Advertisement

In vivo localization of cortical areas using a 3D computerized atlas of the marmoset brain

  • Laurent Risser
  • Amirouche Sadoun
  • Muriel Mescam
  • Kuzma Strelnikov
  • Sandra Lebreton
  • Samuel Boucher
  • Pascal Girard
  • Nathalie Vayssière
  • Marcello G. P. RosaEmail author
  • Caroline FontaEmail author
Methods Paper
  • 84 Downloads

Abstract

We created a volumetric template of the marmoset (Callithrix jacchus) brain, which enables localization of the cortical areas defined in the Paxinos et al. (The marmoset brain in stereotaxic coordinates. Elsevier Academic Press, Cambridge, 2012) marmoset brain atlas, as well as seven broader cortical regions (occipital, temporal, parietal, prefrontal, motor, limbic, insular), different brain compartments (white matter, gray matter, cerebro-spinal fluid including ventricular spaces), and various other structures (brain stem, cerebellum, olfactory bulb, hippocampus). The template was designed from T1-weighted MR images acquired using a 3 T MRI scanner. It was based on a single fully segmented marmoset brain image, which was transported onto the mean of 13 adult marmoset brain images using a diffeomorphic strategy that fully preserves the brain topology. In addition, we offer an automatic segmentation pipeline which fully exploits the proposed template. The segmentation pipeline was quantitatively assessed by comparing the results of manual and automated segmentations. An associated program, written in Python, can be used from a command-line interface, or used interactively as a module of the 3DSlicer software. This program can be applied to the analysis of multimodal images, to map specific cortical areas in lesions or to define the seeds for further tractography analyses.

Keywords

MRI New world monkey Mapping Template Cortex 

Notes

Acknowledgements

We would like to thank Tristan Chaplin and Piotr Majka for generating the 3D map of cytoarchitectural areas of the marmoset brain derived from the atlas of (Paxinos et al. 2012). Our gratitude goes to MRI platform (INSERM UMR1214) for their priceless assistance. We also thank the staff of the CerCo animal rearing facilities and Emilie Rapha for their help with animal preparation and monitoring.

Funding

This work was financially supported by the University Paul Sabatier, Toulouse 3 (AO1 MST2I_2013) and the Toulouse Mind and brain Institute (TMBI, AO2015). A.S. Ph.D. was Granted by University Paul Sabatier/Toulouse 3 and Foundation for Medical Research (FDT20160435166). The participation of MGP Rosa was funded by the Australian Research Council’s Centre of Excellence for Integrative Brain function (CE140100007).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving animals/ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. The project received the regional (MP/03/76/11/12) and the governmental authorization from the MENESR (project 05215.03).

Supplementary material

429_2019_1869_MOESM1_ESM.docx (1009 kb)
Supplementary material 1 (DOCX 1009 kb)

