Advertisement

The expression of DARPP-32 in adult male zebra finches (Taenopygia guttata)

  • Utkarsha A. Singh
  • Soumya IyengarEmail author
Original Article

Abstract

Although the catecholaminergic circuitry in the zebra finch brain has been well studied, there is little information regarding the postsynaptic targets of dopamine. To answer this question, we looked at overall patterns of immunoreactivity for DARPP-32 (a dopamine and cAMP-regulated phosphoprotein, present mostly in dopaminoceptive neurons) in adult male zebra finches. Our results demonstrated that as in mammals and other avian species, DARPP-32 expression was highest in both medial and lateral striatum. Interestingly, a specific pattern of immunoreactivity was observed in the song control system, with ‘core’ song control regions, that is, LMANcore (lateral magnocellular nucleus of the anterior nidopallium), RA (nucleus robustus arcopallialis) and HVC being less immunoreactive for DARPP-32 than ‘shell’ areas such as LMANshell, RAcup, AId (intermediate arcopallium) and HVCshelf. Our results suggest that whereas dopamine may modulate the shell pathways at various levels of the AFP, dopaminergic modulation of the core pathway occurs mainly through Area X, a basal ganglia nucleus. Further, secondary sensory cortices including the perientopallial belt, Fields L1 and L3 had higher DARPP-32-immunoreactivity than primary sensory cortical areas such as the pallial basolateral nucleus, entopallium proper and Field L2, corresponding to somatosensory, visual and auditory systems, respectively. We also found DARPP-32-rich axon terminals surrounding dopaminergic neurons in the ventral tegmental area–substantia nigra complex which in turn project to the striatum, suggesting that there may be a reciprocal modulation between these regions. Overall, DARPP-32 expression appears to be higher in areas involved in integrating sensory information, which further supports the role of this protein as a molecular integrator of different signal processing pathways.

Keywords

DARPP-32 Dopamine Core and shell regions Anterior forebrain pathway Vocal motor pathway Zebra finch 

Abbreviations

A

Arcopallium

Ac

Nucleus accumbens

AId

Intermediate arcopallium

AL

Nucleus ansa lenticularis

APHI

Intermediate parahippocampal area

APHM

Medial parahippocampal area

APHL

Lateral parahippocampal area

AVT

Area ventralis tegmenti

Bas

Nucleus Basolateralis pallii

BSTL

Lateral bed nucleus of stria terminalis

BSTMpa

Medial bed nucleus of stria terminalis (pallidal)

BSTMpo

Medial bed nucleus of stria terminalis (preoptic)

CDL

Dorsolateral corticoid area

CeOv

Oval central nucleus

CO

Chiasma opticum

CoA

Commisura anterior

CP

Commisura posterior

DAPI

4, 6-Diamidino-2-phenylindole

DARPP-32

Dopamine and cAMP regulated phosphoprotein Mr 32 kDa

DM

Dorsomedial nucleus

DG

Dentate gyrus

DLA

Nucleus dorsolateralis anterior thalami

DLL

Nucleus dorsolateralis anterior thalami pars lateralis

DLM

Nucleus dorsolateralis anterior thalami pars medialis

DLMDL

Nucleus dorsolateralis anterior thalami pars medialis (dorso lateral)

DLMVM

Nucleus dorsolateralis anterior thalami pars medialis (ventro medial)

DMP

Nucleus dorsomedialis posterior thalami

DSD

Decussatio supraoptica dorsalis

E

Entopallium

Ep

Perientopallial belt

FA

Tractus fronto arcopallialis

FPL

Fasciculus prosencephali lateralis (lateral forebrain bundle)

GCt

Griseum centrale

GLV

Nucleus geniculatus lateralis, pars ventralis

GP

Globus pallidus

HA

Hyperpallium apicale

HB

Habenula

HD

Hyperpallium densocellulare

Hi

Hippocampus

Hi2

Hippocampal area 2

Hp

Hippocampus proper

HVC

Used as a formal name

ICo

Nucleus intercollicularis

IHA

Interstitial hyperpallium apicale

Imc

Nucleus isthmi, pars magnocellularis

INP

Intrapeduncular nucleus

Ipc

Nucleus isthmi, pars parvocellularis

ITCv

Intercalated cell-like patches (ventral)

L

Auditory area, field L

L1

Secondary auditory region; part of field L complex

L2a

Subdivision of field L complex; part of L2

L2b

Subdivision of field L complex; part of L2

L3

Secondary auditory region; part of field L complex

LA

Nucleus Lateralis anterior thalami

LAD

Lamina arcopallialis dorsalis

LaM

Lamina mesopallialis

LFM

Lamina frontalis suprema

LFS

Lamina frontalis superior

LM

Nucleus lentiformis mesencephali

LMANc

Lateral magnocellular nucleus of the anterior nidopallium core

LMANs

Lateral magnocellular nucleus of the anterior nidopallium shell

LPS

Lamina pallio-subpallialis

LSt

Lateral striatum

M

Mesopallium

MeA

Medial amygdala

MLd

Nucleus mesencepalicus lateralis, pars dorsalis

MLdi

Nucleus mesencepalicus lateralis, pars dorsalis (internal)

