Medical Microbiology and Immunology

, Volume 193, Issue 2–3, pp 127–131 | Cite as

Virus-receptor interactions of coxsackie B viruses and their putative influence on cardiotropism

  • Hans-Christoph Selinka
  • Antje Wolde
  • Martina Sauter
  • Reinhard Kandolf
  • Karin Klingel
Original Investigation

Abstract

Specific virus-receptor interactions are important determinants in the pathogenesis of viral infections, influencing the location and initiation of primary infection as well as the viral spread to other target organs in the postviremic phase. Coxsackieviruses of group B (CVB) specifically interact with at least two receptor proteins, the coxsackievirus-adenovirus receptor (CAR) and the decay-accelerating factor (DAF), and cause a broad spectrum of diseases, including acute and chronic myocarditis. In the human heart, CAR is predominantly expressed in intercalated discs, regions of utmost importance for the functional integrity of the heart. Since DAF is abundantly expressed in epithelial and endothelial cells, interaction of cardiotropic CVB with the DAF coreceptor protein, in addition to CAR, could therefore be advantageous to the virus by enhancing viral entry into the heart.

Keywords

Coxsackie B viruses Virus-receptor interactions Coxsackievirus-adenovirus receptor Decay-accelerating factor Myocarditis Transcytosis 

Notes

Acknowledgements

We are grateful to Inge Wetzel for comments on the manuscript and Martin Sapp and Rolf Streeck for generous support. We also thank Jeff Bergelson for providing the CAR-specific antibody RmcB.

