Advertisement

Medical Microbiology and Immunology

, Volume 193, Issue 4, pp 219–226 | Cite as

An ospA-polymerase chain reaction/restriction fragment length polymorphism-based method for sensitive detection and reliable differentiation of all European Borrelia burgdorferi sensu lato species and OspA types

  • H. Michel
  • B. Wilske
  • G. Hettche
  • G. Göttner
  • C. Heimerl
  • U. Reischl
  • U. Schulte-Spechtel
  • V. Fingerle
Original Investigation

Abstract

We describe a sensitive and reliable method for detection and differentiation of the five relevant European Borrelia burgdorferi sensu lato species (B. burgdorferi sensu stricto, B. afzelii, B. garinii, B. valaisiana, and B. lusitaniae), based on a heminested ospA-PCR followed by restriction enzyme analysis. Sensitivity was one borrelia per PCR except for B. afzelii, where it was five per PCR. None of seven relapsing fever borreliae, eight Leptospira serovars or two Treponema species were amplified. Except B. garinii, each of the five B. burgdorferi s.l. species is represented by one or two characteristic restriction fragment length polymorphism (RFLP) patterns. Analysis of the heterogeneous group of B. garinii resulted in five different RFLP patterns, corresponding to the OspA types 3–7 associated with this species. In a pilot study on 529 Ixodes ricinus ticks from three different regions in Southern Germany, all species and OspA types were found except B. lusitaniae and B. garinii OspA type 7, arguing for a broad distribution of almost all OspA types. A further notable finding was the focal prevalence of OspA type 4, which has rarely been detected in ticks previously. Thus, the developed method provides a fast and simple tool for epidemiological studies on the heterogeneity of species and OspA types in Europe which has important implications for the development of vaccines and (microbiological) test systems for Europe.

Keywords

Borrelia burgdorferi OspA types Restriction fragment length polymorphism Ticks Polymerase chain reaction 

Notes

Acknowledgements

We are grateful to Cecilia Hizo-Teufel and Ruth Hillermann for excellent technical advice, and Jürgen Heesemann for generous support. V. Fingerle was supported by the Robert-Koch-Institut, grant no. ZV2-1369-338.