MLdo

Nucleus mesencepalicus lateralis, pars dorsalis (outer)

MMAN

Medial nucleus of the anterior nidopallium

MSt

Medial striatum

MVL

Formal name, located in the mesopallium

N

Nidopallium

NA

Nucleus angularis

Nc

Caudal nidopallium

NIII

Nervus oculomotorius

NL

Nucleus laminaris

NM

Nucleus magnocellularis

OM

Tractus occipito-mesencephalicus

OMd

Nucleus nervi oculomotorii, pars dorsalis

OV

Nucleus ovoidalis

POC

Commisural part of preoptic area

PrV

Nucleus sensorius principalis nervi trigemini

Pt

Pretectal nucleus

PVN

Paraventricular nucleus

RA

Nucleus robustus arcopallii

Rt

Nucleus rotundus

S

Septum

SGP

Substantia grisea et fibrosa periventriculare

SL

Lateral septal nucleus

SLu

Nucleus semilunaris

SM

Medial septal nucleus

SN

Substantia nigra

SpA

Subpallial amygdala

SPL

Nucleus spiriformis lateralis

TeO

Tectum opticum

TFM

Tractus thalamo-frontalis et frontalis-thalamicus

TH

Tyrosine hydroxylase

TnA(p)

Nucleus taeniae of amygdala

TrO

Tractus opticus

TrSM

Tractus septopalliomesencephalicus

UVA

Nucleus uvaeformis

V

Ventricle

VeL

Lateral vestibular nucleus

VeM

Medial vestibular nucleus

VMHl

Ventromedial hypothalamus (lateral)

VMHm

Ventromedial hypothalamus (medial)

VP

Ventral pallidum

VTA

Ventral tegmental area

X

Area X, a basal ganglia song control nucleus

Notes

Acknowledgements

This study was funded partly by a Grant from the Department of Science and Technology, India to SI (EMR/2015/001422) and partly by core funds from NBRC. The authors also wish to acknowledge the support of facilities provided through the Distributed Information Centre at NBRC, Manesar, under the aegis of the Biotechnology Information System Network (BTISNET) grant, DBT, India.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study were approved by the Institutional Animal Ethics Committee at the National Brain Research Centre, Manesar, India (NBRC/IAEC/2013/85), which are in accordance with the guidelines of Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), India.

Supplementary material

429_2019_1947_MOESM1_ESM.tif (99.6 mb)
Supplementary Figure: Lack of immunoreactivity for DARPP-32 in a section used as a negative control. The section was incubated in the blocking serum (normal goat serum) instead of the primary antibody. Scale bar, 1 mm. (TIFF 101,995 kb)

