Advertisement

Social hierarchy regulates ocular dominance plasticity in adult male mice

  • Jenny Balog
  • Franziska Hintz
  • Marcel Isstas
  • Manuel Teichert
  • Christine Winter
  • Konrad LehmannEmail author
Original Article
  • 39 Downloads

Abstract

We here show that social rank, as assessed by competition for a running wheel, influences ocular dominance plasticity in adult male mice. Dominant animals showed a clear ocular dominance shift after 4 days of MD, whereas their submissive cagemates did not. NMDA receptor activation, reduced GABA inhibition, and serotonin transmission were necessary for this plasticity, but not sufficient to explain the difference between dominant and submissive animals. In contrast, prefrontal dopamine concentration was higher in dominant than submissive mice, and systemic manipulation of dopamine transmission bidirectionally changed ocular dominance plasticity. Thus, we could show that a social hierarchical relationship influences ocular dominance plasticity in the visual cortex via higher-order cortices, most likely the medial prefrontal cortex. Further studies will be needed to elucidate the precise mechanisms by which this regulation takes place.

Keywords

Social dominance status Ocular dominance plasticity Primary visual cortex Medial prefrontal cortex Optical imaging Serotonin GABA NMDAR Dopamine 

Notes

Acknowledgements

We are obliged to Prof. Jürgen Bolz for constant support and helpful discussion. Thanks are further due to Elisabeth Meier for excellent technical assistance and Sandra Eisenberg for animal care. Finally, we wish to thank Dr. John O’Ball for proof-reading the manuscript. Jenny Balog was supported by a Landesgraduiertenstipendium during the preparation of this study.

Compliance with ethical standards

Conflict of interest

The authors are not aware of any competing interests that could compromise their research or its presentation.

