Advertisement

Fronto-parietal numerical networks in relation with early numeracy in young children

  • Han Zhang
  • Chong-Yaw Wee
  • Joann S. Poh
  • Qiang Wang
  • Lynette P. Shek
  • Yap-Seng Chong
  • Marielle V. Fortier
  • Michael J. Meaney
  • Birit F. P. Broekman
  • Anqi Qiu
Original Article

Abstract

Early numeracy provides the foundation of acquiring mathematical skills that is essential for future academic success. This study examined numerical functional networks in relation to counting and number relational skills in preschoolers at 4 and 6 years of age. The counting and number relational skills were assessed using school readiness test (SRT). Resting-state fMRI (rs-fMRI) was acquired in 123 4-year-olds and 146 6-year-olds. Among them, 61 were scanned twice over the course of 2 years. Meta-analysis on existing task-based numeracy fMRI studies identified the left parietal-dominant network for both counting and number relational skills and the right parietal-dominant network only for number relational skills in adults. We showed that the fronto-parietal numerical networks, observed in adults, already exist in 4-year and 6-year-olds. The counting skills were associated with the bilateral fronto-parietal network in 4-year-olds and with the right parietal-dominant network in 6-year-olds. Moreover, the number relational skills were related to the bilateral fronto-parietal and right parietal-dominant networks in 4-year-olds and had a trend of the significant relationship with the right parietal-dominant network in 6-year-olds. Our findings suggested that neural fine-tuning of the fronto-parietal numerical networks may subserve the maturation of numeracy in early childhood.

Keywords

School readiness test Counting Number relation Resting-state functional magnetic resonance imaging Fronto-parietal network 

Notes

Funding

This research is supported by the Singapore National Research Foundation under its Translational and Clinical Research (TCR) Flagship Programme and administered by the Singapore Ministry of Health’s National Medical Research Council (NMRC), Singapore—NMRC/TCR/004-NUS/2008; NMRC/TCR/012-NUHS/2014. Additional funding is provided by NMRC (NMRC/CBRG/0039/2013).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

429_2018_1774_MOESM1_ESM.doc (180 kb)
Supplementary material 1 (DOC 180 KB)