References

  1. Abellan A, Desfilis E, Medina L (2014) Combinatorial expression of Lef1, Lhx2, Lhx5, Lhx9, Lmo3, Lmo4, and Prox1 helps to identify comparable subdivisions in the developing hippocampal formation of mouse and chicken. Front Neuroanat 8:59.  https://doi.org/10.3389/fnana.2014.00059 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Absil P, Foidart A, Hemmings HC Jr, Steinbusch HW, Ball GF, Balthazart J (2001) Distribution of DARPP-32 immunoreactive structures in the quail brain: anatomical relationship with dopamine and aromatase. J Chem Neuroanat 21:23–39CrossRefPubMedGoogle Scholar
  3. Achiro JM, Shen J, Bottjer SW (2017) Neural activity in cortico-basal ganglia circuits of juvenile songbirds encodes performance during goal-directed learning. eLife.  https://doi.org/10.7554/elife.26973 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Amin N, Gill P, Theunissen FE (2010) Role of the zebra finch auditory thalamus in generating complex representations for natural sounds. J Neurophysiol 104:784–798.  https://doi.org/10.1152/jn.00128.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Anderson KD, Reiner A (1991) Immunohistochemical localization of DARPP-32 in striatal projection neurons and striatal interneurons: implications for the localization of D1-like dopamine receptors on different types of striatal neurons. Brain Res 568:235–243CrossRefPubMedGoogle Scholar
  6. Aronov D, Andalman AS, Fee MS (2008) A specialized forebrain circuit for vocal babbling in the juvenile songbird. Science 320:630–634.  https://doi.org/10.1126/science.1155140 CrossRefPubMedGoogle Scholar
  7. Atoji Y, Wild JM (2004) Fiber connections of the hippocampal formation and septum and subdivisions of the hippocampal formation in the pigeon as revealed by tract tracing and kainic acid lesions. J Comp Neurol 475:426–461.  https://doi.org/10.1002/cne.20186 CrossRefPubMedGoogle Scholar
  8. Atoji Y, Wild JM, Yamamoto Y, Suzuki Y (2002) Intratelencephalic connections of the hippocampus in pigeons (Columba livia). J Comp Neurol 447:177–199.  https://doi.org/10.1002/cne.10239 CrossRefPubMedGoogle Scholar
  9. Atoji Y, Sarkar S, Wild JM (2016) Proposed homology of the dorsomedial subdivision and V-shaped layer of the avian hippocampus to Ammon’s horn and dentate gyrus, respectively. Hippocampus 26:1608–1617.  https://doi.org/10.1002/hipo.22660 CrossRefPubMedGoogle Scholar
  10. Atoji Y, Sarkar S, Wild JM (2018) Differential projections of the densocellular and intermediate parts of the hyperpallium in the pigeon (Columba livia). J Comp Neurol 526:146–165.  https://doi.org/10.1002/cne.24328 CrossRefPubMedGoogle Scholar
  11. Bagnoli P, Burkhalter A (1983) Organization of the afferent projections to the Wulst in the pigeon. J Comp Neurol 214:103–113.  https://doi.org/10.1002/cne.902140111 CrossRefPubMedGoogle Scholar
  12. Bailhache T, Balthazart J (1993) The catecholaminergic system of the quail brain: immunocytochemical studies of dopamine beta-hydroxylase and tyrosine hydroxylase. J Comp Neurol 329:230–256.  https://doi.org/10.1002/cne.903290206 CrossRefPubMedGoogle Scholar
  13. Balint E, Kitka T, Zachar G, Adam A, Hemmings HC Jr, Csillag A (2004) Abundance and location of DARPP-32 in striato-tegmental circuits of domestic chicks. J Chem Neuroanat 28:27–36.  https://doi.org/10.1016/j.jchemneu.2004.05.006 CrossRefPubMedGoogle Scholar
  14. Bateup HS et al (2010) Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proc Natl Acad Sci USA 107:14845–14850.  https://doi.org/10.1073/pnas.1009874107 CrossRefPubMedGoogle Scholar
  15. Bertran-Gonzalez J, Bosch C, Maroteaux M, Matamales M, Herve D, Valjent E, Girault JA (2008) Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J Neurosci 28:5671–5685.  https://doi.org/10.1523/jneurosci.1039-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bischof HJ, Watanabe S (1997) On the structure and function of the tectofugal visual pathway in laterally eyed birds. Eur J Morphol 35:246–254CrossRefPubMedGoogle Scholar
  17. Bottjer SW (1993) The distribution of tyrosine hydroxylase immunoreactivity in the brains of male and female zebra finches. J Neurobiol 24:51–69.  https://doi.org/10.1002/neu.480240105 CrossRefPubMedGoogle Scholar
  18. Bottjer SW, Altenau B (2010) Parallel pathways for vocal learning in basal ganglia of songbirds. Nat Neurosci 13:153–155.  https://doi.org/10.1038/nn.2472 CrossRefPubMedGoogle Scholar
  19. Bottjer SW, Miesner EA, Arnold AP (1984) Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science 224:901–903CrossRefPubMedGoogle Scholar
  20. Bottjer SW, Halsema KA, Brown SA, Miesner EA (1989) Axonal connections of a forebrain nucleus involved with vocal learning in zebra finches. J Comp Neurol 279:312–326.  https://doi.org/10.1002/cne.902790211 CrossRefPubMedGoogle Scholar
