Brain Structure and Function

, Volume 224, Issue 1, pp 435–452 | Cite as

Meta-analysis of functional subdivisions within human posteromedial cortex

  • Yuefeng Huang
  • Jeffrey Hullfish
  • Dirk De Ridder
  • Sven VannesteEmail author
Original Article


The posteromedial cortex (PMC)—comprising posterior cingulate cortex (PCC), retrosplenial cortex (RSC), and the precuneus (PrC)—is perhaps best known for its involvement in the default mode network. There is no consensus regarding the specific functions of PMC, however, and its component regions each exhibit distinct, but partially overlapping functional profiles. To date, there has been minimal effort to disentangle the functions of these regions. In the present study, we use Neurosynth ( to conduct an unbiased meta-analysis of the PMC based on fMRI coactivation and semantic information extracted from 11,406 studies. Our analyses revealed six PMC clusters with distinct functional profiles: superior and inferior dorsal PCC, anterior and posterior PrC, ventral PCC, and RSC. We discuss these findings in the context of the existing literature and suggest several fruitful avenues for continued research.


Default mode network Posterior cingulate cortex Precuneus Retrosplenial cortex 



Research by Sven Vanneste and Yuefeng Huang was supported by the Defense Advanced Research Projects Agency (DARPA) Biological Technologies Office (BTO) TNT program under the auspices of Dr. Doug Weber and Tristan McClure-Begley through the Space and Naval Warfare Systems Center, Pacific Grant/Contract no. N66001-17-2-4011. Research by Sven Vanneste was also supported by Darrell Royal Foundation. Research by Jeffrey Hullfish was supported by the Eugene McDermott Graduate Fellowship (201501). The authors would like to thank Alejandro de la Vega for his help troubleshooting the code via email correspondence and his thoughtful comments on an earlier version of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests. Code and data are available freely at and Permissions ( and are granted to replicate these analyses on any given brain region at any desired spatial granularity. This material has not been peer reviewed.