References

  1. Balog J, Matthies U, Naumann L, Voget M, Winter C, Lehmann K (2014) Social experience modulates ocular dominance plasticity differentially in adult male and female mice. Neuroimage 103:454–461.  https://doi.org/10.1016/j.neuroimage.2014.08.040 CrossRefPubMedGoogle Scholar
  2. Baroncelli L, Sale A, Viegi A, Maya Vetencourt JF, De Pasquale R, Baldini S, Maffei L (2010) Experience-dependent reactivation of ocular dominance plasticity in the adult visual cortex. Exp Neurol 226:100–109CrossRefGoogle Scholar
  3. Bell R, Hobson H (1994) 5-HT1A receptor influences on rodent social and agonistic behavior: a review and empirical study. Neurosci Biobehav Rev 18:325–338CrossRefGoogle Scholar
  4. Berger B, Thierry AM, Tassin JP, Moyne MA (1976) Dopaminergic innervation of the rat prefrontal cortex: a fluorescence histochemical study. Brain Res 106:133–145CrossRefGoogle Scholar
  5. Blanchard DC, Spencer RL, Weiss SM, Blanchard RJ, McEwen B, Sakai RR (1995) Visible burrow system as a model of chronic social stress: behavioral and neuroendocrine correlates. Psychoneuroendocrinology 20:117–134CrossRefGoogle Scholar
  6. Cang J, Kalatsky VA, Löwel S, Stryker MP (2005) Optical imaging of the intrinsic signal as a measure of cortical plasticity in the mouse. Vis Neurosci 22:685–691CrossRefGoogle Scholar
  7. Colas-Zelin D, Light KR, Kolata S, Wass C, Denman-Brice A, Rios C, Szalk K, Matzel LD (2012) The imposition of, but not the propensity for, social subordination impairs exploratory behaviors and general cognitive abilities. Behav Brain Res 232(1):294–305CrossRefGoogle Scholar
  8. Desjardins JK, Fernald RD (2008) How do social dominance and social information influence reproduction and the brain? Integr Comp Biol 48:596–603.  https://doi.org/10.1093/icb/icn089 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Enard W, Gehre S, Hammerschmidt K, Hölter SM, Blass T, Somel M, Brückner MK, Schreiweis C, Winter C, Sohr R, Becker L, Wiebe V, Nickel B, Giger T, Müller U, Groszer M, Adler T, Aguilar A, Bolle I, Calzada-Wack J, Dalke C, Ehrhardt N, Favor J, Fuchs H, Gailus-Durner V, Hans W, Hölzlwimmer G, Javaheri A, Kalaydjiev S, Kallnik M, Kling E, Kunder S, Mossbrugger I, Naton B, Racz I, Rathkolb B, Rozman J, Schrewe A, Busch DH, Graw J, Ivandic B, Klingenspor M, Klopstock T, Ollert M, Quintanilla-Martinez L, Schulz H, Wolf E, Wurst W, Zimmer A, Fisher SE, Morgenstern R, Arendt T, de Angelis MH, Fischer J, Schwarz J, Pääbo S (2009) A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137:961–971.  https://doi.org/10.1016/j.cell.2009.03.041 CrossRefPubMedGoogle Scholar
  10. Felice LJ, Felice JD, Kissinger PT (1978) Determination of catecholamines in rat brain parts by reverse-phase ion-pair liquid chromatography. J Neurochem 31:1461–1465CrossRefGoogle Scholar
  11. Fitchett AE, Collins SA, Barnard CJ, Cassaday HJ (2005) Subordinate male mice show long-lasting differences in spatial learning that persist when housed alone. Neurobiol Learn Mem 84:247–251CrossRefGoogle Scholar
  12. Fletcher A, Forster EA, Bill DJ, Brown G, Cliffe IA, Hartley JE, Jones DE, McLenachan A, Stanhope KJ, Critchley DJ, Childs KJ, Middlefell VC, Lanfumey L, Corradetti R, Laporte AM, Gozlan H, Hamon M, Dourish CT (1996) Electrophysiological, biochemical, neurohormonal and behavioural studies with WAY-100635, a potent, selective and silent 5-HT1A receptor antagonist. Behav Brain Res 73:337–353CrossRefGoogle Scholar
  13. Forster EA, Cliffe IA, Bill DJ, Dover GM, Jones D, Reilly Y, Fletcher A (1995) A pharmacological profile of the selective silent 5-HT1A receptor antagonist, WAY-100635. Eur J Pharmacol 281:81–88CrossRefGoogle Scholar
  14. Gagolewicz PJ, Dringenberg HC (2016) Age-dependent switch of the role of serotonergic 5-HT1A receptors in gating long-term potentiation in rat visual cortex in vivo. Neural Plast 2016:6404082.  https://doi.org/10.1155/2016/6404082 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Giovanoli S, Engler H, Engler A, Richetto J, Voget M, Willi R, Winter C, Riva MA, Mortensen PB, Feldon J, Schedlowski M, Meyer U (2013) Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice. Science 339:1095–1099.  https://doi.org/10.1126/science.1228261 CrossRefPubMedGoogle Scholar