  21. Bouille C, Bayle JD (1975) Influence of septal nuclei on basal pituitary-adrenocortical function in birds. Neuroendocrinology 18:281–289.  https://doi.org/10.1159/000122409 CrossRefPubMedGoogle Scholar
  22. Burley NT, Hamedani E, Symanski C (2018) Mate choice decision rules: trait synergisms and preference shifts. Ecol Evolut 8:2380–2394.  https://doi.org/10.1002/ece3.3831 CrossRefGoogle Scholar
  23. Csillag A, Balint E, Adam A, Zachar G (2008) The organisation of the basal ganglia in the domestic chick (Gallus domesticus): anatomical localisation of DARPP-32 in relation to glutamate. Brain Res Bull 76:183–191.  https://doi.org/10.1016/j.brainresbull.2008.02.025 CrossRefPubMedGoogle Scholar
  24. De Olmos JS, Beltramino AC, Alheid G (2004) Amygdala and extended amygdala of the rat: a cytoarchitectonical, fibroarchitectonical, and chemoarchitectonical survey. Rat Nervous Syst.  https://doi.org/10.1016/b978-012547638-6/50020-1 CrossRefGoogle Scholar
  25. Durand SE, Tepper JM, Cheng MF (1992) The shell region of the nucleus ovoidalis: a subdivision of the avian auditory thalamus. J Comp Neurol 323:495–518.  https://doi.org/10.1002/cne.903230404 CrossRefPubMedGoogle Scholar
  26. Durstewitz D, Kroner S, Hemmings HC Jr, Gunturkun O (1998) The dopaminergic innervation of the pigeon telencephalon: distribution of DARPP-32 and co-occurrence with glutamate decarboxylase and tyrosine hydroxylase. Neuroscience 83:763–779CrossRefPubMedGoogle Scholar
  27. Elliott KC, Wu W, Bertram R, Hyson RL, Johnson F (2017) Orthogonal topography in the parallel input architecture of songbird HVC. J Comp Neurol 525:2133–2151.  https://doi.org/10.1002/cne.24189 CrossRefPubMedGoogle Scholar
  28. Farr SA, Flood JF, Morley JE (2000) The effect of cholinergic, GABAergic, serotonergic, and glutamatergic receptor modulation on posttrial memory processing in the hippocampus. Neurobiol Learn Mem 73:150–167.  https://doi.org/10.1006/nlme.1999.3927 CrossRefPubMedGoogle Scholar
  29. Farries MA, Perkel DJ (2002) A telencephalic nucleus essential for song learning contains neurons with physiological characteristics of both striatum and globus pallidus. J Neurosci 22:3776–3787CrossRefPubMedGoogle Scholar
  30. Feenders G et al (2008) Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin. PLoS One 3:e1768.  https://doi.org/10.1371/journal.pone.0001768 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Fernandez E, Schiappa R, Girault JA, Le Novere N (2006) DARPP-32 is a robust integrator of dopamine and glutamate signals. PLoS Comput Biol 2:e176.  https://doi.org/10.1371/journal.pcbi.0020176 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fortune ES, Margoliash D (1992) Cytoarchitectonic organization and morphology of cells of the field L complex in male zebra finches (Taenopygia guttata). J Comp Neurol 325:388–404.  https://doi.org/10.1002/cne.903250306 CrossRefPubMedGoogle Scholar
  33. Foster EF, Bottjer SW (2001) Lesions of a telencephalic nucleus in male zebra finches: influences on vocal behavior in juveniles and adults. J Neurobiol 46:142–165CrossRefPubMedGoogle Scholar
  34. Foster EF, Mehta RP, Bottjer SW (1997) Axonal connections of the medial magnocellular nucleus of the anterior neostriatum in zebra finches. J Comp Neurol 382:364–381CrossRefPubMedGoogle Scholar
  35. Frielingsdorf H, Thal LJ, Pizzo DP (2006) The septohippocampal cholinergic system and spatial working memory in the Morris water maze. Behav Brain Res 168:37–46.  https://doi.org/10.1016/j.bbr.2005.10.008 CrossRefPubMedGoogle Scholar
  36. Gale SD, Perkel DJ (2010) Anatomy of a songbird basal ganglia circuit essential for vocal learning and plasticity. J Chem Neuroanat 39:124–131.  https://doi.org/10.1016/j.jchemneu.2009.07.003 CrossRefPubMedGoogle Scholar
  37. Goldsmith SK, Joyce JN (1996) Dopamine D2 receptors are organized in bands in normal human temporal cortex. Neuroscience 74:435–451.  https://doi.org/10.1016/0306-4522(96)00132-7 CrossRefPubMedGoogle Scholar
  38. Goodson JL (2005) The vertebrate social behavior network: evolutionary themes and variations. Horm Behav 48:11–22.  https://doi.org/10.1016/j.yhbeh.2005.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Goodson JL, Evans AK, Lindberg L (2004) Chemoarchitectonic subdivisions of the songbird septum and a comparative overview of septum chemical anatomy in jawed vertebrates. J Comp Neurol 473:293–314.  https://doi.org/10.1002/cne.20061 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Greengard P et al (1998) The DARPP-32/protein phosphatase-1 cascade: a model for signal integration. Brain Res Rev 26:274–284CrossRefPubMedGoogle Scholar
