Medical Microbiology and Immunology

, Volume 194, Issue 3, pp 151–162

Increased early local immune responses and altered worm development in high-dose infections of mice susceptible to the filaria Litomosoides sigmodontis

  • Simon Babayan
  • Tarik Attout
  • Sabine Specht
  • Achim Hoerauf
  • Georges Snounou
  • Laurent Rénia
  • Masataka Korenaga
  • Odile Bain
  • Coralie Martin
Original Investigation

Abstract

The relationship between the number of larvae inoculated and filarial infection outcome is an important fundamental and epidemiological issue. Our study was carried out with BALB/c mice infected with the filaria Litomosoides sigmodontis. For the first time, an immunological analysis of infection with various doses was studied in parallel with parasitological data. Mice were inoculated with 200, 60 or 25 infective larvae (third stage larvae, L3), and monitored over 80 days. At 60 h post-inoculation the immune response was stronger in the 200 L3 group than the 25 L3 group. Cells from lymph nodes draining the site of inoculation proliferated intensely and produced large amounts of IL-5 and IL-4. In the pleural cavity, leukocyte populations accumulated earlier and in larger quantities. IgG1, IL-4 and IL-10 serum concentrations were transiently higher. During the first 10 days the worm recovery rates were identical in all groups, but decreased thereafter in the 200 L3 group. In this group, the development of the worms was altered, with reduced lengths, diminished intra-uterine production of microfilariae and abnormalities of male copulatory organs. Whereas mice inoculated with 25 L3 became microfilaraemic, only one third reached patency in the 200 L3 group. However, detrimental effects of high numbers of worms are not seen in studies using different inoculation protocols. This suggests that the very early events determine subsequent immune response and infection outcome rather than competitive interactions between the worms.