  16. Goeckner DJ, Greenough WT, Mead WR (1973) Deficits in learning tasks following chronic overcrowding in rats. J Pers Soc Psychol 28:256–261CrossRefGoogle Scholar
  17. Gordon JA, Stryker MP (1996) Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J Neurosci 16:3274–3286CrossRefGoogle Scholar
  18. Hanover JL, Huang ZJ, Tonegawa S, Stryker MP (1999) Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex. J Neurosci 19:RC40CrossRefGoogle Scholar
  19. Harauzov A, Spolidoro M, DiCristo G, De Pasquale R, Cancedda L, Pizzorusso T, Viegi A, Berardi N, Maffei L (2010) Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. J Neurosci 30:361–371.  https://doi.org/10.1523/JNEUROSCI.2233-09.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  20. He HY, Hodos W, Quinlan EM (2006) Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex. J Neurosci 26:2951–2955CrossRefGoogle Scholar
  21. He HY, Ray B, Dennis K, Quinlan EM (2007) Experience-dependent recovery of vision following chronic deprivation amblyopia. Nat Neurosci 10:1134–1136CrossRefGoogle Scholar
  22. Huang ZJ, Kirkwood A, Pizzorusso T, Porciatti V, Morales B, Bear MF, Maffei L, Tonegawa S (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98:739–755CrossRefGoogle Scholar
  23. Jetz W, Rubenstein DR (2011) Environmental uncertainty and the global biogeography of cooperative breeding in birds. Curr Biol 21:72–78.  https://doi.org/10.1016/j.cub.2010.11.075 CrossRefPubMedGoogle Scholar
  24. Kalatsky VA, Stryker MP (2003) New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neuron 38(4):529–545CrossRefGoogle Scholar
  25. Kalogeraki E, Greifzu F, Haack F, Löwel S (2014) Voluntary physical exercise promotes ocular dominance plasticity in adult mouse primary visual cortex. J Neurosci 34(46):15476–15481CrossRefGoogle Scholar
  26. Kalogeraki E, Pielecka-Fortuna J, Hüppe JM, Löwel S (2016) Physical exercise preserves adult visual plasticity in mice and restores it after a stroke in the somatosensory cortex. Front Aging Neurosci 8:212CrossRefGoogle Scholar
  27. Kalogeraki E, Pielecka-Fortuna J, Löwel S (2017) Environmental enrichment accelerates ocular dominance plasticity in mouse visual cortex whereas transfer to standard cages resulted in a rapid loss of increased plasticity. PLoS One 12:e0186999.  https://doi.org/10.1371/journal.pone.0186999 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kalsbeek A, Buijs RM, Hofman MA, Matthijssen MA, Pool CW, Uylings HB (1987) Effects of neonatal thermal lesioning of the mesocortical dopaminergic projection on the development of the rat prefrontal cortex. Brain Res 429:123–132CrossRefGoogle Scholar
  29. Kaneko M, Stryker MP (2014) Sensory experience during locomotion promotes recovery of function in adult visual cortex. Elife 3:e02798.  https://doi.org/10.7554/eLife.02798 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kappel S, Hawkins P, Mendl MT (2017) To group or not to group? Good practice for housing male laboratory mice. Animals (Basel).  https://doi.org/10.3390/ani7120088 CrossRefPubMedCentralGoogle Scholar
  31. Kar F, Whiting MJ, Noble DWA (2017) Dominance and social information use in a lizard. Anim Cogn 20:805–812.  https://doi.org/10.1007/s10071-017-1101-y CrossRefPubMedGoogle Scholar
  32. Kingsbury L, Huang S, Wang J, Gu K, Golshani P, Wu YE, Hong W (2019) Correlated neural activity and encoding of behavior across brains of socially interacting animals. Cell 178:429–446.e16.  https://doi.org/10.1016/j.cell.2019.05.022 CrossRefPubMedGoogle Scholar
  33. Koda K, Ago Y, Cong Y, Kita Y, Takuma K, Matsuda T (2010) Effects of acute and chronic administration of atomoxetine and methylphenidate on extracellular levels of noradrenaline, dopamine and serotonin in the prefrontal cortex and striatum of mice. J Neurochem 114:259–270.  https://doi.org/10.1111/j.1471-4159.2010.06750.x CrossRefPubMedGoogle Scholar