  41. Gutierrez-Guzman BE, Hernandez-Perez JJ, Olvera-Cortes ME (2017) Serotonergic modulation of septo-hippocampal and septo-mammillary theta activity during spatial learning, in the rat. Behav Brain Res 319:73–86.  https://doi.org/10.1016/j.bbr.2016.11.017 CrossRefPubMedGoogle Scholar
  42. Hampton CM, Sakata JT, Brainard MS (2009) An avian basal ganglia-forebrain circuit contributes differentially to syllable versus sequence variability of adult Bengalese finch song. J Neurophysiol 101:3235–3245.  https://doi.org/10.1152/jn.91089.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hanics J, Teleki G, Alpar A, Szekely AD, Csillag A (2017) Multiple amygdaloid divisions of arcopallium send convergent projections to the nucleus accumbens and neighboring subpallial amygdala regions in the domestic chicken: a selective pathway tracing and reconstruction study. Brain Struct Funct 222:301–315.  https://doi.org/10.1007/s00429-016-1219-8 CrossRefPubMedGoogle Scholar
  44. Hara M et al (2010) Role of adrenoceptors in the regulation of dopamine/DARPP-32 signaling in neostriatal neurons. J Neurochem 113:1046–1059.  https://doi.org/10.1111/j.1471-4159.2010.06668.x CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hellmann B, Gunturkun O (1999) Visual-field-specific heterogeneity within the tecto-rotundal projection of the pigeon. Eur J Neurosci 11:2635–2650CrossRefPubMedGoogle Scholar
  46. Hellmann B, Gunturkun O, Manns M (2004) Tectal mosaic: organization of the descending tectal projections in comparison to the ascending tectofugal pathway in the pigeon. J Comp Neurol 472:395–410.  https://doi.org/10.1002/cne.20056 CrossRefPubMedGoogle Scholar
  47. Hemmings HC Jr, Greengard P (1986) DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein: regional, tissue, and phylogenetic distribution. J Neurosci 6:1469–1481CrossRefPubMedGoogle Scholar
  48. Herold C, Paulitschek C, Palomero-Gallagher N, Gunturkun O, Zilles K (2018) Transmitter receptors reveal segregation of the arcopallium/amygdala complex in pigeons (Columba livia). J Comp Neurol 526:439–466.  https://doi.org/10.1002/cne.24344 CrossRefPubMedGoogle Scholar
  49. Hotte M, Thuault S, Dineley KT, Hemmings HC Jr, Nairn AC, Jay TM (2007) Phosphorylation of CREB and DARPP-32 during late LTP at hippocampal to prefrontal cortex synapses in vivo. Synapse 61:24–28.  https://doi.org/10.1002/syn.20339 CrossRefPubMedGoogle Scholar
  50. Hunt SP, Kunzle H (1976) Observations on the projections and intrinsic organization of the pigeon optic tectum: an autoradiographic study based on anterograde and retrograde, axonal and dendritic flow. J Comp Neurol 170:153–172.  https://doi.org/10.1002/cne.901700203 CrossRefPubMedGoogle Scholar
  51. Iyengar S, Viswanathan SS, Bottjer SW (1999) Development of topography within song control circuitry of zebra finches during the sensitive period for song learning. J Neurosci 19:6037–6057CrossRefPubMedGoogle Scholar
  52. Jarvis ED et al (2002) A framework for integrating the songbird brain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 188:961–980.  https://doi.org/10.1007/s00359-002-0358-y CrossRefPubMedPubMedCentralGoogle Scholar
  53. Jiao Y, Medina L, Veenman CL, Toledo C, Puelles L, Reiner A (2000) Identification of the anterior nucleus of the ansa lenticularis in birds as the homolog of the mammalian subthalamic nucleus. J Neurosci 20:6998–7010CrossRefPubMedGoogle Scholar
  54. Johnson F, Sablan MM, Bottjer SW (1995) Topographic organization of a forebrain pathway involved with vocal learning in zebra finches. J Comp Neurol 358:260–278.  https://doi.org/10.1002/cne.903580208 CrossRefPubMedGoogle Scholar
  55. Kao MH, Brainard MS (2006) Lesions of an avian basal ganglia circuit prevent context-dependent changes to song variability. J Neurophysiol 96:1441–1455.  https://doi.org/10.1152/jn.01138.2005 CrossRefPubMedGoogle Scholar
  56. Karten HJ (1968) The ascending auditory pathway in the pigeon (Columba livia). II. Telencephalic projections of the nucleus ovoidalis thalami. Brain Res 11:134–153CrossRefPubMedGoogle Scholar
  57. Karten HJ, Shimizu T (1989) The origins of neocortex: connections and lamination as distinct events in evolution. J Cognit Neurosci 1:291–301.  https://doi.org/10.1162/jocn.1989.1.4.291 CrossRefGoogle Scholar
  58. Kosubek-Langer J, Schulze L, Scharff C (2017) Maturation, behavioral activation, and connectivity of adult-born medium spiny neurons in a striatal song nucleus. Front Neurosci 11:323.  https://doi.org/10.3389/fnins.2017.00323 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Krayniak PF, Siegel A (1978) Efferent connections of the septal area in the pigeon. Brain Behav Evolut 15:389–404.  https://doi.org/10.1159/000123789 CrossRefGoogle Scholar
  60. Krutzfeldt NO, Wild JM (2004) Definition and connections of the entopallium in the zebra finch (Taeniopygia guttata). J Comp Neurol 468:452–465.  https://doi.org/10.1002/cne.10972 CrossRefPubMedGoogle Scholar
