Advertisement

The SLC6A3 3′-UTR VNTR and intron 8 VNTR polymorphisms association in the time estimation

  • Francisco Victor Costa Marinho
  • Giovanny R. Pinto
  • Thomaz Oliveira
  • Anderson Gomes
  • Valéria Lima
  • Hygor Ferreira-Fernandes
  • Kaline Rocha
  • Francisco Magalhães
  • Bruna Velasques
  • Pedro Ribeiro
  • Maurício Cagy
  • Daya Gupta
  • Victor Hugo Bastos
  • Silmar Teixeira
Original Article
  • 37 Downloads

Abstract

Objective

The present study investigated the association of 3′-UTR VNTR and intron 8 VNTR polymorphisms with a time estimation task performance.

Materials and methods

One hundred and eight men in a Brazilian Northeast population (18–32 years old) participated in the experiment. The 3′-UTR VNTR and intron 8 VNTR polymorphisms were associated alone and combined to absolute error (AE) and relative error (RE) in a time estimation task (target duration: 1 s, 4 s, 7 s and 9 s).

Results

We found an association of the behavioral variable with intron 8 VNTR for the time intervals of 1 s and 9 s (p < 0.001) and polymorphisms combinatorial effect for 1 s (p ≤ 0.05).

Conclusion

The intron 8 VNTR polymorphism and the combinatorial effect can modulate the time estimate in the domain of supra seconds, and thus our study indicates a role of the dopamine transporter in the neurobiological areas related to the time intervals judgment.

