Skip to main content
Log in

Effective connectivity of brain networks controlling human thermoregulation

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Homeostatic centers in the mammalian brainstem are critical in responding to thermal challenges. These centers play a prominent role in human thermoregulation, but humans also respond to thermal challenges through behavior modification. Behavioral modifications are presumably sub served by interactions between the brainstem and interoceptive, cognitive and affective elements in human brain networks. Prior evidence suggests that interoceptive regions such as the insula, and cognitive/affective regions such as the orbitofrontal cortex and anterior cingulate cortex are crucial. Here we used dynamic causal modeling (DCM) to discover likely generative network architectures and estimate changes in the effective connectivity between nodes in a hierarchically organized thermoregulatory network (homeostatic–interoceptive–cognitive/affective). fMRI data were acquired while participants (N = 20) were subjected to a controlled whole body thermal challenge that alternatingly evoked sympathetic and parasympathetic responses. Using a competitive modeling framework (ten competing modeling architectures), we demonstrated that sympathetic responses (evoked by whole-body cooling) resulted in more complex network interactions along two ascending pathways: (i) homeostatic interoceptive and (ii) homeostatic cognitive/affective. Analyses of estimated connectivity coefficients demonstrated that sympathetic responses evoked greater network connectivity in key pathways compared to parasympathetic responses. These results reveal putative mechanisms by which human thermoregulatory networks evince a high degree of contextual sensitivity to thermoregulatory challenges. The patterns of the discovered interactions also reveal how information propagation from homeostatic regions to both interoceptive and cognitive/affective regions sub serves the behavioral repertoire that is an important aspect of thermoregulatory defense in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Code availability

Codes used in this study are available from the corresponding author on request.

References

  • Aertsen A, Preißl H (1991) Dynamics of activity and connectivity in physiological neuronal Networks. In: Schuster HG (ed) Non linear dynamics and neuronal networks. VCH Publishers, New York, pp 281–302

    Google Scholar 

  • Angilletta MJ Jr, Youngblood JP, Neel LK, VandenBrooks JM (2019) The neuroscience of adaptive thermoregulation. Neurosci Lett 692:127–136

    Article  CAS  PubMed  Google Scholar 

  • Azzi JC, Sirigu A, Duhamel JR (2012) Modulation of value representation by social context in the primate orbitofrontal cortex. Proc Natl Acad Sci USA 109(6):2126–2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbas H (2007) Flow of information for emotions through temporal and orbitofrontal pathways. J Anat 211(2):237–249

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrett LF, Simmons WK (2015) Interoceptive predictions in the brain. Nat Rev Neurosci 16(7):419–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett LF, Quigley KS, Bliss-Moreau E, Aronson KR (2004) Interoceptive sensitivity and self-reports of emotional experience. J Pers Soc Psychol. 87(5):684–697

    Article  PubMed  PubMed Central  Google Scholar 

  • Berridge KC, Kringelbach ML (2008) Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology 199(3):457–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botvinick MM, Nystrom LE, Fissell K, Carter CS, Cohen JD (1999) Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 402:179–180

    Article  CAS  PubMed  Google Scholar 

  • Bressler SL, Seth AK (2011) Wiener-Granger causality: a well established methodology. Neuroimage 58(2):323–329

    Article  PubMed  Google Scholar 

  • Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD (1998) Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280:747–749

    Article  CAS  PubMed  Google Scholar 

  • Cheshire WP Jr, Saper CB (2006) The insular cortex and cardiac response to stroke. Neurology 66(9):1296–1297

    Article  PubMed  Google Scholar 

  • Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3:655–666

    Article  CAS  PubMed  Google Scholar 

  • Craig AD (2005) Forebrain emotional asymmetry: a neuroanatomical basis? Trends Cogn Sci 9(12):566–571

    Article  PubMed  Google Scholar 

  • Craig AD (2009) How do you feel–now? The anterior insula and human awareness. Nat Rev Neurosci 10(1):59–70