  61. Kubikova L, Kostal L (2010) Dopaminergic system in birdsong learning and maintenance. J Chem Neuroanat 39:112–123.  https://doi.org/10.1016/j.jchemneu.2009.10.004 CrossRefPubMedGoogle Scholar
  62. Kubikova L, Wada K, Jarvis ED (2010) Dopamine receptors in a songbird brain. J Comp Neurol 518:741–769.  https://doi.org/10.1002/cne.22255 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Kubikova L, Bosikova E, Cvikova M, Lukacova K, Scharff C, Jarvis ED (2014) Basal ganglia function, stuttering, sequencing, and repair in adult songbirds. Sci Rep 4:6590.  https://doi.org/10.1038/srep06590 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Lewis DA, Campbell MJ, Foote SL, Goldstein M, Morrison JH (1987) The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific. J Neurosci 7:279–290CrossRefPubMedGoogle Scholar
  65. Li XF, Hu MH, Hanley BP, Lin YS, Poston L, Lightman SL, O’Byrne KT (2015) The posterodorsal medial amygdala regulates the timing of puberty onset in female rats. Endocrinology 156:3725–3736.  https://doi.org/10.1210/en.2015-1366 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Lindskog M, Svenningsson P, Fredholm B, Greengard P, Fisone G (1999) Mu- and delta-opioid receptor agonists inhibit DARPP-32 phosphorylation in distinct populations of striatal projection neurons. Eur J Neurosci 11:2182–2186CrossRefPubMedGoogle Scholar
  67. Logerot P, Krutzfeldt NO, Wild JM, Kubke MF (2011) Subdivisions of the auditory midbrain (n. mesencephalicus lateralis, pars dorsalis) in zebra finches using calcium-binding protein immunocytochemistry. PLoS One 6:e20686.  https://doi.org/10.1371/journal.pone.0020686 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Luo M, Ding L, Perkel DJ (2001) An avian basal ganglia pathway essential for vocal learning forms a closed topographic loop. J Neurosci 21:6836–6845CrossRefPubMedGoogle Scholar
  69. McCasland JS (1987) Neuronal control of bird song production. J Neurosci 7:23–39CrossRefPubMedGoogle Scholar
  70. Medina L, Reiner A (2000) Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends Neurosci 23:1–12CrossRefPubMedGoogle Scholar
  71. Mello CV, Vates GE, Okuhata S, Nottebohm F (1998) Descending auditory pathways in the adult male zebra finch (Taeniopygia guttata). J Comp Neurol 395:137–160CrossRefPubMedGoogle Scholar
  72. Miller JE, Spiteri E, Condro MC, Dosumu-Johnson RT, Geschwind DH, White SA (2008) Birdsong decreases protein levels of FoxP2, a molecule required for human speech. J Neurophysiol 100:2015–2025.  https://doi.org/10.1152/jn.90415.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Montagnese CM, Szekely AD, Adam A, Csillag A (2004) Efferent connections of septal nuclei of the domestic chick (Gallus domesticus): an anterograde pathway tracing study with a bearing on functional circuits. J Comp Neurol 469:437–456.  https://doi.org/10.1002/cne.11018 CrossRefPubMedGoogle Scholar
  74. Moons L, D’Hondt E, Pijcke K, Vandesande F (1995) Noradrenergic system in the chicken brain: immunocytochemical study with antibodies to noradrenaline and dopamine-beta-hydroxylase. J Comp Neurol 360:331–348.  https://doi.org/10.1002/cne.903600210 CrossRefPubMedGoogle Scholar
  75. Nair AG, Bhalla US, Hellgren Kotaleski J (2016) Role of DARPP-32 and ARPP-21 in the emergence of temporal constraints on striatal calcium and dopamine integration. PLoS Comput Biol 12:e1005080.  https://doi.org/10.1371/journal.pcbi.1005080 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Newman SW (1999) The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Ann NY Acad Sci 877:242–257CrossRefPubMedGoogle Scholar
  77. Niederleitner B, Luksch H (2012) Neuronal morphology in subdivisions of the inferior colliculus of chicken (Gallus gallus). J Chem Neuroanat 44:24–33.  https://doi.org/10.1016/j.jchemneu.2012.03.004 CrossRefPubMedGoogle Scholar
  78. Nishi A et al (2017) Glutamate counteracts dopamine/PKA signaling via dephosphorylation of DARPP-32 Ser-97 and alteration of its cytonuclear distribution. J Biol Chem 292:1462–1476.  https://doi.org/10.1074/jbc.m116.752402 CrossRefGoogle Scholar
  79. Nottebohm F, Stokes TM, Leonard CM (1976) Central control of song in the canary, Serinus canarius. J Comp Neurol 165:457–486.  https://doi.org/10.1002/cne.901650405 CrossRefPubMedGoogle Scholar
  80. Olveczky BP, Andalman AS, Fee MS (2005) Vocal experimentation in the juvenile songbird requires a basal ganglia circuit. PLoS Biol 3:e153.  https://doi.org/10.1371/journal.pbio.0030153 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Onorati M et al (2014) Molecular and functional definition of the developing human striatum. Nat Neurosci 17:1804–1815.  https://doi.org/10.1038/nn.3860 CrossRefPubMedGoogle Scholar
