Advertisement

Brain Structure and Function

, Volume 225, Issue 1, pp 427–439 | Cite as

Diffusion magnetic resonance imaging-derived free water detects neurodegenerative pattern induced by interferon-γ

  • Marcelo FeboEmail author
  • Pablo D. Perez
  • Carolina Ceballos-Diaz
  • Luis M. Colon-Perez
  • Huadong Zeng
  • Edward Ofori
  • Todd E. Golde
  • David E. Vaillancourt
  • Paramita Chakrabarty
Original Article
  • 59 Downloads

Abstract

Imaging biomarkers for immune activation may be valuable for early-stage detection, therapeutic testing, and research on neurodegenerative conditions. In the present study, we determined whether diffusion magnetic resonance imaging-derived free water signal is a sensitive marker for neuroinflammatory effects of interferon-gamma (Ifn-γ). Neonatal wild-type mice were injected in the cerebral ventricles with recombinant adeno-associated viruses expressing the inflammatory cytokine Ifn-γ. Groups of mice expressing Ifn-γ and age-matched controls were imaged at 1, 5 and 8 months. Mice deficient in Ifngr1−/− and Stat1−/− were scanned at 5 months as controls for the signaling cascades activated by Ifn-γ. The results indicate that Ifn-γ affected fractional anisotropy (FA), mean diffusivity (MD), and free water (FW) in white matter structures, midline cortical areas, and medial thalamic areas. In these structures, FA and MD decreased progressively from 1 to 8 months of age, while FW increased significantly. The observed reductions in FA and MD and increased FW with elevated brain Ifn-γ was not observed in Ifngr1−/− or Stat1−/− mice. These results suggest that the observed microstructure changes involve the Ifn-gr1 and Stat1 signaling. Interestingly, increases in FW were observed in midbrain of Ifngr1−/− mice, which suggests alternative Ifn-γ signaling in midbrain. Although initial evidence is offered in relation to the sensitivity of the FW signal to neurodegenerative and/or inflammatory patterns specific to Ifn-γ, further research is needed to determine applicability and specificity across animal models of neuroinflammatory and degenerative disorders.

Keywords

Interferon gamma Diffusion MRI Free water White matter Aging Inflammation 

Notes

Acknowledgements

This work was supported by the National Institutes of Health (P50AG047266, R01NS052318, R01NS075012, T32NS082168, P50NS091856, 1R01AG055798). The authors thank the Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) facility and National High Magnetic Field Laboratory (NHMFL) for their continued support (National Science Foundation Cooperative Agreement No. DMR-1157490 and the State of Florida).

Author contributions

MF planned the experiments, imaged mice, analyzed data, and wrote the manuscript. PC planned the experiments, wrote the manuscript, injected neonatal mice, performed immunohistochemistry and analysis. CCD injected neonatal mice and performed immunohistochemistry. PDP planned experiments, imaged mice, contributed to manuscript writing and editing. EO made custom modifications to free water algorithm for mouse brain image analysis. LMCP carried out the free water correction processing on MATLAB, contributed to manuscript writing and editing. DEV made custom modifications to free water algorithm for mouse brain image analysis, provided overall support and contributed to manuscript writing and editing. TEG planned experiments, provided overall support and contributed to manuscript writing and editing.

Funding

This work was supported by the National Institutes of Health (P50AG047266, R01NS052318, R01NS075012, T32NS082168, P50NS091856, 1R01AG055798).

Compliance with ethical standards

Conflict of interest

Authors declare that they have no competing interests.

Ethics approval

All procedures received prior approval from the Institutional Animal Care and Use Committee of the University of Florida and follow all applicable NIH guidelines.