    Article  CAS  PubMed  Google Scholar 

  • Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ (2004) Neural systems supporting interoceptive awareness. Nat Neurosci 7(2):189–195

    Article  CAS  PubMed  Google Scholar 

  • Damasio A, Carvalho GB (2013) The nature of feelings: evolutionary and neurobiological origins. Nat Rev Neurosci 14(2):143–152

    Article  CAS  PubMed  Google Scholar 

  • Daunizeau J, David O, Stephan KE (2011) Dynamic causal modelling: a critical review of the biophysical and statistical foundations. Neuroimage 58(2):312–322

    Article  CAS  PubMed  Google Scholar 

  • de Morree HM, Rutten GJ, Szabó BM, Sitskoorn MM, Kop WJ (2016) Effects of insula resection on autonomic nervous system activity. J Neurosurg Anesthesiol 28(2):153–158

    Article  PubMed  Google Scholar 

  • Diwadkar VA, Wadehra S, Pruitt P et al (2012) Disordered corticolimbic interactions during affective processing in children and adolescents at risk for schizophrenia revealed by functional magnetic resonance imaging and dynamic causal modeling. Arch Gen Psychiatry 69(3):231–242

    Article  PubMed  PubMed Central  Google Scholar 

  • Diwadkar VA, Murphy ER, Freedman RR (2014) Temporal sequencing of brain activations during naturally occurring thermoregulatory events. Cereb Cortex 24:3006–3013

    Article  PubMed  Google Scholar 

  • Du J, Rolls ET, Cheng W et al (2020) Functional connectivity of the orbitofrontal cortex, anterior cingulate cortex, and inferior frontal gyrus in humans. Cortex 123:185–199

    Article  PubMed  Google Scholar 

  • Edelman GM, Gally JA (2001) Degeneracy and complexity in biological systems. Proc Natl Acad Sci USA 98(24):13763–13768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans SS, Repasky EA, Fisher DT (2015) Fever and the thermal regulation of immunity: the immune system feels the heat. Nat Rev Immunol 15(6):335–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flouris AD (2011) Functional architecture of behavioural thermoregulation. Eur J Appl Physiol 111:1–8

    Article  PubMed  Google Scholar 

  • Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage 19(4):1273–1302

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ, Li B, Daunizeau J, Stephan KE (2011) Network discovery with DCM. Neuroimage 56(3):1202–1221

    Article  PubMed  Google Scholar 

  • Friston KJ, Shiner T, FitzGerald T et al (2012) Dopamine, affordance and active inference. PLoS Comput Biol 8(1):e1002327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallace A, Soravia G, Cattaneo Z, Moseley L, Vallar G (2014) Temporary interference over the posterior parietal cortices disrupts thermoregulatory control in humans. PLOS ONE 9(3):e88209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gordon CJ, Becker P, Ali JS (1998) Behavioral thermoregulatory responses of single- and group-housed mice. Physiol Behav 65(2):255–262

    Article  CAS  PubMed  Google Scholar 

  • Gross CT, Canteras NS (2012) The many paths to fear. Nat Rev Neurosci 13(9):651–658

    Article  CAS  PubMed  Google Scholar 

  • Gu X, Hof PR, Friston KJ, Fan J (2013) Anterior insular cortex and emotional awareness. J Comp Neurol 15:3371–3388

    Article  Google Scholar 

  • Harden LM, Kent S, Pittman QJ, Roth J (2015) Fever and sickness behavior: friend or foe? Brain Behav Immun 50:322–333

    Article  CAS  PubMed  Google Scholar 

  • Hodgdon JA, Hesslink RH, Hackney AC, Vickers RR, Hilbert RP (1991) Norwegian military field exercises in the arctic: cognitive and physical performance. Arctic Med Res 50:132–136

    PubMed  Google Scholar 

  • Huang Z, Zhang J, Wu J, Mashour GA, Hudetz AG (2020) Temporal circuit of macroscale dynamic brain activity supports human consciousness. Sci Adv 6(11):e0087

