Advertisement

Brain Structure and Function

, Volume 223, Issue 9, pp 4067–4085 | Cite as

Development of piriform cortex interhemispheric connections via the anterior commissure: progressive and regressive strategies

  • Eduardo Martin-Lopez
  • Sarah J. Meller
  • Charles A. GreerEmail author
Original Article
  • 228 Downloads

Abstract

The anterior commissure (AC) is a phylogenetically conserved inter-hemispheric connection found among vertebrates with bilateral symmetry. The AC connects predominantly olfactory areas but many aspects of its development and structure are unknown. To fill this gap, we investigated the embryonic and postnatal development of the AC by tracing axons with DiI and the piggyback transposon multicolor system. With this strategy, we show that axon growth during establishment of the AC follows a strictly regulated timeline of events that include waiting periods (“regressive strategies”) as well as periods of active axon outgrowth (“progressive strategies”). We also provide evidence that these processes may be regulated in the midline via overexpression of chondroitin sulfate proteoglycans. Additionally, we demonstrate that the ipsi- and contralateral innervation of piriform cortex occurs simultaneously. Morphologically, we found that 20% of axons were myelinated by postnatal day (P) 22, in a process that occurred fundamentally around P14. By immunohistochemistry, we described the presence of glial cells and two new subtypes of neurons: one expressing a calretinin (CR)/MAP2+ phenotype, distributed homogeneously inside the AC; and the other expressing a CR+/MAP2+ phenotype that lies beneath the bed nucleus of the stria terminalis. Our results are consistent with the notion that the AC follows a strictly regulated program during the embryonic and postnatal development similarly to other distal targeting axonal tracts.

Keywords

Anterior commissure Piriform cortex Axons growth Embryonic development Versican Myelination PiggyBac 

Notes

Acknowledgements

We thank Christine Kaliszewski for technical assistance with EM, Jaime Grutzendler for the CNPase antibody, and the very helpful discussions with all members of the Greer Lab.

Funding

Supported in part by NIH NIDCD DC013791, DC015438, and DC012441 to CAG.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animal procedures were approved by Yale University Animal Care and Use Committee.

Informed consent

This manuscript has been approved by all co-authors and agreed with the submission of the manuscript to Brain Structure and Function.

Supplementary material

429_2018_1741_MOESM1_ESM.pdf (524 kb)
Supplementary material 1 (PDF 523 KB)