References

  1. 1.
    Barton ES, Forrest JC, Connolly JL, Chappell JD, Liu Y, Schnell FJ, Nusrat A, Parkos CA, Dermody TS (2001) Junction adhesion molecule is a receptor for reovirus. Cell 104:441–451PubMedGoogle Scholar
  2. 2.
    Bergelson, JM, Cunningham, JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwit, MS, Crowell RL, Finberg RW (1997) Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323PubMedGoogle Scholar
  3. 3.
    Bergelson, JM, Modlin JF, Wieland-Alter W, Cunningham JA, Crowell RL, Finberg RW (1997) Clinical coxsackievirus B isolates differ from laboratory strains in their interaction with two cell surface receptors. J Infect Dis 175:697–700PubMedGoogle Scholar
  4. 4.
    Carson, SD, Chapman, NN, Tracy SM (1997) Purification of the putative coxsackievirus B receptor from HeLa cells. Biochem Biophys Res Commun 233:325–328CrossRefPubMedGoogle Scholar
  5. 5.
    Cohen CJ, Shieh JTC, Pickles RJ, Okegawa T, Hsieh JT, Bergelson JM (2001) The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci USA 98:15191–15196CrossRefPubMedGoogle Scholar
  6. 6.
    Fotopoulos G, Harari A, Michetti P, Trono D, Pantaleo G, Kraehenbuhl JP (2002) Transepithelial transport of HIV-1 by M cells is receptor-mediated. Proc Natl Acad Sci USA 99:9410–9414CrossRefPubMedGoogle Scholar
  7. 7.
    Hovanessian AG, Puvion-Dutilleul F, Nisole S, Svab J, Perret E, Deng JS, Krust B (2000) The cell-surface expressed nucleolin is associated with the actin cytoskeleton. Exp Cell Res 261:312–328CrossRefPubMedGoogle Scholar
  8. 8.
    Huber, M, Selinka, H-C, Kandolf R (1997) Tyrosine phosphorylation events during coxsackievirus B3 replication. J Virol 71:595–600PubMedGoogle Scholar
  9. 9.
    Huber M, Watson KA, Selinka H-C, Carthy CM, Klingel K, McManus BM, Kandolf R (1999) Cleavage of RasGAP and phosphorylation of mitogen-activated protein kinase in the course of coxsackievirus B3 replication. J Virol 73:3587–3594PubMedGoogle Scholar
  10. 10.
    Ito M, Kodama M, Masuko M, Yamaura M, Fuse K, Uesugi Y, Hirono S, Okura Y, Kato K, Hotta Y, Honda T, Kuwano R, Aizawa Y (2000) Expression of coxsackievirus and adenovirus receptor in hearts of rats with experimental autoimmune myocarditis. Circ Res 86:275–280PubMedGoogle Scholar
  11. 11.
    Kandolf R, Klingel K, Zell R, Selinka H-C, Schneider-Brachert W, Bültmann B (1993) Molecular pathogenesis of enterovirus-induced myocarditis: Virus persistence and chronic inflammation. Intervirology 35:140–151PubMedGoogle Scholar
  12. 12.
    Klingel K, Rieger P, Mall G, Selinka H-C, Huber M, Kandolf R (1998) Visualization of enteroviral replication in myocardial tissue by ultrastructural in situ hybridization: identification of target cells and cytopathic effects. Lab Invest 78:1227–1237PubMedGoogle Scholar
  13. 13.
    Klingel K, Selinka H-C, Sauter M, Bock C-T, Szalay G, Kandolf R (2002) Molecular mechanisms in enterovirus- and parvovirus B19-associated myocarditis and inflammatory cardiomyopathy. Eur Heart J 4(Suppl I):8–12Google Scholar
  14. 14.
    Knowlton KU, Jeon E-S, Berkley N, Wessely R, Huber S (1996) A mutation in the puff region of VP2 attenuates the myocarditic phenotype of an infectious cDNA of the Woodruff variant of coxsackievirus B3. J Virol 70:7811–7818PubMedGoogle Scholar
  15. 15.
    Liu PP. Mason JW (2001) Advances in the understanding of myocarditis. Circulation 104:1076–1082PubMedGoogle Scholar
  16. 16.
    Luo H, Yanagawa B, Zhang J, Luo Z, Zhang M, Esfandiarei M, Wilson JE, Yang D, McManus BM (2002) Coxsackievirus B3 replication is reduced by inhibition of the extracellular signal-regulated kinase (ERK) signalling pathway. J Virol 76:3365–3373CrossRefPubMedGoogle Scholar
  17. 17.
    Martino TA, Liu P, Sole MJ (1994) Viral infection and the pathogenesis of dilated cardiomyopathy. Circ Res 74:182–188PubMedGoogle Scholar
  18. 18.
    Martino TA, Petric M, Brown M, Aitken K, Gauntt CJ, Richardson CD, Chow LH, Liu PP (1998) Cardiovirulent coxsackieviruses and the decay-accelerating factor (CD55) receptor. Virology 244:302–314CrossRefPubMedGoogle Scholar
  19. 19.
    Nisole S, Krust B, Hovanessian AG (2002) Anchorage of HIV on permissive cells leads to coaggregation of viral particles with surface nucleolin at membrane raft microdomains. Exp Cell Res 276:155–173CrossRefPubMedGoogle Scholar
  20. 20.
    Noutsias M, Fechner H, deJonge H, Wang X, Dekkers D, Houtsmuller AB, Pauschinger M, Bergelson JM, Warraich R, Yacoub M, Hetzer R, Lamers J, Schultheiss HP, Poller W (2001) Human coxsackie-adenovirus receptor is colocalized with integrins αvβ3 and αvβ5 on the cardiomyocyte sarcolemma and upregulated in dilated cardiomyopathy. Implications for cardiotropic viral infections. Circulation 104:275–280PubMedGoogle Scholar
  21. 21.
    Opavsky MA, Martino T, Rabinovitch M, Penninger J, Richardson C, Petric M, Trinidad C, Butcher L, Chan J, Liu PP (2002) Enhanced ERK-1/2 activation in mice susceptible to coxsackievirus-induced myocarditis. J Clin Invest 109:1561–1569CrossRefPubMedGoogle Scholar
  22. 22.
    Ouzilou L, Caliot E, Pelletier I, Prevost MC, Pringault E, Colbere-Garapin F (2002) Poliovirus transcytosis through M-like cells. J Gen Virol 83:2177–2182PubMedGoogle Scholar
  23. 23.
    Pasch A, Kuepper JH, Wolde A, Kandolf R, Selinka H-C (1999) Comparative analysis of virus-host cell interactions of haemagglutinating and non-haemagglutinating strains of coxsackievirus B3. J Gen Virol 80:3153–3158PubMedGoogle Scholar
  24. 24.
    Raab de Verdugo U, Selinka H-C, Huber M, Kramer B, Kellermann J, Hofschneider PH, Kandolf R (1995) Characterization of a 100-kd binding protein for the six serotypes of coxsackie B viruses. J Virol 69:6751–6757PubMedGoogle Scholar
  25. 25.
    Schmidtke M, Selinka H-C, Heim A, Jahn B, Tonew M, Kandolf R, Stelzner A, Zell R (2000) Attachment of coxsackievirus B3 variants to various cell lines: mapping of phenotypic differences to capsid protein VP1. Virology 275:77–88CrossRefPubMedGoogle Scholar
  26. 26.
    Selinka H-C, Wolde A, Pasch A, Klingel K, Schnorr JJ, Kupper JH, Lindberg AM, Kandolf R (2002) Comparative analysis of two coxsackievirus B3 strains: putative influence of virus-receptor interactions on pathogenesis. J Med Virol 67:224–233CrossRefPubMedGoogle Scholar
  27. 27.
    Shafren DR, Bates RC, Agrez MV, Herd RL, Burns GF, Barry RD (1995) Coxsackieviruses B1, B3, and B5 use decay-accelerating factor as a receptor for cell attachment. J Virol 69:3873–3877PubMedGoogle Scholar
  28. 28.
    Shieh JT, Bergelson JM (2002) Interaction with decay-accelerating factor facilitates coxsackievirus B infection of polarized epithelial cells. J Virol 76:9474–9480CrossRefPubMedGoogle Scholar
  29. 29.
    Tomko RP, Xu R, Philipson L (1997) HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA 94:3352–3356CrossRefPubMedGoogle Scholar
  30. 30.
    Tracy S, Höfling K, Pirrucello S, Lane PH, Reyna SM, Gauntt CJ (2000) Group B coxsackievirus myocarditis and pancreatitis: connection between viral virulence phenotypes in mice. J Med Virol 62:70–81CrossRefPubMedGoogle Scholar
  31. 31.
    Wolf JL, Rubin DH, Finberg R, Kauffman RS, Sharpe AH, Trier JS, Fields BN (1981) Intestinal M cells: a pathway for entry of reovirus into the host. Science 212:471–472PubMedGoogle Scholar
  32. 32.
    Zhang H, Blake NW, OuYang X, Pandolfino YA, Morgan-Capner P, Archard LC (1995) A single amino acid in the capsid protein VP1 of coxsackievirus B3 (CVB3) alters plaque phenotype in Vero cells but not cardiovirulence in a mouse model. Arch Virol 140:959–966PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Hans-Christoph Selinka
    • 1
    • 2
  • Antje Wolde
    • 2
  • Martina Sauter
    • 2
  • Reinhard Kandolf
    • 2
  • Karin Klingel
    • 2
  1. 1.Institut für Medizinische Mikrobiologie und HygieneJohannes-Gutenberg-Universität MainzMainzGermany
  2. 2.Molekulare Pathologie, Institut für PathologieUniversitätsklinikum TübingenTübingenGermany

Personalised recommendations