  34. Lehmann K (2010) Gemeinsamkeiten und Unterschiede in der Entwicklungsplastizität von assoziativen und primärsensorischen Kortexgebieten. Habilitationsschrift, Friedrich Schiller-Universität JenaGoogle Scholar
  35. Lehmann K, Löwel S (2008) Age-dependent ocular dominance plasticity in adult mice. PLoS One 3:e3120CrossRefGoogle Scholar
  36. Lehmann K, Schmidt KF, Löwel S (2012) Vision and visual plasticity in ageing mice. Restor Neurol Neurosci 30:161–178.  https://doi.org/10.3233/RNN-2012-110192 CrossRefPubMedGoogle Scholar
  37. Liang B, Zhang L, Barbera G, Fang W, Zhang J, Chen X, Chen R, Li Y, Lin DT (2018) Distinct and dynamic ON and OFF neural ensembles in the prefrontal cortex code social exploration. Neuron 100:700–714.e9.  https://doi.org/10.1016/j.neuron.2018.08.043 CrossRefPubMedGoogle Scholar
  38. Malatynska E, Goldenberg R, Shuck L, Haque A, Zamecki P, Crites G, Schindler N, Knapp RJ (2002) Reduction of submissive behavior in rats: a test for antidepressant drug activity. Pharmacology 64:8–17CrossRefGoogle Scholar
  39. Manzaneque JM, Navarro JF (1999) An ethopharmacological assessment of the effects of zuclopenthixol on agonistic interactions in male mice. Methods Find Exp Clin Pharmacol 21:11–15CrossRefGoogle Scholar
  40. Matthies U, Balog J, Lehmann K (2013) Temporally coherent visual stimuli boost ocular dominance plasticity. J Neurosci 33:11774–11778.  https://doi.org/10.1523/JNEUROSCI.4262-12.2013 CrossRefPubMedGoogle Scholar
  41. Matzel LD, Kolata S, Light K, Sauce B (2017) The tendency for social submission predicts superior cognitive performance in previously isolated male mice. Behav Process 134:12–21.  https://doi.org/10.1016/j.beproc.2016.07.011 CrossRefGoogle Scholar
  42. Maya Vetencourt JF, Sale A, Viegi A, Baroncelli L, De Pasquale R, O’Leary OF, Castrén E, Maffei L (2008) The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 320:385–388CrossRefGoogle Scholar
  43. Maya Vetencourt JF, Tiraboschi E, Spolidoro M, Castrén E, Maffei L (2011) Serotonin triggers a transient epigenetic mechanism that reinstates adult visual cortex plasticity in rats. Eur J Neurosci 33:49–57.  https://doi.org/10.1111/j.1460-9568.2010.07488.x CrossRefPubMedGoogle Scholar
  44. McKittrick CR, Blanchard DC, Blanchard RJ, McEwen BS, Sakai RR (1995) Serotonin receptor binding in a colony model of chronic social stress. Biol Psychiatry 37:383–393CrossRefGoogle Scholar
  45. McKittrick CR, Magariños AM, Blanchard DC, Blanchard RJ, McEwen BS, Sakai RR (2000) Chronic social stress reduces dendritic arbors in CA3 of hippocampus and decreases binding to serotonin transporter sites. Synapse 36:85–94CrossRefGoogle Scholar
  46. Meijer JH, Robbers Y (2014) Wheel running in the wild. Proc Biol Sci.  https://doi.org/10.1098/rspb.2014.0210 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Miura H, Ozaki N, Shirokawa T, Isobe K (2008) Changes in brain tryptophan metabolism elicited by ageing, social environment, and psychological stress in mice. Stress 11:160–169.  https://doi.org/10.1080/10253890701685908 CrossRefPubMedGoogle Scholar
  48. Morgan D, Grant KA, Gage HD, Mach RH, Kaplan JR, Prioleau O, Nader SH, Buchheimer N, Ehrenkaufer RL, Nader MA (2002) Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Nat Neurosci 5:169–174CrossRefGoogle Scholar
  49. Murugan M, Jang HJ, Park M, Miller EM, Cox J, Taliaferro JP, Parker NF, Bhave V, Hur H, Liang Y, Nectow AR, Pillow JW, Witten IB (2017) Combined social and spatial coding in a descending projection from the prefrontal cortex. Cell 171:1663–1677.e16.  https://doi.org/10.1016/j.cell.2017.11.002 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Nguyen HN, Huppé-Gourgues F, Vaucher E (2015) Activation of the mouse primary visual cortex by medial prefrontal subregion stimulation is not mediated by cholinergic basalo-cortical projections. Front Syst Neurosci 9:1.  https://doi.org/10.3389/fnsys.2015.00001.eCollection CrossRefPubMedPubMedCentralGoogle Scholar