References

  1. 1.
    Assous MV, Postic D, Paul G, Nevot P, Baranton G (1993) Western blot analysis of sera from Lyme borreliosis patients according to the genomic species of the Borrelia strains used as antigens. Eur J Clin Microbiol Infect Dis 12:261–268PubMedGoogle Scholar
  2. 2.
    Balmelli T and Piffaretti JC (1995) Association between different clinical manifestations of Lyme disease and different species of Borrelia burgdorferi sensu lato. Res Microbiol 146:329–340CrossRefPubMedGoogle Scholar
  3. 3.
    Baranton G, Postic D, Saint-Girons I, Boerlin P, Piffaretti JC, Assous M Grimont PA (1992) Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and group VS461 associated with Lyme borreliosis. Int J Syst Bacteriol 42:378–383PubMedGoogle Scholar
  4. 4.
    Busch U, Hizo-Teufel C, Boehmer R, Fingerle V, Nitschko H, Wilske B, Preac-Mursic V (1996) Three species of Borrelia burgdorferi sensu lato (B. burgdorferi sensu stricto, B afzelii, and B. garinii) identified from cerebrospinal fluid isolates by pulsed-field gel electrophoresis and PCR. J Clin Microbiol 34:1072–1078PubMedGoogle Scholar
  5. 5.
    Busch U, Hizo-Teufel C, Bohmer R, Fingerle V, Rössler D, Wilske B, Preac-Mursic V (1996) Borrelia burgdorferi sensu lato strains isolated from cutaneous Lyme borreliosis biopsies differentiated by pulsed-field gel electrophoresis. Scand J Infect Dis 28:583–589PubMedGoogle Scholar
  6. 6.
    Canica MM, Nato F, du ML, Mazie JC, Baranton G, Postic D (1993) Monoclonal antibodies for identification of Borrelia afzelii sp. nov. associated with late cutaneous manifestations of Lyme borreliosis. Scand J Infect Dis 25:441–448PubMedGoogle Scholar
  7. 7.
    Dean AG, Dean JA, Coulombier D, Brendel KA, Smith DC, Burton AH, Dicker RC, Sullivan K, Fagan RF, Arner TG (1995) Epi Info, version 6: a word-processing, database, and statistics program for public health on IBM-compatible microcomputers. Center for Disease Control and Prevention, AtlantaGoogle Scholar
  8. 8.
    Dykhuizen DE, Polin DS, Dunn JJ, Wilske B, Preac-Mursic V, Dattwyler RJ, Luft BJ (1993) Borrelia burgdorferi is clonal: implications for taxonomy and vaccine development. Proc Natl Acad Sci USA 90:10163–10167PubMedGoogle Scholar
  9. 9.
    Eiffert H, Ohlenbusch A, Christen HJ, Thomssen R, Spielman A, Matuschka FR (1995) Nondifferentiation between Lyme disease spirochetes from vector ticks and human cerebrospinal fluid. J Infect Dis 171:476–479PubMedGoogle Scholar
  10. 10.
    Eiffert H, Karsten A, Thomssen R, Christen HJ (1998) Characterization of Borrelia burgdorferi strains in Lyme arthritis. Scand J Infect Dis 30:265–268CrossRefPubMedGoogle Scholar
  11. 11.
    Fikrig E, Barthold SW, Persing DH, Sun X, Kantor FS, Flavell RA (1992) Borrelia burgdorferi strain 25015: characterization of outer surface protein A and vaccination against infection. J Immunol 148:2256–2260PubMedGoogle Scholar
  12. 12.
    Fingerle V, Bergmeister H, Liegl G, Vanek E, Wilske B (1994) Prevalence of Borrelia burgdorferi sensu lato in Ixodes ricinus in Southern Germany. J Spiroch Tick Dis 1:41–45Google Scholar
  13. 13.
    Fingerle V, Munderloh UG, Liegl G, Wilske B (1999) Coexistence of ehrlichiae of the phagocytophila group with Borrelia burgdorferi in Ixodes ricinus from Southern Germany. Med Microbiol Immunol (Berl) 188:145–149CrossRefGoogle Scholar
  14. 14.
    Haff LA (1994) Improved quantitative PCR using nested primers. PCR Methods Appl 3:332–337PubMedGoogle Scholar
  15. 15.
    Hu CM, Wilske B, Fingerle V, Lobet Y, Gern L (2001) Transmission of Borrelia garinii OspA serotype 4 to BALB/c mice by Ixodes ricinus ticks collected in the field. J Clin Microbiol 39:1169–1171CrossRefPubMedGoogle Scholar
  16. 16.
    Hubalek Z, Halouzka J (1997) Distribution of Borrelia burgdorferi sensu lato genomic groups in Europe, a review. Eur J Epidemiol 13:951–957CrossRefPubMedGoogle Scholar
  17. 17.
    Johnson RC, Hyde FW, Rumpel CM (1984) Taxonomy of the Lyme disease spirochetes. Yale J Biol Med 57:529–537PubMedGoogle Scholar
  18. 18.
    Lebech AM, Hansen K, Rutledge BJ, Kolbert CP, Rys PN, Persing DH (1998) Diagnostic detection and direct genotyping of Borrelia burgdorferi regular by polymerase chain reaction in cerebrospinal fluid in Lyme neuroborreliosis. Mol Diagn 3:131–141PubMedGoogle Scholar
  19. 19.
    Liveris D, Gazumyan A, Schwartz I (1995) Molecular typing of Borrelia burgdorferi sensu lato by PCR-restriction fragment length polymorphism analysis. J Clin Microbiol 33:589–595PubMedGoogle Scholar
  20. 20.