References

  1. Albi A, Pasternak O, Minati L, Marizzoni M, Bartres-Faz D, Bargallo N, Bosch B, Rossini PM, Marra C, Muller B, Fiedler U, Wiltfang J, Roccatagliata L, Picco A, Nobili FM, Blin O, Sein J, Ranjeva JP, Didic M, Bombois S, Lopes R, Bordet R, Gros-Dagnac H, Payoux P, Zoccatelli G, Alessandrini F, Beltramello A, Ferretti A, Caulo M, Aiello M, Cavaliere C, Soricelli A, Parnetti L, Tarducci R, Floridi P, Tsolaki M, Constantinidis M, Drevelegas A, Frisoni G, Jovicich J, PharmaCog C (2017) Free water elimination improves test-retest reproducibility of diffusion tensor imaging indices in the brain: a longitudinal multisite study of healthy elderly subjects. Hum Brain Mapp 38(1):12–26.  https://doi.org/10.1002/hbm.23350 CrossRefPubMedGoogle Scholar
  2. Assaf Y, Basser PJ (2005) Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. Neuroimage 27(1):48–58.  https://doi.org/10.1016/j.neuroimage.2005.03.042 CrossRefPubMedGoogle Scholar
  3. Ayers JI, Fromholt S, Sinyavskaya O, Siemienski Z, Rosario AM, Li A, Crosby KW, Cruz PE, DiNunno NM, Janus C, Ceballos-Diaz C, Borchelt DR, Golde TE, Chakrabarty P, Levites Y (2015) Widespread and efficient transduction of spinal cord and brain following neonatal AAV injection and potential disease modifying effect in ALS mice. Mol Ther 23(1):53–62.  https://doi.org/10.1038/mt.2014.180 CrossRefPubMedGoogle Scholar
  4. Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, Matthews PM, Brady JM, Smith SM (2003) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50(5):1077–1088.  https://doi.org/10.1002/mrm.10609 CrossRefPubMedGoogle Scholar
  5. Bergamino M, Pasternak O, Farmer M, Shenton ME, Hamilton JP (2016) Applying a free-water correction to diffusion imaging data uncovers stress-related neural pathology in depression. Neuroimage Clin 10:336–342.  https://doi.org/10.1016/j.nicl.2015.11.020 CrossRefPubMedGoogle Scholar
  6. Boska MD, Hasan KM, Kibuule D, Banerjee R, McIntyre E, Nelson JA, Hahn T, Gendelman HE, Mosley RL (2007) Quantitative diffusion tensor imaging detects dopaminergic neuronal degeneration in a murine model of Parkinson's disease. Neurobiol Dis 26(3):590–596.  https://doi.org/10.1016/j.nbd.2007.02.010 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Burciu RG, Ofori E, Archer DB, Wu SS, Pasternak O, McFarland NR, Okun MS, Vaillancourt DE (2017) Progression marker of Parkinson's disease: a 4-year multi-site imaging study. Brain 140(8):2183–2192.  https://doi.org/10.1093/brain/awx146 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Castano A, Herrera AJ, Cano J, Machado A (2002) The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone, and not mimicked by rh-TNF-alpha, IL-1beta and IFN-gamma. J Neurochem 81(1):150–157CrossRefGoogle Scholar
  9. Chakrabarty P, Ceballos-Diaz C, Lin WL, Beccard A, Jansen-West K, McFarland NR, Janus C, Dickson D, Das P, Golde TE (2011) Interferon-gamma induces progressive nigrostriatal degeneration and basal ganglia calcification. Nat Neurosci 14(6):694–696.  https://doi.org/10.1038/nn.2829 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chen G, Adleman NE, Saad ZS, Leibenluft E, Cox RW (2014) Applications of multivariate modeling to neuroimaging group analysis: a comprehensive alternative to univariate general linear model. Neuroimage 99:571–588.  https://doi.org/10.1016/j.neuroimage.2014.06.027 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen KC, Nicholson C (2000) Spatial buffering of potassium ions in brain extracellular space. Biophys J 78(6):2776–2797.  https://doi.org/10.1016/S0006-3495(00)76822-6 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Colon-Perez LM, Ibanez KR, Suarez M, Torroella K, Acuna K, Ofori E, Levites Y, Vaillancourt DE, Golde TE, Chakrabarty P, Febo M (2019) Neurite orientation dispersion and density imaging reveals white matter and hippocampal microstructure changes produced by Interleukin-6 in the TgCRND8 mouse model of amyloidosis. Neuroimage 202:116138.  https://doi.org/10.1016/j.neuroimage.2019.116138 CrossRefPubMedGoogle Scholar
  13. Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173CrossRefGoogle Scholar
  14. DeSimone JC, Febo M, Shukla P, Ofori E, Colon-Perez LM, Li Y, Vaillancourt DE (2016) In vivo imaging reveals impaired connectivity across cortical and subcortical networks in a mouse model of DYT1 dystonia. Neurobiol Dis 95:35–45.  https://doi.org/10.1016/j.nbd.2016.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  15. DeSimone JC, Pappas SS, Febo M, Burciu RG, Shukla P, Colon-Perez LM, Dauer WT, Vaillancourt DE (2017) Forebrain knock-out of torsinA reduces striatal free-water and impairs whole-brain functional connectivity in a symptomatic mouse model of DYT1 dystonia. Neurobiol Dis 106:124–132.  https://doi.org/10.1016/j.nbd.2017.06.015 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Durbin JE, Hackenmiller R, Simon MC, Levy DE (1996) Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84(3):443–450CrossRefGoogle Scholar