    Article  Google Scholar 

  • Jagtap P, Diwadkar VA (2016) Effective connectivity of ascending and descending frontalthalamic pathways during sustained attention: complex brain network interactions in adolescence. Hum Brain Mapp 37(7):2557–2570

    Article  PubMed  PubMed Central  Google Scholar 

  • Kasess CH, Stephan KE, Weissenbacher A, Pezawas L, Moser E, Windischberger C (2010) Multi-subject analyses with dynamic causal modeling. Neuroimage 49(4):3065–3074

    Article  PubMed  Google Scholar 

  • Klein JC, Rushworth MF, Behrens TE et al (2010) Topography of connections between human prefrontal cortex and mediodorsal thalamus studied with diffusion tractography. Neuroimage 51(2):555–564

    Article  PubMed  Google Scholar 

  • Kringelbach ML (2005) The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci 6(9):691–702

    Article  CAS  PubMed  Google Scholar 

  • Kringelbach ML, Rolls ET (2004) The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol 72(5):341–372

    Article  PubMed  Google Scholar 

  • Laland KN, Odling-Smee J, Feldman MW (2001) Cultural niche construction and human evolution. J Evol Biol 14(1):22–33

    Article  CAS  PubMed  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  CAS  PubMed  Google Scholar 

  • Leff AP, Schofield TM, Stephan KE, Crinion JT, Friston KJ, Price CJ (2008) The cortical dynamics of intelligible speech. J Neurosci 28(49):13209–13215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limanowski J, Friston K (2020) Active inference under visuo-proprioceptive conflict: Simulation and empirical results. Sci Rep 10(1):4010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453(7197):869–878

    Article  CAS  PubMed  Google Scholar 

  • Madden CJ, Morrison SF (2019) Central nervous system circuits that control body temperature. Neurosci Lett 696:225–232

    Article  CAS  PubMed  Google Scholar 

  • Mesulam MM (1998) From sensation to cognition. Brain 121(Pt 6):1013–1052

    Article  PubMed  Google Scholar 

  • Montalbano MJ, Tubbs SR (2018) Lateralization of the insular cortex. In: Turgut M, Yurttaş C, Tubbs R (eds) Island of reil (Insula) in the human brain. Springer, Cham, pp 129–132

    Chapter  Google Scholar 

  • Morrison SF (2016) Central control of body temperature. F1000Res 5:880

    Article  CAS  Google Scholar 

  • Morrison SF, Nakamura K, Madden CJ (2008) Central control of thermogenesis in mammals. Exp Physiol 93(7):773–797

    Article  PubMed  PubMed Central  Google Scholar 

  • Muzik O, Diwadkar VA (2016) In vivo correlates of thermoregulatory defense in humans: temporal course of sub-cortical and cortical responses assessed with fMRI. Hum Brain Mapp 37(9):3188–3202

    Article  PubMed  PubMed Central  Google Scholar 

  • Muzik O, Diwadkar VA (2017) Regulation of brown adipose tissue activity by interoceptive CNS pathways: the interaction between brain and periphery. Front Neurosci 11:640

    Article  PubMed  PubMed Central  Google Scholar 

  • Muzik O, Diwadkar VA (2019) Hierarchical control systems for the regulation of physiological homeostasis and affect: can their interactions modulate mood and anhedonia? Neurosci Biobehav Rev 105:251–261

    Article  PubMed  Google Scholar 

  • Muzik O, Reilly KT, Diwadkar VA (2018) “Brain over body”-a study on the willful regulation of autonomic function during cold exposure. Neuroimage 172:632–641

    Article  PubMed  Google Scholar 

  • Muzik O, Baajour S, Bressler S, Diwadkar VA (2020) Directional interactions between constituents of the human large-scale thermoregulatory network. Brain Topogr 33(4):489–503