References

  1. Abudureyimu S et al (2018) Essential role of Linx/Islr2 in the development of the forebrain anterior. Commissure Sci Rep 8:7292.  https://doi.org/10.1038/s41598-018-24064-0 CrossRefPubMedGoogle Scholar
  2. Adler CM, Holland SK, Schmithorst V, Wilke M, Weiss KL, Pan H, Strakowski SM (2004) Abnormal frontal white matter tracts in bipolar disorder: a diffusion tensor imaging study. Bipolar Disord 6:197–203.  https://doi.org/10.1111/j.1399-5618.2004.00108.x CrossRefPubMedGoogle Scholar
  3. Andrews W et al (2006) Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain. Development 133:2243–2252.  https://doi.org/10.1242/dev.02379 CrossRefPubMedGoogle Scholar
  4. Brodal A (1948) The origin of the fibers of the anterior commissure in the rat; experimental studies. J Comp Neurol 88:157–205CrossRefGoogle Scholar
  5. Brouns MR et al (2000) The adhesion signaling molecule p190 RhoGAP is required for morphogenetic processes in neural development. Development 127:4891–4903PubMedGoogle Scholar
  6. Brunjes PC (2013) The mouse olfactory peduncle. 2. The anterior limb of the anterior commissure. Front Neuroanat 6:51.  https://doi.org/10.3389/fnana.2012.00051 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Calloni SF et al (2017) Compound heterozygous variants in ROBO1 cause a neurodevelopmental disorder with absence of transverse pontine fibers and thinning of the anterior commissure and corpus. Callosum Pediatr Neurol 70:70–74.  https://doi.org/10.1016/j.pediatrneurol.2017.01.018 CrossRefPubMedGoogle Scholar
  8. Carney RS et al (2006) Cell migration along the lateral cortical stream to the developing basal telencephalic limbic system. J Neurosci 26:11562–11574.  https://doi.org/10.1523/JNEUROSCI.3092-06.2006 CrossRefPubMedGoogle Scholar
  9. Chebat DR, Boire D, Ptito M (2006) Development of the commissure of the superior colliculus in the hamster. J Comp Neurol 494:887–902.  https://doi.org/10.1002/cne.20856 CrossRefPubMedGoogle Scholar
  10. Chedotal A (2014) Development and plasticity of commissural circuits: from locomotion to brain repair. Trends Neurosci 37:551–562.  https://doi.org/10.1016/j.tins.2014.08.009 CrossRefPubMedGoogle Scholar
  11. Chen L et al (2007) Rac1 controls the formation of midline commissures and the competency of tangential migration in ventral telencephalic neurons. J Neurosci 27:3884–3893.  https://doi.org/10.1523/JNEUROSCI.3509-06.2007 CrossRefPubMedGoogle Scholar
  12. Collins LN, Hill DL, Brunjes PC (2018) Myelination of the developing lateral olfactory tract and anterior commissure. J Comp Neurol  https://doi.org/10.1002/cne.24452 CrossRefPubMedGoogle Scholar
  13. Conway CD, Howe KM, Nettleton NK, Price DJ, Mason JO, Pratt T (2011) Heparan sulfate sugar modifications mediate the functions of slits and other factors needed for mouse forebrain commissure development. J Neurosci 31:1955–1970.  https://doi.org/10.1523/JNEUROSCI.2579-10.2011 CrossRefPubMedGoogle Scholar
  14. De Carlos JA, O’Leary DD (1992) Growth and targeting of subplate axons and establishment of major cortical pathways. J Neurosci 12:1194–1211CrossRefGoogle Scholar
  15. Deuel TA, Liu JS, Corbo JC, Yoo SY, Rorke-Adams LB, Walsh CA (2006) Genetic interactions between doublecortin and doublecortin-like kinase in neuronal migration and axon outgrowth. Neuron 49:41–53.  https://doi.org/10.1016/j.neuron.2005.10.038 CrossRefPubMedGoogle Scholar
  16. Dickson BJ (2002) Molecular mechanisms of axon guidance. Science 298:1959–1964.  https://doi.org/10.1126/science.1072165 CrossRefGoogle Scholar
  17. Dodero L, Damiano M, Galbusera A, Bifone A, Tsaftsaris SA, Scattoni ML, Gozzi A (2013) Neuroimaging evidence of major morpho-anatomical and functional abnormalities in the BTBR T + TF/J mouse model of autism. PLoS One 8:e76655.  https://doi.org/10.1371/journal.pone.0076655 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Falk J et al (2005) Dual functional activity of semaphorin 3B is required for positioning the anterior commissure. Neuron 48:63–75.  https://doi.org/10.1016/j.neuron.2005.08.033 CrossRefPubMedGoogle Scholar
  19. Fernaud-Espinosa I, Nieto-Sampedro M, Bovolenta P (1996) Developmental distribution of glycosaminoglycans in embryonic rat brain: relationship to axonal tract formation. J Neurobiol 30:410–424.  https://doi.org/10.1002/(SICI)1097-4695(199607)30:3%3C410::AID-NEU9%3E3.0.CO;2-7 CrossRefPubMedGoogle Scholar
  20. Figueres-Onate M, Garcia-Marques J, Lopez-Mascaraque L (2016) UbC-StarTrack, a clonal method to target the entire progeny of individual progenitors. Sci Rep 6:33896.  https://doi.org/10.1038/srep33896 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fitzpatrick KA, Imig TJ (1980) Auditory cortico-cortical connections in the owl monkey. J Comp Neurol 192:589–610.  https://doi.org/10.1002/cne.901920314 CrossRefPubMedGoogle Scholar
  22. Garcia-Marques J, Lopez-Mascaraque L (2013) Clonal identity determines astrocyte cortical heterogeneity. Cereb Cortex 23:1463–1472.  https://doi.org/10.1093/cercor/bhs134 CrossRefPubMedGoogle Scholar
  23. Garcia-Moreno F, Lopez-Mascaraque L, de Carlos JA (2008) Early telencephalic migration topographically converging in the olfactory cortex. Cereb Cortex 18:1239–1252.  https://doi.org/10.1093/cercor/bhm154 CrossRefPubMedGoogle Scholar