Keywords

Filariasis Murine model Immunity Infection dose Litomosoides sigmodontis 

References

  1. 1.
    Akue JP, Egwang TG, Devaney E (1994) High levels of parasite-specific IgG4 in the absence of microfilaremia in Loa loa infection. Trop Med Parasitol 45:246–248PubMedGoogle Scholar
  2. 2.
    Al-Qaoud KM, Taubert A, Zahner H, Fleischer B, Hoerauf A (1997) Infection of BALB/c mice with the filarial nematode Litomosoides sigmodontis: role of CD4+ T cells in controlling larval development. Infect Immun 65:2457–2461PubMedGoogle Scholar
  3. 3.
    Al-Qaoud KM, Fleischer B, Hoerauf A (1998) The Xid defect imparts susceptibility to experimental murine filariosis—association with a lack of antibody and IL-10 production by B cells in response to phosphorylcholine. Int Immunol 10:17–25CrossRefPubMedGoogle Scholar
  4. 4.
    Al-Qaoud KM, Pearlman E, Hartung T, Klukowski J, Fleischer B, Hoerauf A (2000) A new mechanism for IL-5-dependent helminth control: neutrophil accumulation and neutrophil-mediated worm encapsulation in murine filariasis are abolished in the absence of IL-5. Int Immunol 12:899–908CrossRefPubMedGoogle Scholar
  5. 5.
    Allen JE, Daub J, Guiliano D, McDonnell A, Lizotte-Waniewski M, Taylor DW, Blaxter M (2000) Analysis of genes expressed at the infective larval stage validates utility of Litomosoides sigmodontis as a murine model for filarial vaccine development. Infect Immun 68:5454–5458CrossRefPubMedGoogle Scholar
  6. 6.
    Babayan S, Ungeheuer MN, Martin C, Attout T, Belnoue E, Snounou G, Renia L, Korenaga M, Bain O (2003) Resistance and susceptibility to filarial infection with Litomosoides sigmodontis are associated with early differences in parasite development and in localized immune reactions. Infect Immun 71:6820–6829CrossRefPubMedGoogle Scholar
  7. 7.
    Baize S, Wahl G, Soboslay PT, Egwang TG, Georges AJ (1997) T helper responsiveness in human Loa loa infection; defective specific proliferation and cytokine production by CD4+ T cells from microfilaraemic subjects compared with amicrofilaraemics. Clin Exp Immunol 108:272–278CrossRefPubMedGoogle Scholar
  8. 8.
    Basanez MG, Collins RC, Porter CH, Little MP, Brandling-Bennett D (2002) Transmission intensity and the patterns of Onchocerca volvulus infection in human communities. Am J Trop Med Hyg 67:669–679PubMedGoogle Scholar
  9. 9.
    Breton B, Diagne M, Wanji S, Bougnoux ME, Chandre F, Marechal P, Petit G, Vuong PN, Bain O (1997) Ivermectin and moxidectin in two filarial systems: resistance of Monanema martini; inhibition of Litomosoides sigmodontis insemination. Parassitologia 39:19–28PubMedGoogle Scholar
  10. 10.
    Connal A, Connal SLM (1922) The development of Loa loa (Guyot) in Chrysops silacea (Austen) and Chrysops dimidiata (Van der Wulp). Trans R Soc Trop Med Hyg 46:64–89Google Scholar
  11. 11.
    Cook RL, Roberts LS (1991) In vivo effects of putative crowding factors on development of Hymenolepis diminuta. J Parasitol 77:21–25Google Scholar
  12. 12.
    Dhar DN, Singha P (1971) Studies on quantitative infections of Litomosoides carinii (Travassos, 1919) in white rats. Z Tropenmed Parasitol 22:312–325PubMedGoogle Scholar
  13. 13.
    Diagne M, Petit G, Liot P, Cabaret J, Bain O (1990) The filaria Litomosoides galizai in mites; microfilarial distribution in the host and regulation of the transmission. Ann Parasitol Hum Comp 65:193–199PubMedGoogle Scholar
  14. 14.
    Fain A (1981) Epidemiology and pathology of loaiasis. Ann Soc Belg Med Trop 61:277–285PubMedGoogle Scholar
  15. 15.
    Gillespie RD, Mbow ML, Titus RG (2000) The immunomodulatory factors of bloodfeeding arthropod saliva. Parasite Immunol 22:319–331CrossRefPubMedGoogle Scholar
  16. 16.
    Gordon RM, Crewe W (1953) The deposition of the infective stage of Loa loa by Chrysops silacea, and the early stages of its migration to the deeper tissues of the mammalian host. Ann Trop Med Parasitol 47:74–85PubMedGoogle Scholar
  17. 17.
    Gray CA, Lawrence RA (2002) A role for antibody and Fc receptor in the clearance of Brugia malayi microfilariae. Eur J Immunol 32:1114–1120CrossRefPubMedGoogle Scholar
  18. 18.
    Haque A, Lefebvre MN, Ogilvie BM, Capron A (1978) Dipetalonema viteae in hamsters: effect of antiserum or immunization with parasite extracts on production of microfilariae. Parasitology 76:61–75PubMedGoogle Scholar
  19. 19.
    Hawking F (1954) The reproductive system of Litomosoides carinii, a filarial parasite of cotton rat. III. The number of microfilariae produced. Ann Trop Med Parasitol 48:382–385PubMedGoogle Scholar