Keywords

Time perception Dopamine Time estimation SLC6A3 3′-UTR VNTR SLC6A3 intron 8 VNTR 

Notes

Author contributions

Conceived and designed the experiments: VM, TO, GRP, and ST. Performed the experiments: VM, TO, AG, and VL. Analyzed the data: VM. Contributed reagents/materials/analysis tools: FM, KR, GRP, HFF, BV, PR, MC, DSG and VHB. Wrote the paper: VM. Headed the molecular genetic analysis: VM, TO, ST, and GRP.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Balci F, Ludvig EA, Abner R, Zhuang X, Poon P, Brunner D (2010) Motivational effects on interval timing in dopamine transporter (DAT) knockdown mice. Brain Res 1325(14):89–99CrossRefGoogle Scholar
  2. Balci F, Wiener M, Cavdaroğlu B, Branch CH (2013) Epistasis effects of dopamine genes on interval timing and reward magnitude in humans. Neuropsychologia 51(2):293–308CrossRefGoogle Scholar
  3. Bartholomew AJ, Meck WH, Cirulli ET (2015) Analysis of genetic and non-genetic factors influencing timing and time perception. PLoS one 10(12):e0143873CrossRefGoogle Scholar
  4. Barzman D, Geise C, Lin P (2015) Review of the genetic basis of emotion dysregulation in children and adolescents. World J Psychiatry 5(1):112–117CrossRefGoogle Scholar
  5. Brown SW (1985) Time perception and attention: the effects of prospective versus retrospective paradigms and task demands on perceived duration. Percept Psychophys 38(2):115–124CrossRefGoogle Scholar
  6. Buhusi CV, Meck WH (2005) What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci 6(10):755–765CrossRefGoogle Scholar
  7. Buhusi M, Olsen K, Yang BZ, Buhusi CV (2016) Stress-induced executive dysfunction in gdnf-deficient mice, a mouse model of parkinsonism. Front Behav Neurosci 21(10):114Google Scholar
  8. Cheng RK, MacDonald CJ, Meck WH (2006) Differential effects of cocaine and ketamine on time estimation: implications for neurobiological models of interval timing. Pharmacol Biochem Behav 85(1):114–122CrossRefGoogle Scholar
  9. Coull JT, Cheng RK, Meck WH (2011) Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology 36(1):3–25CrossRefGoogle Scholar
  10. Coull JT, Hwang HJ, Leyton M, Dagher A (2012) Dopamine precursor depletion impairs timing in healthy volunteers by attenuating activity in putamen and supplementary motor area. J Neurosci 32(47):16704–16715CrossRefGoogle Scholar
  11. Drew MR, Fairhurst S, Malapani C, Horvitz JC, Balsam PD (2003) Effects of dopamine antagonists on the timing of two intervals. Pharmacol Biochem Behav 75(1):9–15CrossRefGoogle Scholar
  12. Ettinger U, Merten N, Kambeitz J (2016) Meta-analysis of the association of the SLC6A3 3′-UTR VNTR with cognition. Neurosci Biobehav Rev 60:72–81CrossRefGoogle Scholar
  13. Faraone SV, Mick E (2010) Molecular genetics of attention deficit hyperactivity disorder. Psychiatr Clin North Am 33:159–180CrossRefGoogle Scholar
  14. Faraone SV, Spencer TJ, Madras BK, Zhang-James Y, Biederman J (2014) Functional effects of dopamine transporter gene genotypes on in vivo dopamine transporter functioning: a meta-analysis. Mol Psychiatry 19:880–889CrossRefGoogle Scholar
  15. Fayers PM, Machin D (1995) Sample size: how many patients are necessary? Br J Cancer 72:1–9CrossRefGoogle Scholar
  16. Finnerty GT, Shadlen MN, Jazayeri M, Nobre AC, Buonomano DV (2015) Time in cortical circuits. J Neurosci 35(41):13912–13916CrossRefGoogle Scholar
  17. Fontes R, Ribeiro J, Gupta DS, Machado D, Lopes-Júnior F, Magalhães F, Bastos VH, Rocha K, Marinho V, Lima G, Velasques B, Ribeiro P, Orsini M, Pessoa B, Leite MA, Teixeira S (2016) Time perception mechanisms at central nervous system. Neurol Int 8(1):5939CrossRefGoogle Scholar
  18. Franke B, Hoogman M, Arias Vasquez A, Heister JG, Savelkoul PJ, Naber M, Buitelaar JK (2008) Association of the dopamine transporter (SLC6A3/DAT1) gene 9–6 haplotype with adult ADHD. Am J Med Genet Part B 147B(8):1576–1579CrossRefGoogle Scholar
  19. Franke B, Vasquez AA, Johansson S, Hoogman M, Romanos J, Boreatti- Hu¨mmer A, Reif A (2010) Multicenter analysis of the SLC6A3/DAT1 VNTR haplotype in persistent ADHD suggests differential involvement of the gene in childhood and persistent ADHD. Neuropsychopharmacology 35(3):656–664CrossRefGoogle Scholar