References

  1. Abbott DH, Barnett DK, Colman RJ, Yamamoto ME, Schultz-Darken NJ (2003) Aspects of common marmoset basic biology and life history important for biomedical research. Comp Med 53:339–350Google Scholar
  2. Amlien IK, Fjell AM, Tamnes CK, Grydeland H, Krogsrud SK, Chaplin TA, Rosa MGP, Walhovd KB (2016) Organizing principles of human cortical development-thickness and area from 4 to 30 years: insights from comparative primate neuroanatomy. Cereb Cortex 26:257–267CrossRefGoogle Scholar
  3. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–851CrossRefGoogle Scholar
  4. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54:2033–2044CrossRefGoogle Scholar
  5. Bakker R, Tiesinga P, Kotter R (2015) The scalable brain atlas: instant web-based access to public brain atlases and related content. Neuroinformatics 13:353–366CrossRefGoogle Scholar
  6. Bakola S, Burman KJ, Rosa MGP (2015) The cortical motor system of the marmoset monkey (Callithrix jacchus). Neurosci Res 93:72–81CrossRefGoogle Scholar
  7. Belcher AM, Yen CC, Notardonato L, Ross TJ, Volkow ND, Yang Y, Stein EA, Silva AC, Tomasi D (2016) Functional connectivity hubs and networks in the awake marmoset brain. Front Integr Neurosci 10:9CrossRefGoogle Scholar
  8. Bock NA, Kocharyan A, Liu JV, Silva AC (2009) Visualizing the entire cortical myelination pattern in marmosets with magnetic resonance imaging. J Neurosci Methods 185:15–22CrossRefGoogle Scholar
  9. Bourne JA, Rosa MGP (2006) Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: early maturation of the middle temporal area (MT). Cereb Cortex 16:405–414CrossRefGoogle Scholar
  10. Burkart JM, Finkenwirth C (2015) Marmosets as model species in neuroscience and evolutionary anthropology. Neurosci Res 93:8–19CrossRefGoogle Scholar
  11. Burman KJ, Palmer SM, Gamberini M, Rosa MGP (2006) Cytoarchitectonic subdivisions of the dorsolateral frontal cortex of the marmoset monkey (Callithrix jacchus), and their projections to dorsal visual areas. J Comp Neurol 495:149–172CrossRefGoogle Scholar
  12. Burman KJ, Lui LL, Rosa MGP, Bourne JA (2007) Development of non-phosphorylated neurofilament protein expression in neurones of the New World monkey dorsolateral frontal cortex. Eur J Neurosci 25:1767–1779CrossRefGoogle Scholar
  13. Burman KJ, Reser DH, Richardson KE, Gaulke H, Worthy KH, Rosa MGP (2011) Subcortical projections to the frontal pole in the marmoset monkey. Eur J Neurosci 34:303–319CrossRefGoogle Scholar
  14. Burman KJ, Bakola S, Richardson KE, Reser DH, Rosa MGP (2014) Patterns of afferent input to the caudal and rostral areas of the dorsal premotor cortex (6DC and 6DR) in the marmoset monkey. J Comp Neurol 522:3683–3716CrossRefGoogle Scholar
  15. Burman KJ, Bakola S, Richardson KE, Yu HH, Reser DH, Rosa MGP (2015) Cortical and thalamic projections to cytoarchitectural areas 6Va and 8C of the marmoset monkey: connectionally distinct subdivisions of the lateral premotor cortex. J Comp Neurol 523:1222–1247CrossRefGoogle Scholar
  16. Calabrese E, Hickey P, Hulette C, Zhang J, Parente B, Lad SP, Johnson GA (2015) Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization. Hum Brain Mapp 36:3167–3178CrossRefGoogle Scholar
  17. Converse AK, Aubert Y, Farhoud M, Weichert JP, Rowland IJ, Ingrisano NM, Allers KA, Sommer B, Abbott DH (2012) Positron emission tomography assessment of 8-OH-DPAT-mediated changes in an index of cerebral glucose metabolism in female marmosets. Neuroimage 60:447–455CrossRefGoogle Scholar
  18. Evans AC, Janke AL, Collins DL, Baillet S (2012) Brain templates and atlases. Neuroimage 62:911–922CrossRefGoogle Scholar
  19. Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341CrossRefGoogle Scholar