References

  1. Alloway TP, Alloway RG (2010) Investigating the predictive roles of working memory and IQ in academic attainment. J Exp Child Psychol 106:20–29.  https://doi.org/10.1016/j.jecp.2009.11.003 CrossRefPubMedGoogle Scholar
  2. Ansari D, Dhital B (2006) Age-related changes in the activation of the intraparietal sulcus during nonsymbolic magnitude processing: an event-related functional magnetic resonance imaging study. J Cogn Neurosci 18:1820–1828.  https://doi.org/10.1162/jocn.2006.18.11.1820 CrossRefPubMedGoogle Scholar
  3. Ansari D, Karmiloff-Smith A (2002) Atypicial trajectories of number development: a neuroconstructivist perspective. Trends Cogn Sci 6:511–516.  https://doi.org/10.1016/S1364-6613(02)02040-5 CrossRefPubMedGoogle Scholar
  4. Aunio P, Niemivirta M (2010) Predicting children’s mathematical performance in grade one by early numeracy. Learn Individ Differ 20:427–435.  https://doi.org/10.1016/j.lindif.2010.06.003 CrossRefGoogle Scholar
  5. Bartelet D, Vaessen A, Blomert L, Ansari D (2014) What basic number processing measures in kindergarten explain unique variability in first-grade arithmetic proficiency? J Exp Child Psychol 117:12–28.  https://doi.org/10.1016/j.jecp.2013.08.010 CrossRefPubMedGoogle Scholar
  6. Brauer J, Friederici AD (2007) Functional neural networks of semantic and syntactic processes in the developing brain. J Cogn Neurosci 19:1609–1623.  https://doi.org/10.1162/jocn.2007.19.10.1609 CrossRefPubMedGoogle Scholar
  7. Bullard SE, Griss M, Greene S, Gekker A (2013) Encyclopedia of clinical neuropsychology. Arch Clin Neuropsych 28:92.  https://doi.org/10.1093/arclin/acs103 CrossRefGoogle Scholar
  8. Cantlon JF, Brannon EM, Carter EJ, Pelphrey KA (2006) Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biol 4:844–854.  https://doi.org/10.1371/journal.pbio.0040125 CrossRefGoogle Scholar
  9. Cantlon JF, Libertus ME, Pinel P et al (2009) The neural development of an abstract concept of number. J Cogn Neurosci 21:2217–2229.  https://doi.org/10.1162/jocn.2008.21159 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Case R, Demetriou A, Platsidou M, Kazi S (2001) Integrating concepts and tests of intelligence from the differential and developmental traditions. Intelligence 29:307–336.  https://doi.org/10.1016/S0160-2896(00)00057-X CrossRefGoogle Scholar
  11. Caspers S, Zilles K, Laird AR, Eickhoff SB (2010) ALE meta-analysis of action observation and imitation in the human brain. Neuroimage 50:1148–1167.  https://doi.org/10.1016/j.neuroimage.2009.12.112 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chew AL, Morris JD (1984) Validation of the Lollipop test: a diagnostic screening test of school readiness. Educ Psychol Meas 44:987–991.  https://doi.org/10.1177/0013164484444022 CrossRefGoogle Scholar
  13. Chochon F, Cohen L, van de Moortele PF, Dehaene S (1999) Differential contributions of the left and right inferior parietal lobules to number processing. J Cogn Neurosci 11:617–630.  https://doi.org/10.1162/089892999563689 CrossRefPubMedGoogle Scholar
  14. Crone EA, Steinbeis N (2017) Neural perspectives on cognitive control development during childhood and adolescence. Trends Cogn Sci 21:205–215.  https://doi.org/10.1016/j.tics.2017.01.003 CrossRefPubMedGoogle Scholar
  15. Dehaene S (2011) The number sense: how the mind creates mathematics. Oxford University Press, New YorkGoogle Scholar
  16. Dehaene S, Piazza M, Pinel P, Cohen L (2003) Three parietal circuits for number processing. Cogn Neuropsychol 20:487–506.  https://doi.org/10.1080/02643290244000239 CrossRefPubMedGoogle Scholar
  17. Du J, Younes L, Qiu A (2011) Whole brain diffeomorphic metric mapping via integration of sulcal and gyral curves, cortical surfaces, and images. Neuroimage 56:162–173.  https://doi.org/10.1016/j.neuroimage.2011.01.067 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Edwards LA, Wagner JB, Simon CE, Hyde DC (2016) Functional brain organization for number processing in pre-verbal infants. Dev Sci 19:757–769.  https://doi.org/10.1111/desc.12333 CrossRefPubMedGoogle Scholar
  19. Eickhoff SB, Bzdok D, Laird AR et al (2012) Activation likelihood estimation meta-analysis revisited. Neuroimage 59:2349–2361.  https://doi.org/10.1016/j.neuroimage.2011.09.017 CrossRefPubMedGoogle Scholar
  20. Eickhoff SB, Nichols TE, Laird AR et al (2016) Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. Neuroimage 137:70–85.  https://doi.org/10.1016/j.neuroimage.2016.04.072 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Eickhoff SB, Laird AR, Fox PM et al (2017) Implementation errors in the GingerALE software: description and recommendations. Hum Brain Mapp 38:7–11.  https://doi.org/10.1002/hbm.23342 CrossRefPubMedGoogle Scholar