  20. 20.
    Hoffmann WH, Pfaff AW, Schulz-Key H, Soboslay PT (2001) Determinants for resistance and susceptibility to microfilaraemia in Litomosoides sigmodontis filariasis. Parasitology 122:641–649CrossRefPubMedGoogle Scholar
  21. 21.
    Lal RB, Paranjape RS, Briles DE, Nutman TB, Ottesen EA (1987) Circulating parasite antigen(s) in lymphatic filariasis: use of monoclonal antibodies to phosphocholine for immunodiagnosis. J Immunol 138:3454–3460PubMedGoogle Scholar
  22. 22.
    Lavoipierre MM (1958) Studies on the host-parasite relationships of filarial nematodes and their arthropod hosts. I. The sites of development and the migration of Loa loa in Chrysops silacea, the escape of the infective forms from the head of the fly, and the effect of the worm on its insect host. Ann Trop Med Parasitol 52:103–121PubMedGoogle Scholar
  23. 23.
    Lawrence RA (1996) Lymphatic filariasis: what mice can tell us. Parasitol Today 12:267–271CrossRefGoogle Scholar
  24. 24.
    Le Goff L, Maréchal P, Petit G, Taylor DW, Hoffmann W, Bain O (1997) Early reduction of the challenge recovery rate following immunization with irradiated infective larvae in a filaria mouse system. Trop Med Int Health 2:1170–1174CrossRefPubMedGoogle Scholar
  25. 25.
    Le Goff L, Martin C, Oswald IP, Vuong PN, Petit G, Ungeheuer MN, Bain O (2000) Parasitology and immunology of mice vaccinated with irradiated Litomosoides sigmodontis larvae. Parasitology 120:271–280CrossRefPubMedGoogle Scholar
  26. 26.
    Le Goff L, Loke P, Ali HF, Taylor DW, Allen JE (2000) Interleukin-5 is essential for vaccine-mediated immunity but not innate resistance to a filarial parasite. Infect Immun 68:2513–2517CrossRefPubMedGoogle Scholar
  27. 27.
    Le Goff L, Lamb T, Graham A, Harcus Y, Allen J (2002) IL-4 is required to prevent filarial nematode development in resistant but not susceptible strains of mice. Int J Parasitol 32:1277CrossRefPubMedGoogle Scholar
  28. 28.
    Maréchal P (1995) Deux filaires du genre Litomosoides chez la souris blanche; régulation du développement. Muséum National d’Histoire Naturelle, Paris, number 1995MNHN0018, p 89Google Scholar
  29. 29.
    Maréchal P, Le Goff L, Petit G, Diagne M, Taylor DW, Bain O (1996) The fate of the filaria Litomosoides sigmodontis in susceptible and naturally resistant mice. Parasite 3:25–31PubMedGoogle Scholar
  30. 30.
    Maréchal P, Le Goff L, Hoffman W, Rapp J, Oswald IP, Ombrouck C, Taylor DW, Bain O, Petit G (1997) Immune response to the filaria Litomosoides sigmodontis in susceptible and resistant mice. Parasite Immunol 19:273–279CrossRefPubMedGoogle Scholar
  31. 31.
    Martin C, Al-Qaoud KM, Ungeheuer MN, Paehle K, Vuong PN, Bain O, Fleischer B, Hoerauf A (2000) IL-5 is essential for vaccine-induced protection and for resolution of primary infection in murine filariasis. Med Microbiol Immunol (Berl) 189:67–74Google Scholar
  32. 32.
    Martin C, Le Goff L, Ungeheuer MN, Vuong PN, Bain O (2000) Drastic reduction of a filarial infection in eosinophilic interleukin-5 transgenic mice. Infect Immun 68:3651–3656CrossRefPubMedGoogle Scholar
  33. 33.
    Martin C, Saeftel M, Vuong PN, Babayan S, Fischer K, Bain O, Hoerauf A (2001) B-cell deficiency suppresses vaccine-induced protection against murine filariasis but does not increase the recovery rate for primary infection. Infect Immun 69:7067–7073CrossRefPubMedGoogle Scholar
  34. 34.
    Mbow ML, Bleyenberg JA, Hall LR, Titus RG (1998) Phlebotomus papatasi sand fly salivary gland lysate down-regulates a Th1, but up-regulates a Th2, response in mice infected with Leishmania major. J Immunol 161:5571–5577PubMedGoogle Scholar
  35. 35.
    Orihel TC, Eberhard ML (1985) Loa loa: development and course of patency in experimentally-infected primates. Trop Med Parasitol 36:215–224PubMedGoogle Scholar
  36. 36.
    Paterson S, Viney ME (2002) Host immune responses are necessary for density dependence in nematode infections. Parasitology 125:283–292CrossRefPubMedGoogle Scholar
  37. 37.
    Petit G, Diagne M, Marechal P, Owen D, Taylor D, Bain O (1992) Maturation of the filaria Litomosoides sigmodontis in BALB/c mice; comparative susceptibility of nine other inbred strains. Ann Parasitol Hum Comp 67:144–150PubMedGoogle Scholar
  38. 38.
    Pfarr KM, Fischer K, Hoerauf A (2003) Involvement of Toll-like receptor 4 in the embryogenesis of the rodent filaria Litomosoides sigmodontis. Med Microbiol Immunol (Berl) 192:53–56Google Scholar