  20. Fiot JB, Raguet H, Risser L, Cohen LD, Fripp J, Vialard FX, Alzheimer’s Disease Neuroimaging I (2014) Longitudinal deformation models, spatial regularizations and learning strategies to quantify Alzheimer’s disease progression. Neuroimage Clin 4:718–729CrossRefGoogle Scholar
  21. Fuster JM (2001) The prefrontal cortex—an update: time is of the essence. Neuron 30:319–333CrossRefGoogle Scholar
  22. Fuster JM (2002) Frontal lobe and cognitive development. J Neurocytol 31:373–385CrossRefGoogle Scholar
  23. Garea-Rodriguez E, Schlumbohm C, Czeh B, Konig J, Helms G, Heckmann C, Meller B, Meller J, Fuchs E (2012) Visualizing dopamine transporter integrity with iodine-123-FP-CIT SPECT in combination with high resolution MRI in the brain of the common marmoset monkey. J Neurosci Methods 210:195–201CrossRefGoogle Scholar
  24. Gebhard R, Zilles K, Schleicher A, Everitt BJ, Robbins TW, Divac I (1995) Parcellation of the frontal cortex of the New World monkey Callithrix jacchus by eight neurotransmitter-binding sites. Anat Embryol (Berl) 191:509–517CrossRefGoogle Scholar
  25. Ghahremani M, Hutchison RM, Menon RS, Everling S (2016) Frontoparietal functional connectivity in the common marmoset. Cereb Cortex.  https://doi.org/10.1093/cercor/bhw198 Google Scholar
  26. Hashikawa T, Nakatomi R, Iriki A (2015) Current models of the marmoset brain. Neurosci Res 93:116–127CrossRefGoogle Scholar
  27. Karcher H (1977) Riemannian center of mass and mollifier smoothing. Commun Pure Appl Math 30:509–541CrossRefGoogle Scholar
  28. Krubitzer LA, Kaas JH (1990) The organization and connections of somatosensory cortex in marmosets. J Neurosci 10:952–974CrossRefGoogle Scholar
  29. Lui LL, Bourne JA, Rosa MGP (2006) Functional response properties of neurons in the dorsomedial visual area of New World monkeys (Callithrix jacchus). Cereb Cortex 16:162–177CrossRefGoogle Scholar
  30. Majka P, Kublik E, Furga G, Wojcik DK (2012) Common atlas format and 3D brain atlas reconstructor: infrastructure for constructing 3D brain atlases. Neuroinformatics 10:181–197CrossRefGoogle Scholar
  31. Majka P, Kowalski JM, Chlodzinska N, Wojcik DK (2013) 3D brain atlas reconstructor service–online repository of three-dimensional models of brain structures. Neuroinformatics 11:507–518CrossRefGoogle Scholar
  32. Majka P, Chaplin TA, Yu HH, Tolpygo A, Mitra PP, Wojcik DK, Rosa MGP (2016) Towards a comprehensive atlas of cortical connections in a primate brain: mapping tracer injection studies of the common marmoset into a reference digital template. J Comp Neurol 524:2161–2181CrossRefGoogle Scholar
  33. Mansouri FA, Koechlin E, Rosa MGP, Buckley MJ (2017) Managing competing goals—a key role for the frontopolar cortex. Nat Rev Neurosci 18:645–657.  https://doi.org/10.1038/nrn.2017.111 CrossRefGoogle Scholar
  34. Marmoset Genome Sequencing and Analysis Consortium (2014) The common marmoset genome provides insight into primate biology and evolution. Nat Genet 46:850–857CrossRefGoogle Scholar
  35. Marx V (2016) Neurobiology: learning from marmosets. Nat Methods 13:911–916CrossRefGoogle Scholar
  36. Meyer JS, Brevard ME, Piper BJ, Ali SF, Ferris CF (2006) Neural effects of MDMA as determined by functional magnetic resonance imaging and magnetic resonance spectroscopy in awake marmoset monkeys. Ann N Y Acad Sci 1074:365–376CrossRefGoogle Scholar
  37. Miller CT, Freiwald WA, Leopold DA, Mitchell JF, Silva AC, Wang X (2016) Marmosets: a neuroscientific model of human social behavior. Neuron 90:219–233CrossRefGoogle Scholar
  38. Missler M, Wolff JR, Heger W, Merker HJ, Treiber AM, Scheib R, Crook GA (1992) Developmental biology of the common marmoset: proposal for a “postnatal staging”. J Med Primatol 21:285–298Google Scholar