    Liveris D, Varde S, Iyer R, Koenig S, Bittker S, Cooper D, McKenna D, Nowakowski J, Nadelman RB, Wormser GP, Schwartz I (1999) Genetic diversity of Borrelia burgdorferi in Lyme disease patients as determined by culture versus direct PCR with clinical specimens. J Clin Microbiol 37:565–569PubMedGoogle Scholar
  21. 21.
    Lovrich SD, Callister SM, Lim LC, Schell RF (1993) Seroprotective groups among isolates of Borrelia burgdorferi. Infect Immun 61:4367–4374PubMedGoogle Scholar
  22. 22.
    Lovrich SD, Callister SM, Lim LC, DuChateau BK, Schell RF (1994) Seroprotective groups of Lyme borreliosis spirochetes from North America and Europe. J Infect Dis 170:115–121PubMedGoogle Scholar
  23. 23.
    Lünemann JD, Zarmas S, Priem S, Franz J, Zschenderlein R, Aberer E, Klein R, Schouls L, Burmester GR, Krause A (2001) Rapid typing of Borrelia burgdorferi sensu lato species in specimens from patients with different manifestations of Lyme borreliosis. J Clin Microbiol 39:1130–1133PubMedGoogle Scholar
  24. 24.
    Marconi RT, Hohenberger S, Jauris-Heipke S, Schulte-Spechtel U, LaVoie CP, Rössler D, Wilske B (1999) Genetic analysis of Borrelia garinii OspA serotype 4 strains associated with neuroborreliosis: evidence for extensive genetic homogeneity. J Clin Microbiol 37:3965–3970PubMedGoogle Scholar
  25. 25.
    Moter SE, Hofmann H, Wallich R, Simon MM, Kramer MD (1994) Detection of Borrelia burgdorferi sensu lato in lesional skin of patients with erythema migrans and acrodermatitis chronica atrophicans by ospA-specific PCR. J Clin Microbiol 32:2980–2988PubMedGoogle Scholar
  26. 26.
    Nielsen SL, Young KK, Barbour AG (1990) Detection of Borrelia burgdorferi DNA by the polymerase chain reaction. Mol Cell Probes 4:73–79PubMedGoogle Scholar
  27. 27.
    Persing DH, Rutledge BJ, Rys PN, Podzorski DS, Mitchell PD, Reed KD, Liu B, Fikrig E, Malawista SE (1994) Target imbalance: disparity of Borrelia burgdorferi genetic material in synovial fluid from Lyme arthritis patients. J Infect Dis 169:668–672PubMedGoogle Scholar
  28. 28.
    Postic D, Assous MV, Grimont PA, Baranton G (1994) Diversity of Borrelia burgdorferi sensu lato evidenced by restriction fragment length polymorphism of rrf (5S)-rrl (23S) intergenic spacer amplicons. Int J Syst Bacteriol 44:743–752PubMedGoogle Scholar
  29. 29.
    Preac-Mursic V, Wilske B, Schierz G (1986) European Borrelia burgdorferi isolated from humans and ticks: culture conditions and antibiotic susceptibility. Zentralbl Bakteriol Mikrobiol Hyg [A] 263:112–118Google Scholar
  30. 30.
    Priem S, Rittig MG, Kamradt T, Burmester GR, Krause A (1997) An optimized PCR leads to rapid and highly sensitive detection of Borrelia burgdorferi in patients with Lyme borreliosis. J Clin Microbiol 35:685–690PubMedGoogle Scholar
  31. 31.
    Rauter C, Oehme R, Diterich I, Engele M, Hartung T (2002) Distribution of clinically relevant Borrelia genospecies in ticks assessed by a novel, single-run, real-time PCR. J Clin Microbiol 40:36–43CrossRefPubMedGoogle Scholar
  32. 32.
    Reimer B, Marschang A, Fingerle V, Wilske B, Sonnenburg F v, Hoecke C v (1999) Epidemiology of Lyme Borreliosis in South-Eastern Bavaria (Germany). Zentralbl Bakteriol 289:653–654Google Scholar
  33. 33.
    Rijpkema S, Golubic D, Molkenboer M, Verbeek-de Kruif N, Schellekens J (1996) Identification of four genomic groups of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in a Lyme borreliosis endemic region of northern Croatia. Exp Appl Acarol 20:23–30PubMedGoogle Scholar
  34. 34.
    Rijpkema SG, Molkenboer MJ, Schouls LM, Jongejan F, Schellekens JF (1995) Simultaneous detection and genotyping of three genomic groups of Borrelia burgdorferi sensu lato in Dutch Ixodes ricinus ticks by characterization of the amplified intergenic spacer region between 5S and 23S rRNA genes. J Clin Microbiol 33:3091–3095PubMedGoogle Scholar
  35. 35.
    Rijpkema SG, Tazelaar DJ, Molkenboer MJ, Noordhoek GT, Plantinga G, Schouls LM, Schellekens JF (1997) Detection of Borrelia afzelii, Borrelia burgdorferi sensu stricto, Borrelia garinii and group VS116 by PCR in skin biopsies of patients with erythema migrans and acrodermatitis chronica atrophicans. Clin Microbiol Infect 3:109–116PubMedGoogle Scholar
  36. 36.
    Rosa PA, Schwan T, Hogan D (1992) Recombination between genes encoding major outer surface proteins A and B of Borrelia burgdorferi. Mol Microbiol 6:3031–3040PubMedGoogle Scholar
  37. 37.
    Schaible UE, Wallich R, Kramer MD, Gern L, Anderson JF, Museteanu C, Simon MM (1993) Immune sera to individual Borrelia burgdorferi isolates or recombinant OspA thereof protect SCID mice against infection with homologous strains but only partially or not at all against those of different OspA/OspB genotype. Vaccine 11:1049–1054CrossRefPubMedGoogle Scholar