  82. Ouimet CC (1988) Cerebrocortical neurons containing DARPP-32, a dopamine- and adenosine 3′:5′ monophosphate-regulated phosphoprotein, 1st edn. In: Massimo A, Reader TA, Dykes RW, Gloor P (eds) Neurotransmitters and cortical function from molecules to mind. Plenum Press, New York, pp 357–373.  https://doi.org/10.1007/978-1-4613-0925-2 CrossRefGoogle Scholar
  83. Ouimet CC, Greengard P (1990) Distribution of DARPP-32 in the basal ganglia: an electron microscopic study. J Neurocytol 19:39–52CrossRefPubMedGoogle Scholar
  84. Ouimet CC, Miller PE, Hemmings HC Jr, Walaas SI, Greengard P (1984) DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization. J Neurosci 4:111–124CrossRefPubMedGoogle Scholar
  85. Ouimet CC, Langley-Gullion KC, Greengard P (1998) Quantitative immunocytochemistry of DARPP-32-expressing neurons in the rat caudatoputamen. Brain Res 808:8–12CrossRefPubMedGoogle Scholar
  86. Person AL, Gale SD, Farries MA, Perkel DJ (2008) Organization of the songbird basal ganglia, including area X. J Comp Neurol 508:840–866.  https://doi.org/10.1002/cne.21699 CrossRefPubMedGoogle Scholar
  87. Reiner A, Perera M, Paullus R, Medina L (1998) Immunohistochemical localization of DARPP32 in striatal projection neurons and striatal interneurons in pigeons. J Chem Neuroanat 16:17–33CrossRefPubMedGoogle Scholar
  88. Reiner A, Laverghetta AV, Meade CA, Cuthbertson SL, Bottjer SW (2004a) An immunohistochemical and pathway tracing study of the striatopallidal organization of area X in the male zebra finch. J Comp Neurol 469:239–261.  https://doi.org/10.1002/cne.11012 CrossRefPubMedGoogle Scholar
  89. Reiner A et al (2004b) Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 473:377–414.  https://doi.org/10.1002/cne.20118 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Roberts TF, Hall WS, Brauth SE (2002) Organization of the avian basal forebrain: chemical anatomy in the parrot (Melopsittacus undulatus). J Comp Neurol 454:383–408.  https://doi.org/10.1002/cne.10456 CrossRefPubMedGoogle Scholar
  91. Rochefort C, He X, Scotto-Lomassese S, Scharff C (2007) Recruitment of FoxP2-expressing neurons to area X varies during song development. Dev Neurobiol 67:809–817.  https://doi.org/10.1002/dneu.20393 CrossRefPubMedGoogle Scholar
  92. Roland JJ, Savage LM (2009) The role of cholinergic and GABAergic medial septal/diagonal band cell populations in the emergence of diencephalic amnesia. Neuroscience 160:32–41.  https://doi.org/10.1016/j.neuroscience.2009.02.044 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Schmidt MF, Wild JM (2014) The respiratory-vocal system of songbirds: anatomy, physiology, and neural control. Prog Brain Res 212:297–335.  https://doi.org/10.1016/b978-0-444-63488-7.00015-x CrossRefPubMedPubMedCentralGoogle Scholar
  94. Scott BB, Lois C (2007) Developmental origin and identity of song system neurons born during vocal learning in songbirds. J Comp Neurol 502:202–214.  https://doi.org/10.1002/cne.21296 CrossRefPubMedGoogle Scholar
  95. Sebesteny T, Davies DC, Zayats N, Nemeth A, Tombol T (2002) The ramification and connections of retinal fibres in layer 7 of the domestic chick optic tectum: a golgi impregnation, anterograde tracer and GABA-immunogold study. J Anat 200:169–183CrossRefPubMedPubMedCentralGoogle Scholar
  96. Sen S, Parishar P, Pundir AS, Reiner A, Iyengar S (2019) The expression of tyrosine hydroxylase and DARPP-32 in the house crow (Corvus splendens) brain. J Comp Neurol.  https://doi.org/10.1002/cne.24649 CrossRefPubMedGoogle Scholar
  97. Smeets WJ, Lopez JM, Gonzalez A (2001) Immunohistochemical localization of DARPP-32 in the brain of the lizard, Gekko gecko: co-occurrence with tyrosine hydroxylase. J Comp Neurol 435:194–210CrossRefPubMedGoogle Scholar
  98. Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86:353–387CrossRefPubMedGoogle Scholar
  99. Svenningsson P, Greengard P (2006) A master regulator in the brain. Scientist 20:40–47Google Scholar
  100. Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P (2004) DARPP-32: an integrator of neurotransmission. Ann Rev Pharmacol Toxicol 44:269–296.  https://doi.org/10.1146/annurev.pharmtox.44.101802.121415 CrossRefGoogle Scholar
  101. Szekely AD (1999) The avian hippocampal formation: subdivisions and connectivity. Behav Brain Res 98:219–225CrossRefPubMedGoogle Scholar
  102. Szekely AD, Krebs JR (1996) Efferent connectivity of the hippocampal formation of the zebra finch (Taenopygia guttata): an anterograde pathway tracing study using Phaseolus vulgaris leucoagglutinin. J Comp Neurol 368:198–214.  https://doi.org/10.1002/(sici)1096-9861(19960429)368:2%3c198:aid-cne3%3e3.0.co;2-z CrossRefPubMedGoogle Scholar