  39. Missler M, Eins S, Merker HJ, Rothe H, Wolff JR (1993a) Pre-and postnatal development of the primary visual cortex of the common marmoset. I. A changing space for synaptogenesis. J Comp Neurol 333:41–52CrossRefGoogle Scholar
  40. Missler M, Wolff A, Merker HJ, Wolff JR (1993b) Pre- and postnatal development of the primary visual cortex of the common marmoset. II. Formation, remodelling, and elimination of synapses as overlapping processes. J Comp Neurol 333:53–67CrossRefGoogle Scholar
  41. Mitchell JF, Leopold DA (2015) The marmoset monkey as a model for visual neuroscience. Neurosci Res 93:20–46CrossRefGoogle Scholar
  42. Newman JD, Kenkel WM, Aronoff EC, Bock NA, Zametkin MR, Silva AC (2009) A combined histological and MRI brain atlas of the common marmoset monkey, Callithrix jacchus. Brain Res Rev 62:1–18CrossRefGoogle Scholar
  43. Nummela SU, Jovanovic V, de la Mothe L, Miller CT (2017) Social context-dependent activity in marmoset frontal cortex populations during natural conversations. J Neurosci 37:7036–7047CrossRefGoogle Scholar
  44. Okano H, Mitra P (2015) Brain-mapping projects using the common marmoset. Neurosci Res 93:3–7CrossRefGoogle Scholar
  45. Okano H, Sasaki E, Yamamori T, Iriki A, Shimogori T, Yamaguchi Y, Kasai K, Miyawaki A (2016) Brain/MINDS: a Japanese National Brain Project for Marmoset Neuroscience. Neuron 92:582–590CrossRefGoogle Scholar
  46. Palazzi X, Bordier N (2008) The marmoset brain in stereotaxic coordinates. Springer, BerlinCrossRefGoogle Scholar
  47. Paxinos G, Watson C, Petrides M, Rosa MGP, Tokuno H (2012) The marmoset brain in stereotaxic coordinates. Elsevier Academic Press, CambridgeGoogle Scholar
  48. Preuss TM, Goldman-Rakic PS (1991) Myelo- and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca. J Comp Neurol 310:429–474CrossRefGoogle Scholar
  49. Prins NW, Pohlmeyer EA, Debnath S, Mylavarapu R, Geng S, Sanchez JC, Rothen D, Prasad A (2017) Common marmoset (Callithrix jacchus) as a primate model for behavioral neuroscience studies. J Neurosci Methods 284:35–46CrossRefGoogle Scholar
  50. Sadoun A, Strelnikov K, Bonte E, Fonta C, Girard P (2015) Cognitive impairment in a young marmoset reveals lateral ventriculomegaly and a mild hippocampal atrophy: a case report. Sci Rep 5:16046CrossRefGoogle Scholar
  51. Sasaki E (2015) Prospects for genetically modified non-human primate models, including the common marmoset. Neurosci Res 93:110–115CrossRefGoogle Scholar
  52. Sawiak SJ, Shiba Y, Oikonomidis L, Windle CP, Santangelo AM, Grydeland H, Cockcroft G, Bullmore ET, Roberts AC (2018) Trajectories and milestones of cortical and subcortical development of the marmoset brain from infancy to adulthood. Cereb Cortex 28:4440–4453CrossRefGoogle Scholar
  53. Senoo A, Tokuno H, Watson C (2015) Mini-atlas of the marmoset brain. Neurosci Res 93:128–135CrossRefGoogle Scholar
  54. Silva AC (2017) Anatomical and functional neuroimaging in awake, behaving marmosets. Dev Neurobiol 77:373–389CrossRefGoogle Scholar
  55. Solomon SG, Rosa MGP (2014) A simpler primate brain: the visual system of the marmoset monkey. Front Neural Circuits 8:96CrossRefGoogle Scholar
  56. Spinelli S, Pennanen L, Dettling AC, Feldon J, Higgins GA, Pryce CR (2004) Performance of the marmoset monkey on computerized tasks of attention and working memory. Brain Res Cogn Brain Res 19:123–137CrossRefGoogle Scholar
  57. Stephan H, Baron G, Schwerdtfeger WK (1980) The brain of the common marmoset (Callithrix jacchus). A stereotaxic atlas. Springer, BerlinCrossRefGoogle Scholar
  58. Suzuki W, Banno T, Miyakawa N, Abe H, Goda N, Ichinohe N (2015) Mirror neurons in a new world monkey, common marmoset. Front Neurosci 9:459CrossRefGoogle Scholar