  17. Febo M, Foster TC (2016) Preclinical magnetic resonance imaging and spectroscopy studies of memory, aging, and cognitive decline. Front Aging Neurosci 8:158.  https://doi.org/10.3389/fnagi.2016.00158 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ferris CF, Kulkarni P, Toddes S, Yee J, Kenkel W, Nedelman M (2014) Studies on the Q175 knock-in model of Huntington's disease using functional imaging in awake mice: evidence of olfactory dysfunction. Front Neurol 5:94.  https://doi.org/10.3389/fneur.2014.00094 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hoy AR, Ly M, Carlsson CM, Okonkwo OC, Zetterberg H, Blennow K, Sager MA, Asthana S, Johnson SC, Alexander AL, Bendlin BB (2017) Microstructural white matter alterations in preclinical Alzheimer's disease detected using free water elimination diffusion tensor imaging. PLoS One 12(3):e0173982.  https://doi.org/10.1371/journal.pone.0173982 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Huang S, Hendriks W, Althage A, Hemmi S, Bluethmann H, Kamijo R, Vilcek J, Zinkernagel RM, Aguet M (1993) Immune response in mice that lack the interferon-gamma receptor. Science (New York, NY) 259(5102):1742–1745CrossRefGoogle Scholar
  21. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2):825–841CrossRefGoogle Scholar
  22. Ji F, Pasternak O, Liu S, Loke YM, Choo BL, Hilal S, Xu X, Ikram MK, Venketasubramanian N, Chen CL, Zhou J (2017) Distinct white matter microstructural abnormalities and extracellular water increases relate to cognitive impairment in Alzheimer's disease with and without cerebrovascular disease. Alzheimers Res Ther 9(1):63.  https://doi.org/10.1186/s13195-017-0292-4 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Khairnar A, Ruda-Kucerova J, Drazanova E, Szabo N, Latta P, Arab A, Hutter-Paier B, Havas D, Windisch M, Sulcova A, Starcuk Z Jr, Kiraly A, Rektorova I (2015) Late-stage alpha-synuclein accumulation in TNWT-61 mouse model of Parkinson's disease detected by diffusion kurtosis imaging. J Neurochem.  https://doi.org/10.1111/jnc.13500 CrossRefPubMedGoogle Scholar
  24. Liscovitch N, French L (2014) Differential co-expression between alpha-Synuclein and IFN-gamma signaling genes across development and in Parkinson's disease. PLoS One 9(12):e115029.  https://doi.org/10.1371/journal.pone.0115029 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Maier-Hein KH, Westin CF, Shenton ME, Weiner MW, Raj A, Thomann P, Kikinis R, Stieltjes B, Pasternak O (2015) Widespread white matter degeneration preceding the onset of dementia. Alzheimers Dement 11(5):485–493.  https://doi.org/10.1016/j.jalz.2014.04.518 CrossRefPubMedGoogle Scholar
  26. Metzler-Baddeley C, O'Sullivan MJ, Bells S, Pasternak O, Jones DK (2012) How and how not to correct for CSF-contamination in diffusion MRI. Neuroimage 59(2):1394–1403.  https://doi.org/10.1016/j.neuroimage.2011.08.043 CrossRefPubMedGoogle Scholar
  27. Ofori E, Krismer F, Burciu RG, Pasternak O, McCracken JL, Lewis MM, Du G, McFarland NR, Okun MS, Poewe W, Mueller C, Gizewski ER, Schocke M, Kremser C, Li H, Huang X, Seppi K, Vaillancourt DE (2017) Free water improves detection of changes in the substantia nigra in parkinsonism: a multisite study. Mov Disord 32(10):1457–1464.  https://doi.org/10.1002/mds.27100 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ofori E, Pasternak O, Planetta PJ, Burciu R, Snyder A, Febo M, Golde TE, Okun MS, Vaillancourt DE (2015a) Increased free water in the substantia nigra of Parkinson's disease: a single-site and multi-site study. Neurobiol Aging 36(2):1097–1104.  https://doi.org/10.1016/j.neurobiolaging.2014.10.029 CrossRefPubMedGoogle Scholar
  29. Ofori E, Pasternak O, Planetta PJ, Li H, Burciu RG, Snyder AF, Lai S, Okun MS, Vaillancourt DE (2015b) Longitudinal changes in free-water within the substantia nigra of Parkinson's disease. Brain 138(Pt 8):2322–2331.  https://doi.org/10.1093/brain/awv136 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pasternak O, Koerte IK, Bouix S, Fredman E, Sasaki T, Mayinger M, Helmer KG, Johnson AM, Holmes JD, Forwell LA, Skopelja EN, Shenton ME, Echlin PS (2014) Hockey Concussion Education Project, Part 2 Microstructural white matter alterations in acutely concussed ice hockey players: a longitudinal free-water MRI study. J Neurosurg 120(4):873–881.  https://doi.org/10.3171/2013.12.JNS132090 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Pasternak O, Kubicki M, Shenton ME (2016) In vivo imaging of neuroinflammation in schizophrenia. Schizophr Res 173(3):200–212.  https://doi.org/10.1016/j.schres.2015.05.034 CrossRefPubMedGoogle Scholar