  103. Thomson AM (2010) Neocortical layer 6, a review. Front Neuroanat 4:13.  https://doi.org/10.3389/fnana.2010.00013 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Tom RL, Ahuja A, Maniates H, Freeland CM, Robinson MJF (2018) Optogenetic activation of the central amygdala generates addiction-like preference for reward. Eur J Neurosci.  https://doi.org/10.1111/ejn.13967 CrossRefPubMedGoogle Scholar
  105. Valjent E et al (2005) Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc Natl Acad Sci USA 102:491–496.  https://doi.org/10.1073/pnas.0408305102 CrossRefPubMedGoogle Scholar
  106. Vates GE, Broome BM, Mello CV, Nottebohm F (1996) Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches. J Comp Neurol 366:613–642.  https://doi.org/10.1002/(SICI)1096-9861(19960318)366:4%3c613:AID-CNE5%3e3.0.CO;2-7 CrossRefPubMedGoogle Scholar
  107. Walaas SI, Greengard P (1984) DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. I. Regional and cellular distribution in the rat brain. J Neurosci 4:84–98CrossRefPubMedGoogle Scholar
  108. Walaas SI, Aswad DW, Greengard P (1983) A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. Nature 301:69–71CrossRefGoogle Scholar
  109. Walaas SI, Hemmings HC Jr, Greengard P, Nairn AC (2011) Beyond the dopamine receptor: regulation and roles of serine/threonine protein phosphatases. Front Neuroanat 5:50.  https://doi.org/10.3389/fnana.2011.00050 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Wang SR, Wang YC, Frost BJ (1995) Magnocellular and parvocellular divisions of pigeon nucleus isthmi differentially modulate visual responses in the tectum. Exp Brain Res 104:376–384CrossRefPubMedGoogle Scholar
  111. Wang Y, Luksch H, Brecha NC, Karten HJ (2006) Columnar projections from the cholinergic nucleus isthmi to the optic tectum in chicks (Gallus gallus): a possible substrate for synchronizing tectal channels. J Comp Neurol 494:7–35.  https://doi.org/10.1002/cne.20821 CrossRefPubMedGoogle Scholar
  112. Wild JM (1987a) The avian somatosensory system: connections of regions of body representation in the forebrain of the pigeon. Brain Res 412:205–223CrossRefPubMedGoogle Scholar
  113. Wild JM (1987b) Nuclei of the lateral lemniscus project directly to the thalamic auditory nuclei in the pigeon. Brain Res 408:303–307CrossRefPubMedGoogle Scholar
  114. Wild JM (1997a) The avian somatosensory system: the pathway from wing to Wulst in a passerine (Chloris chloris). Brain Res 759:122–134CrossRefPubMedGoogle Scholar
  115. Wild JM (1997b) Neural pathways for the control of birdsong production. J Neurobiol 33:653–670CrossRefPubMedGoogle Scholar
  116. Wild JM, Farabaugh SM (1996) Organization of afferent and efferent projections of the nucleus basalis prosencephali in a passerine, Taeniopygia guttata. J Comp Neurol 365:306–328.  https://doi.org/10.1002/(SICI)1096-9861(19960205)365:2%3c306:AID-CNE8%3e3.0.CO;2-9 CrossRefPubMedGoogle Scholar
  117. Wild JM, Arends JJ, Zeigler HP (1984) A trigeminal sensorimotor circuit for pecking, grasping and feeding in the pigeon (Columba livia). Brain Res 300:146–151CrossRefPubMedGoogle Scholar
  118. Wild JM, Karten HJ, Frost BJ (1993) Connections of the auditory forebrain in the pigeon (Columba livia). J Comp Neurol 337:32–62.  https://doi.org/10.1002/cne.903370103 CrossRefPubMedGoogle Scholar
  119. Williams H (2001) Choreography of song, dance and beak movements in the zebra finch (Taeniopygia guttata). J Exp Biol 204:3497–3506PubMedGoogle Scholar
  120. Williams SM, Nast A, Coleman MJ (2012) Characterization of synaptically connected nuclei in a potential sensorimotor feedback pathway in the zebra finch song system. PLoS One 7:e32178.  https://doi.org/10.1371/journal.pone.0032178 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Wylie DR, Gutierrez-Ibanez C, Pakan JM, Iwaniuk AN (2009) The optic tectum of birds: mapping our way to understanding visual processing. Can J Exp Psychol 63:328–338.  https://doi.org/10.1037/a0016826 CrossRefPubMedGoogle Scholar
  122. Yamamoto K, Sun Z, Wang HB, Reiner A (2005) Subpallial amygdala and nucleus taeniae in birds resemble extended amygdala and medial amygdala in mammals in their expression of markers of regional identity. Brain Res Bull 66:341–347.  https://doi.org/10.1016/j.brainresbull.2005.02.016 CrossRefPubMedGoogle Scholar
  123. Yger M, Girault JA (2011) DARPP-32, jack of all trades… Master of which? Front Behav Neurosci 5:56.  https://doi.org/10.3389/fnbeh.2011.00056 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Zann RA (1996) The zebra finch: a synthesis of field and laboratory studies. Oxford ornithology series, vol 5, 1st edn. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Systems NeuroscienceNational Brain Research Centre (Deemed University)GurugramIndia

Personalised recommendations