  38. 38.
    Steere AC, Sikand VK, Meurice F, Parenti DL, Fikrig E, Schoen RT, Nowakowski J, Schmid CH, Laukamp S, Buscarino C, Krause DS (1998) Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein A with adjuvant. Lyme Disease Vaccine Study Group. N Engl J Med 339:209–215CrossRefPubMedGoogle Scholar
  39. 39.
    Trebesius K, Teufel C, Fingerle V, Wilske B. (2000) Typing of Borrelia burgdorferi sensu lato isolates by restriction fragment lenght polymorphism of the ospA-gene. In: Böck A, Heesemann J, Schleifer KH, Wagner H (eds) Mivrobiology 2000: biospektrum. Spektrum Akademischer Verlag, Heidelberg, pp 14–15Google Scholar
  40. 40.
    Van Dam AP, Kuiper H, Vos K, Widjojokusumo A, Jongh BM de, Spanjaard L, Ramselaar AC, Kramer MD, Dankert J (1993) Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin Infect Dis 17:708–717PubMedGoogle Scholar
  41. 41.
    Vasiliu V, Herzer P, Rössler D, Lehnert G, Wilske B (1998) Heterogeneity of Borrelia burgdorferi sensu lato demonstrated by an ospA-type-specific PCR in synovial fluid from patients with Lyme arthritis. Med Microbiol Immunol (Berl) 187:97–102CrossRefGoogle Scholar
  42. 42.
    Wang G, Dam AP van, Le Fleche A, Postic D, Peter O, Baranton G, Boer R de, Spanjaard L, Dankert J (1997) Genetic and phenotypic analysis of Borrelia valaisiana sp. nov. (Borrelia genomic groups VS116 and M19). Int J Syst Bacteriol 47:926–932Google Scholar
  43. 43.
    Wang G, Dam AP van, Dankert J (1999) Phenotypic and genetic characterization of a novel Borrelia burgdorferi sensu lato isolate from a patient with lyme borreliosis. J Clin Microbiol 37:3025–3028PubMedGoogle Scholar
  44. 44.
    Wang G, Dam AP van, Schwartz I, Dankert J (1999) Molecular typing of Borrelia burgdorferi sensu lato: taxonomic, epidemiological, and clinical implications. Clin Microbiol Rev 12:633–653PubMedGoogle Scholar
  45. 45.
    Wang G, Dam AP van, Dankert J (2000) Two distinct ospA genes among Borrelia valaisiana strains. Res Microbiol 151:325–331PubMedGoogle Scholar
  46. 46.
    Will G, Jauris-Heipke S, Schwab E, Busch U, Rössler D, Soutschek E, Wilske B, Preac-Mursic V (1995) Sequence analysis of ospA genes shows homogeneity within Borrelia burgdorferi sensu stricto and Borrelia afzelii strains but reveals major subgroups within the Borrelia garinii species. Med Microbiol Immunol (Berl) 184:73–80Google Scholar
  47. 47.
    Wilske B (2002) Microbiological diagnosis in Lyme borreliosis. Int J Med Microbiol 291 Suppl 33:114–119Google Scholar
  48. 48.
    Wilske B, Steinhuber R, Bergmeister H, Fingerle V, Schierz G, Preac-Mursic V, Vanek E, Lorbeer B (1987) Lyme borreliosis in South Germany. Epidemiologic data on the incidence of cases and on the epidemiology of ticks (Ixodes ricinus) carrying Borrelia burgdorferi. Dtsch Med Wochenschr 112:1730–1736PubMedGoogle Scholar
  49. 49.
    Wilske B, Preac-Mursic V, Gobel UB, Graf B, Jauris S, Soutschek E, Schwab E, Zumstein G (1993) An OspA serotyping system for Borrelia burgdorferi based on reactivity with monoclonal antibodies and OspA sequence analysis. J Clin Microbiol 31:340–350PubMedGoogle Scholar
  50. 50.
    Wilske B, Busch U, Eiffert H, Fingerle V, Pfister HW, Rössler D, Preac-Mursic V (1996) Diversity of OspA and OspC among cerebrospinal fluid isolates of Borrelia burgdorferi sensu lato from patients with neuroborreliosis in Germany. Med Microbiol Immunol (Berl) 184:195–201Google Scholar
  51. 51.
    Wilske B, Busch U, Fingerle V, Jauris-Heipke S, Preac M, V, Rössler D, Will G (1996) Immunological and molecular variability of OspA and OspC. Implications for Borrelia vaccine development. Infection 24:208–212PubMedGoogle Scholar
  52. 52.
    Wilson SM, McNerney R, Nye PM, Godfrey-Faussett PD, Stocker NG, Voller A (1993) Progress toward a simplified PCR and its application to diagnosis of tuberculosis. J Clin Microbiol 31:776–782PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • H. Michel
    • 1
  • B. Wilske
    • 1
  • G. Hettche
    • 1
  • G. Göttner
    • 1
  • C. Heimerl
    • 1
  • U. Reischl
    • 2
  • U. Schulte-Spechtel
    • 1
  • V. Fingerle
    • 1
  1. 1.Max-von-Pettenkofer Institut für Hygiene und Medizinische Mikrobiologie, National Reference Centre for BorreliaeLudwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.Institut für Medizinische Mikrobiologie und HygieneUniversität RegensburgRegensburgGermany

Personalised recommendations