  59. Taha AA, Hanbury A (2015) Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 15:29CrossRefGoogle Scholar
  60. Takemoto A, Miwa M, Koba R, Yamaguchi C, Suzuki H, Nakamura K (2015) Individual variability in visual discrimination and reversal learning performance in common marmosets. Neurosci Res 93:136–143CrossRefGoogle Scholar
  61. Tardif SD, Smucny DA, Abbott DH, Mansfield K, Schultz-Darken N, Yamamoto ME (2003) Reproduction in captive common marmosets (Callithrix jacchus). Comp Med 53:364–368Google Scholar
  62. Thirion JP (1998) Image matching as a diffusion process: an analogy with Maxwell’s demons. Med Image Anal 2:243–260CrossRefGoogle Scholar
  63. Toarmino CR, Yen CCC, Papoti D, Bock NA, Leopold DA, Miller CT, Silva AC (2017) Functional magnetic resonance imaging of auditory cortical fields in awake marmosets. Neuroimage 162:86–92CrossRefGoogle Scholar
  64. Tomioka I, Ishibashi H, Minakawa EN et al (2017) Transgenic monkey model of the polyglutamine diseases recapitulating progressive neurological symptoms. eNeuro 4(2).  https://doi.org/10.1523/ENEURO.0250-16.2017
  65. Tu TW, Turtzo LC, Williams RA, Lescher JD, Dean DD, Frank JA (2014) Imaging of spontaneous ventriculomegaly and vascular malformations in Wistar rats: implications for preclinical research. J Neuropathol Exp Neurol 73:1152–1165CrossRefGoogle Scholar
  66. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320CrossRefGoogle Scholar
  67. Vercauteren T, Pennec X, Perchant A, Ayache N (2008) Symmetric log-domain diffeomorphic Registration: a demons-based approach. Medical image computing and computer-assisted intervention: MICCAI. Int Conf Med Image Comput Comput Assist Interv 11:754–761Google Scholar
  68. Vialard FX, Risser L, Rueckert D, Cotter CJ (2012a) Diffeomorphic 3D image registration via geodesic shooting using an efficient adjoint calculation. Int J Comput 97:229–241Google Scholar
  69. Vialard FX, Risser L, Rueckert D, Holm DD (2012b) Diffeomorphic atlas estimation using geodesic shooting on volumetric images. Annl BMVA 5:1–12Google Scholar
  70. Woodward A, Hashikawa T, Maeda M, Kaneko T, Hikishima K, Iriki A, Okano H, Yamaguchi Y (2018) The brain/MINDS 3D digital marmoset brain atlas. Sci Data 5:180009.  https://doi.org/10.1038/sdata.2018.9 CrossRefGoogle Scholar
  71. Yeterian EH, Pandya DN, Tomaiuolo F, Petrides M (2012) The cortical connectivity of the prefrontal cortex in the monkey brain. Cortex 48:58–81CrossRefGoogle Scholar
  72. Yokoyama C, Yamanaka H, Onoe K, Kawasaki A, Nagata H, Shirakami K, Doi H, Onoe H (2010) Mapping of serotonin transporters by positron emission tomography with [11C]DASB in conscious common marmosets: comparison with rhesus monkeys. Synapse 64:594–601CrossRefGoogle Scholar
  73. Yuasa S, Nakamura K, Kohsaka S (2010) Stereotaxic atlas of the marmoset brain. With immunohistochemical architecture and MR images. National Institute of Neuroscience (JP), TokyoGoogle Scholar
  74. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128CrossRefGoogle Scholar
  75. Zhu SC, Yuille A (1996) Region competition: unifying snakes, region growing, and Bayes/mdl for multiband image segmentation. IEEE Trans Pattern Anal Mach Intell 18:884–900CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse, CNRS, UPS IMTToulouse Cedex 9France
  2. 2.Centre de recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS, CNRS, UMR 5549, CHU PurpanToulouse Cedex 3France
  3. 3.INSERMToulouseFrance
  4. 4.Department of Physiology, Biomedicine Discovery InstituteMonash UniversityClaytonAustralia
  5. 5.Australian Research Council, Centre of Excellence for Integrative Brain FunctionMonash University NodeClaytonAustralia

Personalised recommendations