  22. Emerson RW, Cantlon JF (2012) Early math achievement and functional connectivity in the fronto-parietal network. Dev Cogn Neurosci 2:S139–S151.  https://doi.org/10.1016/j.dcn.2011.11.003 CrossRefPubMedGoogle Scholar
  23. Emerson RW, Cantlon JF (2015) Continuity and change in children’s longitudinal neural responses to numbers. Dev Sci 18:314–326.  https://doi.org/10.1111/desc.12215 CrossRefPubMedGoogle Scholar
  24. Feng X, Peng L, Chang-Quan L et al (2014) Relational complexity modulates activity in the prefrontal cortex during numerical inductive reasoning: an fMRI study. Biol Psychol 101:61–68.  https://doi.org/10.1016/j.biopsycho.2014.06.005 CrossRefPubMedGoogle Scholar
  25. Fias W, Menon V, Szucs D (2013) Multiple components of developmental dyscalculia. Trends Neurosci Educ 2:43–47.  https://doi.org/10.1016/j.tine.2013.06.006 CrossRefGoogle Scholar
  26. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation. Neuron 33(3):341–355CrossRefGoogle Scholar
  27. Fitzpatrick C, Pagani LS (2012) Toddler working memory skills predict kindergarten school readiness. Intelligence 40:205–212.  https://doi.org/10.1016/j.intell.2011.11.007 CrossRefGoogle Scholar
  28. Forget-Dubois N, Lemelin J-P, Boivin M et al (2007) Predicting early school achievement with the EDI: a longitudinal population-based study. Early Educ Dev 18:405–426.  https://doi.org/10.1080/10409280701610796 CrossRefGoogle Scholar
  29. Fuson KC (1988) Children’s counting and concept of number. Springer, New YorkCrossRefGoogle Scholar
  30. Gelman R, Galistell CH (1978) The child’s understanding of number. Harvard University Press, CambridgeGoogle Scholar
  31. Ghorai S, Mukherjee A, Sengupta S, Dutta PK (2011) Cancer classification from gene expression data by NPPC ensemble. IEEE/ACM Trans Comput Biol Bioinform 8:659–671.  https://doi.org/10.1109/TCBB.2010.36 CrossRefPubMedGoogle Scholar
  32. Harvey BM, Ferri S, Orban GA (2017) Comparing parietal quantity-processing mechanisms between humans and macaques. Trends Cogn Sci 21:779–793.  https://doi.org/10.1016/j.tics.2017.07.002 CrossRefPubMedGoogle Scholar
  33. Hildman LK, Friedberg PM, Wright PM (1993) Kaufman brief intelligence test. J Psychoeduc Assess 11:98–101CrossRefGoogle Scholar
  34. Hyde DC, Boas DA, Blair C, Carey S (2010) Near-infrared spectroscopy shows right parietal specialization for number in pre-verbal infants. Neuroimage 53:647–652.  https://doi.org/10.1016/j.neuroimage.2010.06.030 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jolles D, Ashkenazi S, Kochalka J et al (2016a) Parietal hyper-connectivity, aberrant brain organization, and circuit-based biomarkers in children with mathematical disabilities. Dev Sci 19:613–631.  https://doi.org/10.1111/desc.12399 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jolles D, Supekar K, Richardson J et al (2016b) Reconfiguration of parietal circuits with cognitive tutoring in elementary school children. Cortex 83:231–245.  https://doi.org/10.1016/j.cortex.2016.08.004 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jordan NC, Kaplan D (2009) Early math matters: kindergarten number competence and later mathematics outcomes. Dev Psychol 45:850–867.  https://doi.org/10.1037/a0014939.Early CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kaufman AS, Kaufman NL (1993) A review: Kaufman brief intelligence test. Percept Mot Skills 77:703.  https://doi.org/10.1186/1471-2318-7-23 CrossRefGoogle Scholar
  39. Kaufmann L, Vogel SE, Starke M et al (2009) Numerical and non-numerical ordinality processing in children with and without developmental dyscalculia: evidence from fMRI. Cogn Dev 24:486–494.  https://doi.org/10.1016/j.cogdev.2009.09.001 CrossRefGoogle Scholar
  40. Kersey AJ, Cantlon JF (2016) Neural tuning to numerosity relates to perceptual tuning in 3- to 6-year-old children. J Neurosci 37:512–522.  https://doi.org/10.1523/JNEUROSCI.0065-16.2016 CrossRefGoogle Scholar
  41. Kolkman ME, Kroesbergen EH, Leseman PPM (2013) Early numerical development and the role of non-symbolic and symbolic skills. Learn Instr 25:95–103.  https://doi.org/10.1016/j.learninstruc.2012.12.001 CrossRefGoogle Scholar