  51. Noudoost B, Moore T (2011) Control of visual cortical signals by prefrontal dopamine. Nature 474:372–375.  https://doi.org/10.1038/nature09995 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Olsson IA, Sherwin CM (2006) Behaviour of laboratory mice in different housing conditions when allowed to self-administer an anxiolytic. Lab Anim 40:392–399CrossRefGoogle Scholar
  53. Paxinos G, Franklin K (2012) The mouse brain in stereotaxic coordinates, 4th edn. Academic, San DiegoGoogle Scholar
  54. Peyron C, Petit JM, Rampon C, Jouvet M, Luppi PH (1998) Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience 82:443–468CrossRefGoogle Scholar
  55. Philpot BD, Espinosa JS, Bear MF (2003) Evidence for altered NMDA receptor function as a basis for metaplasticity in visual cortex. J Neurosci 23:5583–5588CrossRefGoogle Scholar
  56. Prabhu VV, Nguyen TB, Cui Y, Oh YE, Lee KH, Bagalkot TR, Chung YC (2018) Effects of social defeat stress on dopamine D2 receptor isoforms and proteins involved in intracellular trafficking. Behav Brain Funct 14:16.  https://doi.org/10.1186/s12993-018-0148-5 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ranson A, Cheetham CE, Fox K, Sengpiel F (2012) Homeostatic plasticity mechanisms are required for juvenile, but not adult, ocular dominance plasticity. Proc Natl Acad Sci USA 109:1311–1316.  https://doi.org/10.1073/pnas.1112204109 CrossRefPubMedGoogle Scholar
  58. Sale A, Maya Vetencourt JF, Medini P, Cenni MC, Baroncelli L, De Pasquale R, Maffei L (2007) Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. Nat Neurosci 10:679–681 (epub 2007 Apr 29) CrossRefGoogle Scholar
  59. Sarna JR, Dyck RH, Whishaw IQ (2000) The Dalila effect: C57BL6 mice barber whiskers by plucking. Behav Brain Res 108:39–45CrossRefGoogle Scholar
  60. Sato M, Stryker MP (2008) Distinctive features of adult ocular dominance plasticity. J Neurosci 28:10278–10286.  https://doi.org/10.1523/JNEUROSCI.2451-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sawtell NB, Frenkel MY, Philpot BD, Nakazawa K, Tonegawa S, Bear MF (2003) NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38:977–985CrossRefGoogle Scholar
  62. Sbragaglia V, Leiva D, Arias A, Antonio García J, Aguzzi J, Breithaupt T (2017) Fighting over burrows: the emergence of dominance hierarchies in the Norway lobster (Nephrops norvegicus). J Exp Biol 220:4624–4633.  https://doi.org/10.1242/jeb.165969 CrossRefPubMedGoogle Scholar
  63. Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290:213–242CrossRefGoogle Scholar
  64. Sperk G (1982) Simultaneous determination of serotonin, 5-hydroxindoleacetic acid, 3,4-dihydroxyphenylacetic acid and homovanillic acid by high performance liquid chromatography with electrochemical detection. J Neurochem 38:840–843CrossRefGoogle Scholar
  65. Sperk G, Berger M, Hörtnagl H, Hornykiewicz O (1981) Kainic acid-induced changes of serotonin and dopamine metabolism in the striatum and substantia nigra of the rat. Eur J Pharmacol 74:279–286CrossRefGoogle Scholar
  66. Spolidoro M, Sale A, Berardi N, Maffei L (2009) Plasticity in the adult brain: lessons from the visual system. Exp Brain Res 192:335–341.  https://doi.org/10.1007/s00221-008-1509-3 CrossRefPubMedGoogle Scholar
  67. Spolidoro M, Baroncelli L, Putignano E, Maya-Vetencourt JF, Viegi A, Maffei L (2011) Food restriction enhances visual cortex plasticity in adulthood. Nat Commun 2:320.  https://doi.org/10.1038/ncomms1323 CrossRefPubMedGoogle Scholar
  68. Spritzer MD, Meikle DB, Solomon NG (2004) The relationship between dominance rank and spatial ability among male meadow voles (Microtus pennsylvanicus). J Comp Psychol 118(3):332–339CrossRefGoogle Scholar
  69. Stears K, Kerley GI, Shrader AM (2014) Group-living herbivores weigh up food availability and dominance status when making patch-joining decisions. PLoS One 9:e109011.  https://doi.org/10.1371/journal.pone.0109011 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Stodieck SK, Greifzu F, Goetze B, Schmidt KF, Löwel S (2014) Brief dark exposure restored ocular dominance plasticity in aging mice and after a cortical stroke. Exp Gerontol 60:1–11.  https://doi.org/10.1016/j.exger.2014.09.007 CrossRefPubMedGoogle Scholar