    Article  PubMed  Google Scholar 

  • Nakamura K (2015) Neural circuit for psychological stress-induced hyperthermia. Temperature (austin) 2(3):352–361

    Article  Google Scholar 

  • Nakamura K, Morrison SF (2011) Central efferent pathways for cold-defensive and febrile shivering. J Physiol 589(Pt 14):3641–3658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ongür D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10(3):206–219

    Article  PubMed  Google Scholar 

  • Palinkas LA (2001) Mental and cognitive performance in the cold. Int J Circumpolar Health 60:430–439

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Friston K (2013) Structural and functional brain networks: from connections to cognition. Science 342(6158):1238411

    Article  PubMed  CAS  Google Scholar 

  • Paus T (2001) Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2(6):417–424

    Article  CAS  PubMed  Google Scholar 

  • Penny WD, Stephan KE, Mechelli A, Friston KJ (2004) Comparing dynamic causal models. Neuroimage 22(3):1157–1172

    Article  CAS  PubMed  Google Scholar 

  • Penny WD, Stephan KE, Daunizeau J et al (2010) Comparing families of dynamic causal models. PLoS Comput Biol 6(3):e1000709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petrovic P, Petersson KM, Ghatan PH, Stone-Elander S, Ingvar M (2000) Pain-related cerebral activation is altered by a distracting cognitive task. Pain 85(1–2):19–30

    Article  CAS  PubMed  Google Scholar 

  • Price CJ, Friston KJ (2002) Degeneracy and cognitive anatomy. Trends Cogn Sci 6(10):416–421

    Article  PubMed  Google Scholar 

  • Raftery A (1995) Bayesian model selection in social research. In: Marsden P (ed) Sociological methodology. American Sociological Association, Cambridge, pp 111–196

    Google Scholar 

  • Recordati G (2003) A thermodynamic model of the sympathetic and parasympathetic nervous systems. Auton Neurosci 103(1–2):1–12

    Article  PubMed  Google Scholar 

  • Rigoux L, Stephan KE, Friston KJ, Daunizeau J (2014) Bayesian model selection for group studies—revisited. Neuroimage 84:971–985

    Article  CAS  PubMed  Google Scholar 

  • Roberts AC (2006) Primate orbitofrontal cortex and adaptive behaviour. Trends Cogn Sci 10(2):83–90

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET (2010) The affective and cognitive processing of touch, oral texture, and temperature in the brain. Neurosci Biobehav Rev 34:237–245

    Article  PubMed  Google Scholar 

  • Rolls ET (2019) The cingulate cortex and limbic systems for emotion, action, and memory. Brain Struct Funct 224:3001–3018

    Article  PubMed  PubMed Central  Google Scholar 

  • Rolls ET, Grabenhorst F, Parris BA (2008) Warm pleasant feelings in the brain. Neuroimage 41:1504–1513

    Article  PubMed  Google Scholar 

  • Roy M, Shohamy D, Wager TD (2012) Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends Cogn Sci 16(3):147–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakurada S, Shido O, Sugimoto N, Hiratsuka Y, Yoda T, Kanosue K (2000) Autonomic and behavioral thermoregulation in starved rats. J Physiol 526:417–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satinoff E (1978) Neural organization and evolution of thermal regulation in mammals. Science (New York, NY) 201:16–22

    Article  CAS  Google Scholar 

  • Schlader ZJ, Vargas NT (2019) Regulation of body temperature by autonomic and behavioral thermoeffectors. Exerc Sport Sci Rev 47(2):116–126

    Article  PubMed  Google Scholar 

  • Schoenbaum G, Roesch MR, Stalnaker TA (2006) Orbitofrontal cortex, decision-making and drug addiction. Trends Neurosci 29(2):116–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenemann PT, Sheehan MJ, Glotzer LD (2005) Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat Neurosci 8(2):242–252

    Article  CAS  PubMed  Google Scholar 

  • Seghier ML, Friston KJ (2013) Network discovery with large DCMs. Neuroimage 68:181–191