  20. Golombek DA, Bussi IL, Agostino PV (2014) Minutes, days and years: molecular interactions among different scales of biological timing. Philos Trans R Soc Lond B Biol Sci 369(1637):20120465CrossRefGoogle Scholar
  21. Green AE, Munafò MR, DeYoung CG, Fossella JA, Fan J, Gray JR (2008) Using genetic data in cognitive neuroscience: from growing pains to genuine insights. Nat Rev Neurosci 9(9):710–720CrossRefGoogle Scholar
  22. Gupta DS (2014) Processing of sub- and supra-second intervals in the primate brain results from the calibration of neuronal oscillators via sensory, motor, and feedback processes. Front Psychol 5:816CrossRefGoogle Scholar
  23. Hancock PA, Rausch R (2010) The effects of sex, age, and interval duration on the perception of time. Acta Psychol (Amst) 133(2):170–179CrossRefGoogle Scholar
  24. Hawi Z, Kent L, Hill M, Anney RJ, Brookes KJ, Barry E et al (2010) ADHD and DAT1: further evidence of paternal over-transmission of risk alleles and haplotype. Am J Med Genet B Neuropsychiatr Genet 153B:97–102PubMedGoogle Scholar
  25. Hill M, Anney RJ, Gill M, Hawi Z (2010) Functional analysis of intron 8 and 3′ UTR variable number of tandem repeats of SLC6A3: differential activity of intron 8 variants. Pharmacogenom J 10(5):442–447CrossRefGoogle Scholar
  26. Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41(1):3–13CrossRefGoogle Scholar
  27. Ivry RB, Spencer RM (2004) The neural representation of time. Curr Opin Neurobiol 14(2):225–232CrossRefGoogle Scholar
  28. Jones CRG, Rosenkranz K, Rothwell JC, Jahanshahi M (2004) The right dorsolateral prefrontal cortex is essential in time reproduction: an investigation with repetitive transcranial magnetic stimulation. Exp Brain Res 158:366–372CrossRefGoogle Scholar
  29. Jozefowiez J, Polack CW, Machado A, Miller RR (2014) Trial frequency effects in human temporal bisection: implications for theories of timing. Behav Process 101:81–88CrossRefGoogle Scholar
  30. Lake JI, Meck WH (2013) Differential effects of amphetamine and haloperidol on temporal reproduction: dopaminergic regulation of attention and clock speed. Neuropsychologia 51(2):284–292CrossRefGoogle Scholar
  31. Lewis PA, Mial RC (2006) Remembering the time: a continuous clock. Trends Cogn Sci 10(9):401–406CrossRefGoogle Scholar
  32. Lim J, Ebstein R, Tse CY, Monakhov M, Lai PS, Dinges DF, Kwok K (2012) Dopaminergic polymorphisms associated with time-on-task declines and fatigue in the psychomotor vigilance test. PLoS One 7(3):e33767CrossRefGoogle Scholar
  33. Maksimov M, Vaht M, Murd C, Harro J, Bachmann T (2015) Brain dopaminergic system related genetic variability interacts with target/mask timing in metacontrast masking. Neuropsychologia 71:112–118CrossRefGoogle Scholar
  34. Marinho V, Oliveira T, Bandeira J, Pinto GR, Gomes A, Lima V, Magalhães F, Rocha K, Ayres C, Carvalho V, Velasques B, Ribeiro P, Orsini M, Bastos VH, Gupta D, Teixeira S (2018a) Genetic influence alters the brain synchronism in perception and timing. J Biomed Sci 25(1):61.  https://doi.org/10.1186/s12929-018-0463-z CrossRefPubMedPubMedCentralGoogle Scholar
  35. Marinho V, Oliveira T, Rocha K, Ribeiro J, Magalhães F, Bento T, Pinto GR, Velasques B, Ribeiro P, Di Giorgio L, Orsini M, Gupta DS, Bittencourt J, Bastos VH, Teixeira S (2018b) Int J Neurosci 128(3):262–282CrossRefGoogle Scholar
  36. Matthews WJ, Meck WH (2014) Time perception: the bad news and the good. Wiley Interdiscip Rev Cogn Sci 5(4):429–446CrossRefGoogle Scholar
  37. Meck WH (2009) Neuroanatomical localization of an internal clock: a functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Res 1109:93–107CrossRefGoogle Scholar
  38. Meck WH, Cheng RK, MacDonald CJ, Gainetdinov RR, Caron MG, Cevik M (2012) Gene-dose dependent effects of methamphetamine on interval timing in dopamine-transporter knockout mice. Neuropharmacology 62(3):1221–1229CrossRefGoogle Scholar
  39. Mioni G, Stablum F, McClintock SM, Grondin S (2014) Different methods for reproducing time, different results. Atten Percept Psychophys 76(3):675–681CrossRefGoogle Scholar
  40. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefGoogle Scholar
  41. Petter EA, Lusk NA, Hesslow G, Meck WH (2016) Interactive roles of the cerebellum and striatum in sub-second and supra-second timing: Support for an initiation, continuation, adjustment, and termination (ICAT) model of temporal processing. Neurosci Biobehav Rev 71:739–755CrossRefGoogle Scholar