  42. Korhonen O, Saarimäki H, Glerean E et al (2017) Consistency of regions of interest as nodes of fMRI functional brain networks. Netw Neurosci 1:254–274.  https://doi.org/10.1162/NETN_a_00013 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kyttälä M, Lehto JE (2008) Some factors underlying mathematical performance: the role of visuospatial working memory and non-verbal intelligence. Eur J Psychol Educ 23:77–94.  https://doi.org/10.1007/BF03173141 CrossRefGoogle Scholar
  44. Laird AR (2009) ALE meta-analysis workflows via the BrainMap database: progress towards a probabilistic functional brain atlas. Front Neuroinform 3:1–11.  https://doi.org/10.3389/neuro.11.023.2009 CrossRefGoogle Scholar
  45. Leibovich T, Ansari D (2016) The symbol-grounding problem in numerical cognition: a review of theory, evidence, and outstanding questions. Can J Exp Psychol Can Psychol expérimentale 70:12–23.  https://doi.org/10.1037/cep0000070 CrossRefGoogle Scholar
  46. Lussier CA, Cantlon JF (2017) Developmental bias for number words in the intraparietal sulcus. Dev Sci 20:1–18.  https://doi.org/10.1111/desc.12385 CrossRefGoogle Scholar
  47. Menon V (2014) Arithmetic in the child and adult brain. In: Kadosh RC, Dowke A (eds) The oxford handbook of mathematical cognition. Oxford University Press, Oxford, pp 1–23Google Scholar
  48. Metcalfe AWS, Ashkenazi S, Rosenberg-Lee M, Menon V (2013) Fractionating the neural correlates of individual working memory components underlying arithmetic problem solving skills in children. Dev Cogn Neurosci 6:162–175.  https://doi.org/10.1016/j.dcn.2013.10.001 CrossRefPubMedGoogle Scholar
  49. Nieder A (2005) Counting on neurons: the neurobiology of numerical competence. Nat Rev Neurosci 6:177–190.  https://doi.org/10.1038/nrn1626 CrossRefPubMedGoogle Scholar
  50. Nieder A (2009) Prefrontal cortex and the evolution of symbolic reference. Curr Opin Neurobiol 19:99–108.  https://doi.org/10.1016/j.conb.2009.04.008 CrossRefPubMedGoogle Scholar
  51. Nieder A, Dehaene S (2009) Representation of number in the brain. Annu Rev Neurosci 32:185–208.  https://doi.org/10.1146/annurev.neuro.051508.135550 CrossRefPubMedGoogle Scholar
  52. Okamoto Y, Case R (1996) Exploring the microstructure of children s central conceptual structures in domain of number. Dev Child’s Thought.  https://doi.org/10.1111/j.1540-5834.1996.tb00536.x CrossRefGoogle Scholar
  53. Park J, Park DC, Polk TA (2013) Parietal functional connectivity in numerical cognition. Cereb Cortex 23:2127–2135.  https://doi.org/10.1093/cercor/bhs193 CrossRefPubMedGoogle Scholar
  54. Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27:1226–1238.  https://doi.org/10.1109/TPAMI.2005.159 CrossRefPubMedGoogle Scholar
  55. Piaget J (1965) The child’s conception of number. Norton, New YorkGoogle Scholar
  56. Power JD, Barnes KA, Snyder AZ et al (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59:2142–2154.  https://doi.org/10.1016/j.neuroimage.2011.10.018 CrossRefPubMedGoogle Scholar
  57. Power JD, Mitra A, Laumann TO et al (2014) Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84:320–341.  https://doi.org/10.1016/j.neuroimage.2013.08.048 CrossRefPubMedGoogle Scholar
  58. Pratt ME, McClelland MM, Swanson J, Lipscomb ST (2016) Family risk profiles and school readiness: a person-centered approach. Early Child Res Q 36:462–474.  https://doi.org/10.1016/j.ecresq.2016.01.017 CrossRefGoogle Scholar
  59. Price GR, Holloway I, Räsänen P et al (2007) Impaired parietal magnitude processing in developmental dyscalculia. Curr Biol 17:1042–1043.  https://doi.org/10.1016/j.cub.2007.10.013 CrossRefGoogle Scholar
  60. Purpura DJ, Lonigan CJ (2013) Informal numeracy skills: the structure and relations among numbering, relations, and arithmetic operations in preschool. Am Educ Res J 50:178–209.  https://doi.org/10.3102/0002831212465332 CrossRefGoogle Scholar
  61. Purpura DJ, Hume LE, Sims DM, Lonigan CJ (2011) Early literacy and early numeracy: The value of including early literacy skills in the prediction of numeracy development. J Exp Child Psychol 110:647–658.  https://doi.org/10.1016/j.jecp.2011.07.004 CrossRefPubMedGoogle Scholar
  62. Raghubar KP, Barnes MA (2016) Early numeracy skills in preschool-aged children: a review of neurocognitive findings and implications for assessment and intervention. Clin Neuropsychol 4046:1–23.  https://doi.org/10.1080/13854046.2016.1259387 CrossRefGoogle Scholar
  63. Reynvoet B, Sasanguie D (2016) The symbol grounding problem revisited: a thorough evaluation of the ANS mapping account and the proposal of an alternative account based on symbol–symbol associations. Front Psychol 07:1–11.  https://doi.org/10.3389/fpsyg.2016.01581 CrossRefGoogle Scholar
