcl-2 family members in caspase-independent apoptosis during Chlamydia infection. Infect Immun 70:55–61CrossRefPubMedGoogle Scholar
  73. 73.
    Fischer SF, Schwarz C, Vier J, Hacker G (2001) Characterization of Antiapoptotic Activities of Chlamydia pneumoniae in Human Cells. Infect Immun 69:7121–7129CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Georg Häcker
    • 1
  • Susanne Kirschnek
    • 1
  • Silke F. Fischer
    • 1
  1. 1.Institute for Medical Microbiology, Immunology and HygieneTechnical University MunichMunichGermany

Personalised recommendations