Brain Structure and Function

, Volume 224, Issue 8, pp 2899–2905 | Cite as

Hand preference and local asymmetry in cerebral cortex, basal ganglia, and cerebellar white matter

  • Jurgen GermannEmail author
  • Michael Petrides
  • M. Mallar ChakravartyEmail author
Original Article


Hand preference is a striking example of functional lateralization, with 90% of the population preferentially using their right hand. However, the search for brain structural correlates of this lateralization has produced inconsistent results. While large-scale neuroimaging studies using automated methods have largely failed to find local anatomical asymmetries associated with hand preference, other studies identifying specific motor regions have been able to find local morphological and functional differences. The present study looked at brain asymmetries in the brain’s motor system using established cortical landmarks to identify the somatomotor hand region and extracted regional volumes of subcortical and cerebellar regions. Our results showed a strong left–right asymmetry in the cortical hand region, with weaker asymmetries appearing in the striatum and cerebellar white matter. Such asymmetries were much more pronounced in right-handers, whereas much weaker or absent lateralizing effects were observed in left-handed subjects. This study demonstrates the importance of local landmarks in studying individual anatomical differences. More generally, establishing structural correlates of hand preference is important, as this could further establish the origins of cerebral lateralization.


Left–right asymmetry Hand preference Brain morphology Motor system 



Data were provided in part by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University. This study received support from CIHR Foundation Grant FDN-143212 (to M. Petrides).


  1. Amunts K, Schlaug G, Schleicher A et al (1996) Asymmetry in the human motor cortex and handedness. Neuroimage 4:216–222CrossRefPubMedGoogle Scholar
  2. Amunts K, Jäncke L, Mohlberg H et al (2000) Interhemispheric asymmetry of the human motor cortex related to handedness and gender. Neuropsychologia 38:304–312CrossRefPubMedGoogle Scholar
  3. Andersen KW, Siebner HR (2018) Mapping dexterity and handedness: recent insights and future challenges. Curr Opin Behav Sci 20:123–129CrossRefGoogle Scholar
  4. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54(3):2033–2044. CrossRefPubMedGoogle Scholar
  5. Boling W, Olivier A, Bittar RG, Reutens D (1999) Localization of hand motor activation in Broca’s pli de passage moyen. Neurosurg Focus 7:E1CrossRefGoogle Scholar
  6. Chakravarty MM, Sadikot AF, Germann J et al (2008) Towards a validation of atlas warping techniques. Med Image Anal 12:713–726. CrossRefPubMedGoogle Scholar
  7. Chakravarty MM, Steadman P, van Eede MC et al (2013) Performing label-fusion-based segmentation using multiple automatically generated templates. Hum Brain Mapp 34:2635–2654CrossRefPubMedGoogle Scholar
  8. Collins DL, Pruessner JC (2010) Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion. Neuroimage 52:1355–1366CrossRefPubMedGoogle Scholar
  9. Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192–205CrossRefPubMedGoogle Scholar
  10. Foundas AL, Hong K, Leonard CM, Heilman KM (1998) Hand preference and magnetic resonance imaging asymmetries of the central sulcus. Neuropsychiatry Neuropsychol Behav Neurol 11:65–71PubMedGoogle Scholar
  11. Germann J, Robbins S, Halsband U, Petrides M (2005) Precentral sulcal complex of the human brain: morphology and statistical probability maps. J Comp Neurol 493:334–356CrossRefPubMedGoogle Scholar
  12. Gilbert AN, Wysxki CJ (1992) Hand preference and age in the United States. Neuropsychologia 30:601–608CrossRefPubMedGoogle Scholar
  13. Guadalupe T, Willems RM, Zwiers MP et al (2014) Differences in cerebral cortical anatomy of left- and right-handers. Front Psychol 5:261CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hopkins WD, Phillips KA, Bania A et al (2011) Hand preferences for coordinated bimanual actions in 777 great apes: implications for the evolution of handedness in hominins. J Hum Evol 60:605–611CrossRefPubMedPubMedCentralGoogle Scholar
  15. Howells H, Thiebaut de Schotten M, Dell’Acqua F et al (2018) Frontoparietal tracts linked to lateralized hand preference and manual specialization. Cereb Cortex 28:2482–2494CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kavaklioglu T, Guadalupe T, Zwiers M et al (2017) Structural asymmetries of the human cerebellum in relation to cerebral cortical asymmetries and handedness. Brain Struct Funct 222:1611–1623CrossRefPubMedGoogle Scholar
  17. Kong X-Z, Mathias SR, Guadalupe T et al (2018) Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium. Proc Natl Acad Sci USA 115:E5154–E5163CrossRefPubMedGoogle Scholar
  18. Lonsdorf EV, Hopkins WD (2005) Wild chimpanzees show population-level handedness for tool use. Proc Natl Acad Sci USA 102:12634–12638CrossRefPubMedGoogle Scholar
  19. Manto M, Bower JM, Conforto AB et al (2012) Consensus paper: roles of the cerebellum in motor control-the diversity of ideas on cerebellar involvement in movement. Cerebellum 11:457–487CrossRefPubMedPubMedCentralGoogle Scholar
  20. Mazziotta J, Toga A, Evans A et al (2001) A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 356:1293–1322CrossRefPubMedPubMedCentralGoogle Scholar
  21. Milchenko M, Marcus D (2013) Obscuring surface anatomy in volumetric imaging data. Neuroinformatics 11:65–75CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ocklenburg S, Friedrich P, Güntürkün O, Genç E (2016) Voxel-wise grey matter asymmetry analysis in left- and right-handers. Neurosci Lett 633:210–214CrossRefPubMedGoogle Scholar
  23. Park MTM, Pipitone J, Baer LH et al (2014) Derivation of high-resolution MRI atlases of the human cerebellum at 3 T and segmentation using multiple automatically generated templates. Neuroimage 95:217–231CrossRefPubMedGoogle Scholar
  24. Pipitone J, Park MTM, Winterburn J et al (2014) Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. Neuroimage 101:494–512CrossRefPubMedGoogle Scholar
  25. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97CrossRefPubMedGoogle Scholar
  26. Steele CJ, Anwander A, Bazin PL et al (2017) Human cerebellar sub-millimeter diffusion imaging reveals the motor and non-motor topography of the dentate nucleus. Cereb Cortex 27:4537–4548PubMedGoogle Scholar
  27. van Baarsen KM, Kleinnijenhuis M, Jbabdi S et al (2016) A probabilistic atlas of the cerebellar white matter. Neuroimage 124:724–732CrossRefPubMedGoogle Scholar
  28. Van Essen DC, Ugurbil K, Auerbach E et al (2012) The human connectome project: a data acquisition perspective. Neuroimage 62:2222–2231CrossRefPubMedPubMedCentralGoogle Scholar
  29. Volkmann J, Schnitzler A, Witte OW, Freund H (1998) Handedness and asymmetry of hand representation in human motor cortex. J Neurophysiol 79:2149–2154CrossRefPubMedGoogle Scholar
  30. Yousry T, Schmid UD, Alkadhi H et al (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120:141–157CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cognitive Neuroscience UnitMontreal Neurological InstituteMontrealCanada
  2. 2.Cerebral Imaging Center, Douglas Mental Health University InstituteMcGill UniversityMontrealCanada

Personalised recommendations