  64. Rivera SM, Reiss AL, Eckert MA, Menon V (2005) Developmental changes in mental arithmetic: evidence for increased functional specialization in the left inferior parietal cortex. Cereb Cortex 15:1779–1790.  https://doi.org/10.1093/cercor/bhi055 CrossRefPubMedGoogle Scholar
  65. Rosenberg-Lee M, Barth M, Menon V (2011) What difference does a year of schooling make?. Maturation of brain response and connectivity between 2nd and 3rd grades during arithmetic problem solving. Neuroimage 57:796–808.  https://doi.org/10.1016/j.neuroimage.2011.05.013 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Sokolowski HM, Fias W, Mousa A, Ansari D (2016) Common and distinct brain regions in both parietal and frontal cortex support symbolic and nonsymbolic number processing in humans: a functional neuroimaging meta-analysis. Neuroimage.  https://doi.org/10.1016/j.neuroimage.2016.10.028 CrossRefPubMedGoogle Scholar
  67. Tan M, Qiu A (2016) Large deformation multiresolution diffeomorphic metric mapping for multiresolution cortical surfaces: a coarse-to-fine approach. IEEE Trans Image Process. 25(9):4061–4074.  https://doi.org/10.1109/TIP.2016.2574982 CrossRefPubMedGoogle Scholar
  68. Toll SWM, Van Viersen S, Kroesbergen EH, Van Luit JEH (2015) The development of (non-)symbolic comparison skills throughout kindergarten and their relations with basic mathematical skills. Learn Individ Differ 38:10–17.  https://doi.org/10.1016/j.lindif.2014.12.006 CrossRefGoogle Scholar
  69. Tomita H, Ohbayashi M, Nakahara K et al (1999) Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 401:699–703.  https://doi.org/10.1038/44372 CrossRefPubMedGoogle Scholar
  70. Turkeltaub PE, Eickhoff SB, Laird AR et al (2012) Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Hum Brain Mapp 33:1–13.  https://doi.org/10.1002/hbm.21186 CrossRefPubMedGoogle Scholar
  71. Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289.  https://doi.org/10.1006/nimg.2001.0978 CrossRefPubMedGoogle Scholar
  72. UNICEF (2012) School readiness: a conceptual framework. United Nations Children's Fund, New York. Retrieved from https://www.unicef.org/education/files/Chil2Child_ConceptualFramework_FINAL(1).pdf
  73. Van de Rijt B (1996) Voorbereidende rekenvaardigheiden bij kleuters [Early mathematical competence in young children]. Utrecht University, Graviant, DoetinchemGoogle Scholar
  74. Vanbinst K, Ghesquière P, De Smedt B (2015) Does numerical processing uniquely predict first graders’ future development of single-digit arithmetic? Learn Individ Differ 37:153–160.  https://doi.org/10.1016/j.lindif.2014.12.004 CrossRefGoogle Scholar
  75. Vogel SE, Goffin C, Ansari D (2015) Developmental specialization of the left parietal cortex for the semantic representation of Arabic numerals: an fMR-adaptation study. Dev Cogn Neurosci 12:61–73.  https://doi.org/10.1016/j.dcn.2014.12.001 CrossRefPubMedGoogle Scholar
  76. Wee C, Yap P, Zhang D, Denny K (2012) Identification of MCI individuals using structural and functional connectivity networks. Neuroimage 59:2045–2056.  https://doi.org/10.1016/j.neuroimage.2011.10.015.Identification CrossRefPubMedGoogle Scholar
  77. Zhang H, Chen C, Zhou X (2012) Neural correlates of numbers and mathematical terms. Neuroimage 60:230–240.  https://doi.org/10.1016/j.neuroimage.2011.12.006 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Han Zhang
    • 1
    • 2
  • Chong-Yaw Wee
    • 1
  • Joann S. Poh
    • 2
  • Qiang Wang
    • 1
  • Lynette P. Shek
    • 2
    • 6
    • 7
  • Yap-Seng Chong
    • 2
    • 8
  • Marielle V. Fortier
    • 3
  • Michael J. Meaney
    • 2
    • 4
    • 5
  • Birit F. P. Broekman
    • 2
  • Anqi Qiu
    • 1
    • 2
  1. 1.Department of Biomedical Engineering and Clinical Imaging Research CenterNational University of SingaporeSingaporeSingapore
  2. 2.Singapore Institute for Clinical SciencesSingaporeSingapore
  3. 3.Department of Diagnostic and Interventional ImagingKK Women’s and Children’s Hospital, Singapore (KKH)SingaporeSingapore
  4. 4.Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University InstituteMcGill UniversityMontrealCanada
  5. 5.Sackler Program for Epigenetics and PsychobiologyMcGill UniversityMontrealCanada
  6. 6.Department of Paediatrics, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
  7. 7.Khoo Teck Puat-National University Children’s Medical InstituteNational University Health SystemSingaporeSingapore
  8. 8.Department of Obstetrics and Gynaecology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore

Personalised recommendations