  42. Rammsayer TH (1993) On dopaminergic modulation of temporal information processing. Biol Psychol 36:209–222CrossRefGoogle Scholar
  43. Rammsayer TH (1999) Neuropharmacological evidence for different timing mechanisms in humans. Q J Exp Psychol Sect B 52(3):273–278Google Scholar
  44. Rommelse NN, Altink ME, Arias-Vásquez A, Buschgens CJ, Fliers E, Faraone SV, Buitelaar JK, Sergeant JA, Franke B, Oosterlaan J (2008) A review and analysis of the relationship between neuropsychological measures and DAT1 in ADHD. Am J Med Genet B Neuropsychiatr Genet 147B(8):1536–1546CrossRefGoogle Scholar
  45. Šerý O, Paclt I, Drtílková I, Theiner P, Kopečková M, Zvolský P, Balcar VJ (2015) A 40-bp VNTR polymorphism in the 3′-untranslated region of DAT1/SLC6A3 is associated with ADHD but not with alcoholism. Behav Brain Funct 11:11–21CrossRefGoogle Scholar
  46. Shea-Brown E, Rinzel J, Rakitin BC, Malapani C (2006) A firing rate model of Parkinsonian deficits in interval timing. Brain Res 1070:189–201CrossRefGoogle Scholar
  47. Shumay E, Fowler JS, Volkow ND (2010) Genomic features of the human dopamine transporter gene and its potential epigenetic states: implications for phenotypic diversity. PLoS One 5:e11067CrossRefGoogle Scholar
  48. Späti J, Aritake S, Meyer AH, Kitamura S, Hida A, Higuchi S, Moriguchi Y, Mishima K (2015) Modeling circadian and sleep-homeostatic effects on short-term interval timing. Front Integr Neurosci 17:9:15Google Scholar
  49. Sysoeva OV, Tonevitsky AG, Wackermann J (2010) Genetic determinants of time perception mediated by the serotonergic system. PLoS One 5(9):e12650CrossRefGoogle Scholar
  50. Teixeira S, Machado S, Paes F, Velasques B, Silva JG, Sanfim AL, Minc D, Anghinah R, Menegaldo LL, Salama M, Cagy M, Nardi AE, Pöppel E, Bao Y, Szelag E, Ribeiro P, Arias-Carrión O (2013) Time perception distortion in neuropsychiatric and neurological disorders. CNS Neurol Disord Drug Targets 12:567–582CrossRefGoogle Scholar
  51. Tong JH, Cummins TD, Johnson BP, McKinley LA, Pickering HE, Fanning P, Stefanac NR, Newman DP, Hawi Z, Bellgrove MA (2015) An association between a dopamine transporter gene (SLC6A3) haplotype and ADHD symptom measures in nonclinical adults. Am J Med Genet B Neuropsychiatr Genet 168B(2):89–96CrossRefGoogle Scholar
  52. Vasconcelos AC, Neto Ede S, Pinto GR, Yoshioka FK, Motta FJ, Vasconcelos DF, Canalle R (2015) Association study of the SLC6A3 VNTR (DAT) and DRD2/ANKK1 Taq1A polymorphisms with alcohol dependence in a population from northeastern Brazil. Alcohol Clin Exp Res 39(2):205–211CrossRefGoogle Scholar
  53. Wiener M, Lohoff FW, Coslett HB (2011) Double dissociation of dopamine genes and timing in humans. J Cogn Neurosci 23:2811–2821CrossRefGoogle Scholar
  54. Wiener M, Lee YS, Lohoff FW, Coslett HB (2014) Individual differences in the morphometry and activation of time perception networks are influenced by dopamine genotype. Neuroimage 89:10–22CrossRefGoogle Scholar
  55. Wittmann M (2013) The inner sense of time: how the brain creates a representation of duration. Nat Rev 14:217CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Francisco Victor Costa Marinho
    • 1
    • 2
    • 3
  • Giovanny R. Pinto
    • 2
    • 3
  • Thomaz Oliveira
    • 1
    • 2
    • 3
  • Anderson Gomes
    • 2
  • Valéria Lima
    • 2
  • Hygor Ferreira-Fernandes
    • 2
    • 3
  • Kaline Rocha
    • 1
    • 3
  • Francisco Magalhães
    • 1
    • 3
  • Bruna Velasques
    • 4
  • Pedro Ribeiro
    • 4
  • Maurício Cagy
    • 4
  • Daya Gupta
    • 5
  • Victor Hugo Bastos
    • 6
  • Silmar Teixeira
    • 1
    • 3
  1. 1.Neuro-innovation Technology and Brain Mapping LaboratoryFederal University of PiauíParnaíbaBrazil
  2. 2.Genetics and Molecular Biology LaboratoryFederal University of PiauíParnaíbaBrazil
  3. 3.The Northeast Biotechnology Network (RENORBIO)Federal University of PiauíTeresinaBrazil
  4. 4.Brain Mapping and Sensory Motor Integration LaboratoryInstitute of Psychiatry of Federal University of Rio de JaneiroRio de JaneiroBrazil
  5. 5.Department of BiologyCamden County CollegeBlackwoodUSA
  6. 6.Brain Mapping and Functionality LaboratoryFederal University of PiauíParnaíbaBrazil

Personalised recommendations