  1. Adapa RM, Davis MH, Stamatakis EA, Absalom AR, Menon DK (2014) Neural correlates of successful semantic processing during propofol sedation. Hum Brain Map 35(7):2935–2949. Google Scholar
  2. Addis DR, Wong AT, Schacter DL (2007) Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration. Neuropsychologia 45(7):1363–1377. Google Scholar
  3. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38. Google Scholar
  4. Bzdok D, Heeger A, Langner R, Laird AR, Fox PT, Palomero-Gallagher N, Vogt BA, Zilles K, Eickhoff SB (2015) Subspecialization in the human posterior medial cortex. Neuroimage 106:55–71. Google Scholar
  5. Cauda F, Geminiani G, D’Agata F, Sacco K, Duca S, Bagshaw AP, Cavanna AE (2010) Functional connectivity of the posteromedial cortex. PLoS One. Google Scholar
  6. Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129(Pt 3):564–583. Google Scholar
  7. David M. Blei AYN, Michael I. Jordan (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022Google Scholar
  8. de la Vega A, Chang LJ, Banich MT, Wager TD, Yarkoni T (2016) Large-scale meta-analysis of human medial frontal cortex reveals tripartite functional organization. J Neurosci 36(24):6553–6562. Google Scholar
  9. de la Vega A, Yarkoni T, Wager TD, Banich MT (2017) Large-scale meta-analysis suggests low regional modularity in lateral frontal cortex. Cereb Cortex:1–15.
  10. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980. Google Scholar
  11. Dixon ML, De La Vega A, Mills C, Andrews-Hanna J, Spreng RN, Cole MW, Christoff K (2018) Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proc Natl Acad Sci. Google Scholar
  12. Eickhoff SB, Thirion B, Varoquaux G, Bzdok D (2015) Connectivity-based parcellation: critique and implications. Hum Brain Map 36(12):4771–4792. Google Scholar
  13. Fransson P (2006) How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 44(14):2836–2845. Google Scholar
  14. Genon S, Reid A, Langner R, Amunts K, Eickhoff SB (2018) How to characterize the function of a brain region. Trends Cogn Sci. Google Scholar
  15. Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101(13):4637–4642. Google Scholar
  16. Greicius MD, Supekar K, Menon V, Dougherty RF (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19(1):72–78. Google Scholar
  17. Guldenmund P, Vanhaudenhuyse A, Boly M, Laureys S, Soddu A (2012) A default mode of brain function in altered states of consciousness. Archives italiennes de biologie 150(2–3):107–121. Google Scholar
  18. Hampson M, Driesen N, Roth JK, Gore JC, Constable RT (2010) Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance. Magn Reson Imaging 28(8):1051–1057. Google Scholar
  19. Huang Y, Mohan A, De Ridder D, Sunaert S, Vanneste S (2018) The neural correlates of the unified percept of alcohol-related craving: a fMRI and EEG study. Sci Rep 8(1):923. Google Scholar
  20. Huijbers W, Vannini P, Sperling RA, C MP, Cabeza R, Daselaar SM (2012) Explaining the encoding/retrieval flip: memory-related deactivations and activations in the posteromedial cortex. Neuropsychologia 50(14):3764–3774. Google Scholar
  21. Kaboodvand N, Backman L, Nyberg L, Salami A (2018) The retrosplenial cortex: a memory gateway between the cortical default mode network and the medial temporal lobe. Hum Brain Map. Google Scholar
  22. Karnath HO, Perenin MT (2005) Cortical control of visually guided reaching: evidence from patients with optic ataxia. Cereb Cortex 15(10):1561–1569. Google Scholar
  23. Kobayashi Y, Amaral DG (2007) Macaque monkey retrosplenial cortex: III. Cortical efferents. J Comp Neurol 502(5):810–833. Google Scholar
  24. Krieger-Redwood K, Jefferies E, Karapanagiotidis T, Seymour R, Nunes A, Ang JWA, Majernikova V, Mollo G, Smallwood J (2016) Down but not out in posterior cingulate cortex: deactivation yet functional coupling with prefrontal cortex during demanding semantic cognition. Neuroimage 141:366–377. Google Scholar
  25. Kunishio K, Haber SN (1994) Primate cingulostriatal projection: limbic striatal versus sensorimotor striatal input. J Comp Neurol 350(3):337–356. Google Scholar
  26. Laird AR, Lancaster JL, Fox PT (2005) BrainMap: the social evolution of a human brain mapping database. Neuroinformatics 3(1):65–78Google Scholar
  27. Laird AR, Eickhoff SB, Fox PM, Uecker AM, Ray KL, Saenz JJ Jr, McKay DR, Bzdok D, Laird RW, Robinson JL, Turner JA, Turkeltaub PE, Lancaster JL, Fox PT (2011) The BrainMap strategy for standardization, sharing, and meta-analysis of neuroimaging data. BMC Res Notes 4:349. Google Scholar
  28. Leech R, Sharp DJ (2014) The role of the posterior cingulate cortex in cognition and disease. Brain 137(Pt 1):12–32. Google Scholar
  29. Leech R, Kamourieh S, Beckmann CF, Sharp DJ (2011) Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. J Neurosci 31(9):3217–3224. Google Scholar
  30. Leech R, Braga R, Sharp DJ (2012) Echoes of the brain within the posterior cingulate cortex. J Neurosci 32(1):215–222. Google Scholar
  31. Luber B, Kinnunen LH, Rakitin BC, Ellsasser R, Stern Y, Lisanby SH (2007) Facilitation of performance in a working memory task with rTMS stimulation of the precuneus: frequency- and time-dependent effects. Brain Res 1128(1):120–129. Google Scholar