  39. 39.
    Saeftel M, Volkmann L, Korten S, Brattig N, Al-Qaoud K, Fleischer B, Hoerauf A (2001) Lack of interferon-gamma confers impaired neutrophil granulocyte function and imparts prolonged survival of adult filarial worms in murine filariasis. Microbes Infect 3:203–213CrossRefPubMedGoogle Scholar
  40. 40.
    Saeftel M, Arndt M, Specht S, Volkmann L, Hoerauf A (2003) Synergism of gamma interferon and interleukin-5 in the control of murine filariasis. Infect Immun 71:6978–6985CrossRefPubMedGoogle Scholar
  41. 41.
    Schoeler GB, Wikel SK (2001) Modulation of host immunity by haematophagous arthropods. Ann Trop Med Parasitol 95:755–771CrossRefPubMedGoogle Scholar
  42. 42.
    Schulz-Key H (1987) Ivermectin in the treatment of onchocerciasis. In: ISI Atlas of Science: Pharmacology. ISI-Press, Philadelphia, pp 246–249Google Scholar
  43. 43.
    Simonsen PE, Meyrowitsch DW, Jaoko WG, Malecela MN, Mukoko D, Pedersen EM, Ouma JH, Rwegoshora RT, Masese N, Magnussen P, Estambale BB, Michael E (2002) Bancroftian filariasis infection, disease, and specific antibody response patterns in a high and a low endemicity community in East Africa. Am J Trop Med Hyg 66:550–559PubMedGoogle Scholar
  44. 44.
    Söffner J, Wenk P (1985) Wirkung von Ivermectin auf die Verteilung der Mikrofilarien in den Organen und auf die Embryogenese bei der Baumwollrattenfilariae Litomosoides carinii (Nematoda: Filarioidea). Mitt Österr Tropenmed Parasit 7:229–234Google Scholar
  45. 45.
    Taubert A, Zahner H (2001) Cellular immune responses of filaria (Litomosoides sigmodontis) infected BALB/c mice detected on the level of cytokine transcription. Parasite Immunol 23:453–462CrossRefPubMedGoogle Scholar
  46. 46.
    Volkmann L, Saeftel M, Bain O, Fischer K, Fleischer B, Hoerauf A (2001) Interleukin-4 is essential for the control of microfilariae in murine infection with the filaria Litomosoides sigmodontis. Infect Immun 69:2950–2956CrossRefPubMedGoogle Scholar
  47. 47.
    Volkmann L, Bain O, Saeftel M, Specht S, Fischer K, Brombacher F, Matthaei KI, Hoerauf A (2003) Murine filariasis: interleukin 4 and interleukin 5 lead to containment of different worm developmental stages. Med Microbiol Immunol (Berl) 192:23–31Google Scholar
  48. 48.
    Wahl G, Georges AJ (1995) Current knowledge on the epidemiology, diagnosis, immunology, and treatment of loiasis. Trop Med Parasitol 46:287–291PubMedGoogle Scholar
  49. 49.
    Wanji S, Cabaret J, Gantier JC, Bonnand N, Bain O (1990) The fate of the filaria Monanema martini in two rodent hosts: recovery rate, migration, and localization. Ann Parasitol Hum Comp 65:80–88PubMedGoogle Scholar
  50. 50.
    Wanji S, Gantier JC, Petit G, Rapp J, Bain O (1994) Monanema martini in its murid hosts: microfiladermia related to infective larvae and adult filariae. Trop Med Parasitol 45:107-111PubMedGoogle Scholar
  51. 51.
    Weiss N (1978) Studies on Dipetalonema viteae (Filarioidea). I. Microfilaraemia in hamsters in relation to worm burden and humoral immune response. Acta Trop 35:137–150PubMedGoogle Scholar
  52. 52.
    Wenk P, Wegerhof PH (1982) Studies on acquired resistance of the cotton rat against microfilariae of Litomosoides carinii. 2. Injection of microfilariae during prepatency. Z Parasitenkd 68:321–329PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Simon Babayan
    • 1
    • 6
  • Tarik Attout
    • 1
  • Sabine Specht
    • 2
  • Achim Hoerauf
    • 2
    • 7
  • Georges Snounou
    • 3
  • Laurent Rénia
    • 4
  • Masataka Korenaga
    • 5
  • Odile Bain
    • 1
  • Coralie Martin
    • 1
    • 8
  1. 1.Parasitologie Comparée et Modèles expérimentaux associé à INSERM U567 et Ecole Pratique des Hautes EtudesMuséum National d’Histoire NaturelleParis Cedex 05France
  2. 2.Bernhard-Nocht-Institute of Tropical MedecineHamburgGermany
  3. 3.Unité de Parasitologie BiomédicaleInstitut PasteurParisFrance
  4. 4.Département d’Immunologie, Institut Cochin, INSERM U567, CNRS UMR 8104Université René Descartes, Hôpital CochinParisFrance
  5. 5.Department of ParasitologyKochi Medical SchoolNankoku CityJapan
  6. 6.Institute of Cell, Animal and Population BiologyUniversity of EdinburghEdinburghUK
  7. 7.Institute of Medical ParasitologyUniversity Clinic BonnBonnGermany
  8. 8.Leukocyte Biology Section, Division of Biomedical Sciences, Faculty of MedicineImperial College of Science, Technology and MedicineLondonUK

Personalised recommendations