  32. Pasternak O, Sochen N, Gur Y, Intrator N, Assaf Y (2009) Free water elimination and mapping from diffusion MRI. Magn Reson Med 62(3):717–730.  https://doi.org/10.1002/mrm.22055 CrossRefPubMedGoogle Scholar
  33. Pasternak O, Westin CF, Bouix S, Seidman LJ, Goldstein JM, Woo TU, Petryshen TL, Mesholam-Gately RI, McCarley RW, Kikinis R, Shenton ME, Kubicki M (2012) Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset. J Neurosci 32(48):17365–17372.  https://doi.org/10.1523/JNEUROSCI.2904-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Planetta PJ, Ofori E, Pasternak O, Burciu RG, Shukla P, DeSimone JC, Okun MS, McFarland NR, Vaillancourt DE (2016) Free-water imaging in Parkinson's disease and atypical parkinsonism. Brain 139(Pt 2):495–508.  https://doi.org/10.1093/brain/awv361 CrossRefPubMedGoogle Scholar
  35. Rusakov DA, Kullmann DM (1998) A tortuous and viscous route to understanding diffusion in the brain. Trends Neurosci 21(11):469–470CrossRefGoogle Scholar
  36. Sahara N, Perez PD, Lin WL, Dickson DW, Ren Y, Zeng H, Lewis J, Febo M (2014) Age-related decline in white matter integrity in a mouse model of tauopathy: an in vivo diffusion tensor magnetic resonance imaging study. Neurobiol Aging 35(6):1364–1374.  https://doi.org/10.1016/j.neurobiolaging.2013.12.009 CrossRefPubMedGoogle Scholar
  37. Saxena S, Caroni P (2011) Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 71(1):35–48.  https://doi.org/10.1016/j.neuron.2011.06.031 CrossRefPubMedGoogle Scholar
  38. Schwartz M, Deczkowska A (2016) Neurological disease as a failure of brain-immune crosstalk: the multiple faces of neuroinflammation. Trends Immunol 37(10):668–679.  https://doi.org/10.1016/j.it.2016.08.001 CrossRefPubMedGoogle Scholar
  39. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–219.  https://doi.org/10.1016/j.neuroimage.2004.07.051 CrossRefPubMedGoogle Scholar
  40. Strickland MR, Koller EJ, Deng DZ, Ceballos-Diaz C, Golde TE, Chakrabarty P (2017) Ifngr1 and Stat1 mediated canonical Ifn-gamma signaling drives nigrostriatal degeneration. Neurobiol Dis 110:133–141.  https://doi.org/10.1016/j.nbd.2017.11.007 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Vorisek I, Hajek M, Tintera J, Nicolay K, Sykova E (2002) Water ADC, extracellular space volume, and tortuosity in the rat cortex after traumatic injury. Magn Reson Med 48(6):994–1003.  https://doi.org/10.1002/mrm.10305 CrossRefPubMedGoogle Scholar
  42. Wyss-Coray T (2016) Ageing, neurodegeneration and brain rejuvenation. Nature 539(7628):180–186.  https://doi.org/10.1038/nature20411 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128.  https://doi.org/10.1016/j.neuroimage.2006.01.015 CrossRefPubMedGoogle Scholar
  44. Zaitout Z, Romanowski C, Karunasaagarar K, Connolly D, Batty R (2014) A review of pathologies associated with high T1W signal intensity in the basal ganglia on magnetic resonance imaging. Pol J Radiol 79:126–130.  https://doi.org/10.12659/PJR.890043 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC (2012) NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4):1000–1016.  https://doi.org/10.1016/j.neuroimage.2012.03.072 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Marcelo Febo
    • 1
    • 2
    • 5
    • 6
    Email author
  • Pablo D. Perez
    • 1
  • Carolina Ceballos-Diaz
    • 2
    • 3
  • Luis M. Colon-Perez
    • 1
  • Huadong Zeng
    • 5
  • Edward Ofori
    • 4
  • Todd E. Golde
    • 2
    • 3
    • 6
  • David E. Vaillancourt
    • 4
    • 5
    • 6
  • Paramita Chakrabarty
    • 2
    • 3
    • 6
  1. 1.Department of Psychiatry, College of MedicineUniversity of FloridaGainesvilleUSA
  2. 2.Department of Neuroscience, College of MedicineUniversity of FloridaGainesvilleUSA
  3. 3.Center for Translational Research in Neurodegenerative Diseases, College of MedicineUniversity of FloridaGainesvilleUSA
  4. 4.Department of Applied Physiology and Kinesiology, College of Health and Human PerformanceUniversity of FloridaGainesvilleUSA
  5. 5.Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) Facility, College of MedicineUniversity of FloridaGainesvilleUSA
  6. 6.McKnight Brain Institute, College of MedicineUniversity of FloridaGainesvilleUSA

Personalised recommendations