  71. Teichert M, Bolz J (2017) Simultaneous intrinsic signal imaging of auditory and visual cortex reveals profound effects of acute hearing loss on visual processing. Neuroimage 159:459–472.  https://doi.org/10.1016/j.neuroimage.2017.07.037 CrossRefPubMedGoogle Scholar
  72. Teichert M, Isstas M, Wenig S, Setz C, Lehmann K, Bolz J (2018a) Cross-modal refinement of visual performance after brief somatosensory deprivation in adult mice. Eur J Neurosci 47:184–191.  https://doi.org/10.1111/ejn.13798 CrossRefPubMedGoogle Scholar
  73. Teichert M, Isstas M, Zhang Y, Bolz J (2018b) Cross-modal restoration of ocular dominance plasticity in adult mice. Eur J Neurosci 47:1375–1384.  https://doi.org/10.1111/ejn.13944 CrossRefPubMedGoogle Scholar
  74. Teichert M, Isstas M, Wieske F, Winter C, Bolz J (2018c) Cross-modal restoration of juvenile-like ocular dominance plasticity after increasing GABAergic inhibition. Neuroscience 393:1–11.  https://doi.org/10.1016/j.neuroscience.2018.09.040 CrossRefPubMedGoogle Scholar
  75. Vázquez-Borsetti P, Cortés R, Artigas F (2009) Pyramidal neurons in rat prefrontal cortex projecting to ventral tegmental area and dorsal raphe nucleus express 5-HT2A receptors. Cereb Cortex 19:1678–1686.  https://doi.org/10.1093/cercor/bhn204 CrossRefPubMedGoogle Scholar
  76. Villarreal DM, Do V, Haddad E, Derrick BE (2002) NMDA receptor antagonists sustain LTP and spatial memory: active processes mediate LTP decay. Nat Neurosci 5:48–52CrossRefGoogle Scholar
  77. Wang F, Zhu J, Zhu H, Zhang Q, Lin Z, Hu H (2011) Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex. Science 334:693–697.  https://doi.org/10.1126/science.1209951 CrossRefPubMedGoogle Scholar
  78. Wang F, Kessels HW, Hu H (2014) The mouse that roared: neural mechanisms of social hierarchy. Trends Neurosci 37:674–682.  https://doi.org/10.1016/j.tins.2014.07.005 CrossRefPubMedGoogle Scholar
  79. Wang J, Yuan J, Pang J, Ma J, Han B, Geng Y, Shen L, Wang H, Ma Q, Wang Y, Wang M (2016) Effects of chronic stress on cognition in male SAMP8 mice. Cell Physiol Biochem 39:1078–1086.  https://doi.org/10.1159/000447816 CrossRefPubMedGoogle Scholar
  80. Wass C, Sauce B, Pizzo A, Matzel LD (2018) Dopamine D1 receptor density in the mPFC responds to cognitive demands and receptor turnover contributes to general cognitive ability in mice. Sci Rep 8:4533.  https://doi.org/10.1038/s41598-018-22668-0 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Winter C, Djodari-Irani A, Sohr R, Morgenstern R, Feldon J, Juckel G, Meyer U (2009) Prenatal immune activation leads to multiple changes in basal neurotransmitter levels in the adult brain: implications for brain disorders of neurodevelopmental origin such as schizophrenia. Int J Neuropsychopharmacol 12:513–524CrossRefGoogle Scholar
  82. Winterfeld KT, Teuchert-Noodt G, Dawirs RR (1998) Social environment alters both ontogeny of dopamine innervation of the medial prefrontal cortex and maturation of working memory in gerbils (Meriones unguiculatus). J Neurosci Res 52:201–209CrossRefGoogle Scholar
  83. Yamaguchi Y, Lee YA, Kato A, Goto Y (2017) The roles of dopamine D1 receptor on the social hierarchy of rodents and nonhuman primates. Int J Neuropsychopharmacol 20(4):324–335.  https://doi.org/10.1093/ijnp/pyw106 CrossRefPubMedGoogle Scholar
  84. Zhang S, Xu M, Kamigaki T, Hoang Do JP, Chang WC, Jenvay S, Miyamichi K, Luo L, Dan Y (2014) Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345:660–665.  https://doi.org/10.1126/science.1254126 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Zhang S, Xu M, Chang WC, Ma C, Hoang Do JP, Jeong D, Lei T, Fan JL, Dan Y (2016) Organization of long-range inputs and outputs of frontal cortex for top-down control. Nat Neurosci 19:1733–1742.  https://doi.org/10.1038/nn.4417 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Allgemeine Zoologie and TierphysiologieFriedrich Schiller-Universität JenaJenaGermany
  2. 2.Department of Psychiatry and PsychotherapyCharité University Medicine BerlinBerlinGermany
  3. 3.GSI Helmholtzzentrum für Schwerionenforschung GmbH, Abteilung BiophysikDarmstadtGermany

Personalised recommendations