  32. Maguire EA (2001) The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scand J Psychol 42(3):225–238Google Scholar
  33. Margulies DS, Smallwood J (2017) Converging evidence for the role of transmodal cortex in cognition. Proc Natl Acad Sci USA 114(48):12641–12643. Google Scholar
  34. Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G, Bezgin G, Eickhoff SB, Castellanos FX, Petrides M, Jefferies E, Smallwood J (2016) Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci USA 113(44):12574–12579. Google Scholar
  35. Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN (2007) Wandering minds: the default network and stimulus-independent thought. Science 315(5810):393–395. Google Scholar
  36. Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J (1995) A probabilistic atlas of the human brain: theory and rationale for its development. ICBM Neuroimage 2(2):89–101Google Scholar
  37. Osawa A, Maeshima S, Kubo K, Itakura T (2006) Neuropsychological deficits associated with a tumour in the posterior corpus callosum: a report of two cases. Brain Inj 20(6):673–676. Google Scholar
  38. Palomero-Gallagher N, Eickhoff SB, Hoffstaedter F, Schleicher A, Mohlberg H, Vogt BA, Amunts K, Zilles K (2015) Functional organization of human subgenual cortical areas: relationship between architectonical segregation and connectional heterogeneity. Neuroimage 115:177–190. Google Scholar
  39. Parvizi J, Van Hoesen GW, Buckwalter J, Damasio A (2006) Neural connections of the posteromedial cortex in the macaque. Proc Natl Acad Sci USA 103(5):1563–1568. Google Scholar
  40. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830Google Scholar
  41. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682. Google Scholar
  42. Ries ML, Schmitz TW, Kawahara TN, Torgerson BM, Trivedi MA, Johnson SC (2006) Task-dependent posterior cingulate activation in mild cognitive impairment. Neuroimage 29(2):485–492. Google Scholar
  43. Romanski LM, Giguere M, Bates JF, Goldman-Rakic PS (1997) Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey. J Comp Neurol 379(3):313–332Google Scholar
  44. Rudge P, Warrington EK (1991) Selective impairment of memory and visual perception in splenial tumours. Brain 114(Pt 1B):349–360Google Scholar
  45. Shackman AJ, Salomons TV, Slagter HA, Fox AS, Winter JJ, Davidson RJ (2011) The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat Rev Neurosci 12(3):154–167. Google Scholar
  46. Sperling RA, Laviolette PS, O’Keefe K, O’Brien J, Rentz DM, Pihlajamaki M, Marshall G, Hyman BT, Selkoe DJ, Hedden T, Buckner RL, Becker JA, Johnson KA (2009) Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 63(2):178–188. Google Scholar
  47. Stamatakis EA, Adapa RM, Absalom AR, Menon DK (2010) Changes in resting neural connectivity during propofol sedation. PLoS One 5(12):e14224. Google Scholar
  48. Vann SD, Aggleton JP, Maguire EA (2009) What does the retrosplenial cortex do? Nat Rev Neurosci 10(11):792–802. Google Scholar
  49. Vatansever D, Menon DK, Manktelow AE, Sahakian BJ, Stamatakis EA (2015) Default mode dynamics for global functional integration. J Neurosci 35(46):15254–15262. Google Scholar
  50. Vatansever D, Manktelow AE, Sahakian BJ, Menon DK, Stamatakis EA (2016) Cognitive flexibility: a default network and basal ganglia connectivity perspective. Brain Connect 6(3):201–207. Google Scholar
  51. Vatansever D, Bzdok D, Wang HT, Mollo G, Sormaz M, Murphy C, Karapanagiotidis T, Smallwood J, Jefferies E (2017a) Varieties of semantic cognition revealed through simultaneous decomposition of intrinsic brain connectivity and behaviour. Neuroimage 158:1–11. Google Scholar
  52. Vatansever D, Manktelow AE, Sahakian BJ, Menon DK, Stamatakis EA (2017b) Angular default mode network connectivity across working memory load. Hum Brain Map 38(1):41–52. Google Scholar
  53. Vatansever D, Menon DK, Stamatakis EA (2017c) Default mode contributions to automated information processing. Proc Natl Acad Sci USA 114(48):12821–12826. Google Scholar
  54. Vogt BA (2009) Cingulate neurobiology and disease. Oxford University Press, OxfordGoogle Scholar
  55. Vogt BA, Pandya DN, Rosene DL (1987) Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents. J Comp Neurol 262(2):256–270. Google Scholar
  56. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD (2011) Large-scale automated synthesis of human functional neuroimaging data. Nat Methods 8(8):665–670. Google Scholar
  57. Yeterian EH, Pandya DN (1988) Corticothalamic connections of paralimbic regions in the rhesus monkey. J Comp Neurol 269(1):130–146. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuefeng Huang
    • 1
  • Jeffrey Hullfish
    • 1
  • Dirk De Ridder
    • 2
  • Sven Vanneste
    • 1
    Email author
  1. 1.Lab for Clinical and Integrative Neuroscience, School of Behavioral and Brain ScienceUniversity of Texas at DallasRichardsonUSA
  2. 2.Department of Surgical Sciences, Dunedin School of MedicineUniversity of OtagoDunedinNew Zealand

Personalised recommendations