    Article  PubMed  Google Scholar 

  • Seth AK (2013) Interoceptive inference, emotion, and the embodied self. Trends Cogn Sci 17(11):565–573

    Article  PubMed  Google Scholar 

  • Seth AK, Friston KJ (2016) Active interoceptive inference and the emotional brain. Philos Trans R Soc Lond B Biol Sci 371(1708):20160007

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva BA, Gross CT, Gräff J (2016) The neural circuits of innate fear: detection, integration, action, and memorization. Learn Mem 23(10):544–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverstein B, Bressler S, Diwadkar VA (2016) Inferring the disconnection syndrome in schizophrenia: Interpretational considerations on methods for the network analyses of fMRI data. Front Psychiatry 7:132

    Article  PubMed  PubMed Central  Google Scholar 

  • Stephan KE, Roebroeck A (2012) A short history of causal modeling of fMRI data. Neuroimage 62(2):856–863

    Article  PubMed  Google Scholar 

  • Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009) Bayesian model selection for group studies. Neuroimage 46(4):1004–1017

    Article  PubMed  Google Scholar 

  • Stephan KE, Penny WD, Moran RJ, den Ouden HE, Daunizeau J, Friston KJ (2010) Ten simple rules for dynamic causal modeling. Neuroimage 49(4):3099–3109

    Article  CAS  PubMed  Google Scholar 

  • Striedter GF, Belgard TG, Chen CC et al (2014) NSF workshop report: discovering general principles of nervous system organization by comparing brain maps across species. J Comp Neurol 522(7):1445–1453

    Article  PubMed  Google Scholar 

  • Strigo IA, Craig AD (2016) Interoception, homeostatic emotions and sympathovagal balance. Philos Trans R Soc Lond B Biol Sci 371(1708):20160010

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor L, Watkins SL, Marshall H, Dascombe BJ, Foster J (2016) The impact of different environmental conditions on cognitive function: a focused review. Front Physiol 6:372

    Article  PubMed  PubMed Central  Google Scholar 

  • Terrien J, Perret M, Aujard F (2011) Behavioral thermoregulation in mammals: a review. Front Biosci (landmark Ed) 16:1428–1444

    Article  Google Scholar 

  • Tipton MJ (2016) Environmental extremes: origins, consequences and amelioration in humans. Exp Physiol 101(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Turner R, Howseman A, Rees GE, Josephs O, Friston K (1998) Functional magnetic resonance imaging of the human brain: data acquisition and analysis. Exp Brain Res 123(1–2):5–12

    Article  CAS  PubMed  Google Scholar 

  • Wittling W (1997) The right hemisphere and the human stress response. Acta Physiol Scand Suppl 640:55–59

    CAS  PubMed  Google Scholar 

  • Xu X, Karis AJ, Buller MJ, Santee WR (2013) Relationship between core temperature, skin temperature, and heat flux during exercise in heat. Eur J Appl Physiol 113:2381–2389

    Article  PubMed  Google Scholar 

  • Yamakage M, Namiki A (2003) Deep temperature monitoring using a zero-heat-flow method. J Anesth 7:108–115

    Article  Google Scholar 

  • Zeidman P, Jafarian A, Corbin N, Seghier ML, Razi A, Price CJ, Friston KJ (2019) A guide to group effective connectivity analysis, part 1: first level analysis with DCM for fMRI. Neuroimage 15(200):174–190

    Article  Google Scholar 

Download references

Funding

This work did not receive project-specific funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto Muzik.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethics approval

This study was approved by the Wayne State University Institutional Review Board.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 487 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muzik, O., Baajour, S., Chowdury, A. et al. Effective connectivity of brain networks controlling human thermoregulation. Brain Struct Funct 227, 299–312 (2022). https://doi.org/10.1007/s00429-021-02401-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-021-02401-w

Keywords

Navigation