  24. Garcia-Moreno F, Vasistha NA, Begbie J, Molnar Z (2014) CLoNe is a new method to target single progenitors and study their progeny in mouse and chick. Development 141:1589–1598.  https://doi.org/10.1242/dev.105254 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gross CG, Bender DB, Mishkin M (1977) Contributions of the corpus callosum and the anterior commissure to visual activation of inferior temporal neurons. Brain Res 131:227–239CrossRefGoogle Scholar
  26. Gurdjian ES (1925) Olfactory connections in the albino rat, with special reference to the stria medullaris and the anterior commissure. J Comp Neurol 38:36.  https://doi.org/10.1002/cne.900380202 CrossRefGoogle Scholar
  27. Haberly LB, Price JL (1978a) Association and commissural fiber systems of the olfactory cortex of the rat. J Comp Neurol 178:711–740.  https://doi.org/10.1002/cne.901780408 CrossRefPubMedGoogle Scholar
  28. Haberly LB, Price JL (1978b) Association and commissural fiber systems of the olfactory cortex of the rat. II. Systems originating in the olfactory peduncle. J Comp Neurol 181:781–807.  https://doi.org/10.1002/cne.901810407 CrossRefPubMedGoogle Scholar
  29. Henkemeyer M, Orioli D, Henderson JT, Saxton TM, Roder J, Pawson T, Klein R (1996) Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell 86:35–46CrossRefGoogle Scholar
  30. Holt CE, Dickson BJ (2005) Sugar codes for axons? Neuron 46:169–172.  https://doi.org/10.1016/j.neuron.2005.03.021 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Horel JA, Stelzner DJ (1981) Neocortical projections of the rat anterior commissure. Brain Res 220:1–12CrossRefGoogle Scholar
  32. Hua ZL, Jeon S, Caterina MJ, Nathans J (2014) Frizzled3 is required for the development of multiple axon tracts in the mouse central nervous system. Proc Natl Acad Sci USA 111:E3005–E3014.  https://doi.org/10.1073/pnas.1406399111 CrossRefPubMedGoogle Scholar
  33. Huilgol D, Tole S (2016) Cell migration in the developing rodent olfactory system. Cell Mol Life Sci 73:2467–2490.  https://doi.org/10.1007/s00018-016-2172-7 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hulshoff Pol HE, Schnack HG, Mandl RC, Cahn W, Collins DL, Evans AC, Kahn RS (2004) Focal white matter density changes in schizophrenia: reduced inter hemispheric connectivity. Neuroimage 21:27–35CrossRefGoogle Scholar
  35. Inatani M, Irie F, Plump AS, Tessier-Lavigne M, Yamaguchi Y (2003) Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science 302:1044–1046.  https://doi.org/10.1126/science.1090497 CrossRefPubMedGoogle Scholar
  36. Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67:609–652.  https://doi.org/10.1146/annurev.biochem.67.1.609 CrossRefPubMedGoogle Scholar
  37. Jouandet ML (1982) Neocortical and basal telencephalic origins of the anterior commissure of the cat. Neuroscience 7:1731–1752CrossRefGoogle Scholar
  38. Jouandet ML, Gazzaniga MS (1979) Cortical field of origin of the anterior commissure of the rhesus monkey. Exp Neurol 66:381–397CrossRefGoogle Scholar
  39. Jouandet ML, Hartenstein V (1983) Basal telencephalic origins of the anterior commissure of the rat. Exp Brain Res 50:183–192PubMedGoogle Scholar
  40. Kallen B (1954) The embryology of the telencephalic fibre systems in the mouse. J Embryol Exp Morphol 2:87–100Google Scholar
  41. Kantor DB et al (2004) Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron 44:961–975.  https://doi.org/10.1016/j.neuron.2004.12.002 CrossRefPubMedGoogle Scholar
  42. Kaprielian Z, Imondi R, Runko E (2000) Axon guidance at the midline of the developing. CNS Anat Rec 261:176–197CrossRefGoogle Scholar
  43. Kassai H, Terashima T, Fukaya M, Nakao K, Sakahara M, Watanabe M, Aiba A (2008) Rac1 in cortical projection neurons is selectively required for midline crossing of commissural axonal formation. Eur J Neurosci 28:257–267.  https://doi.org/10.1111/j.1460-9568.2008.06343.x CrossRefPubMedGoogle Scholar
  44. Kikinis Z et al (2015) Anterior commissural white matter fiber abnormalities in first-episode psychosis: a tractography study. Schizophr Res 162:29–34.  https://doi.org/10.1016/j.schres.2015.01.037 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Klambt C, Goodman CS (1991) Role of the midline glia and neurons in the formation of the axon commissures in the central nervous system of the Drosophila embryo. Ann N Y Acad Sci 633:142–159CrossRefGoogle Scholar
  46. Klingler E et al (2015) The cytoskeleton-associated protein SCHIP1 is involved in axon guidance, and is required for piriform cortex and anterior commissure development. Development 142:2026–2036  https://doi.org/10.1242/dev.119248 CrossRefPubMedGoogle Scholar
  47. Koizumi H, Tanaka T, Gleeson JG (2006) Doublecortin-like kinase functions with doublecortin to mediate fiber tract decussation and neuronal migration. Neuron 49:55–66.  https://doi.org/10.1016/j.neuron.2005.10.040 CrossRefPubMedGoogle Scholar
  48. Kudo C, Ajioka I, Hirata Y, Nakajima K (2005) Expression profiles of EphA3 at both the RNA and protein level in the developing mammalian forebrain. J Comp Neurol 487:255–269.  https://doi.org/10.1002/cne.20551 CrossRefPubMedGoogle Scholar
  49. Kullander K, Mather NK, Diella F, Dottori M, Boyd AW, Klein R (2001) Kinase-dependent and kinase-independent functions of EphA4 receptors in major axon tract formation in vivo. Neuron 29:73–84CrossRefGoogle Scholar
  50. Larriva-Sahd J, Condes Lara M, Martinez-Cabrera G, Varela-Echavarria A (2002) Histological and ultrastructural characterization of interfascicular neurons in the rat anterior commissure. Brain Res 931:81–91CrossRefGoogle Scholar
  51. Legland D, Arganda-Carreras I, Andrey P (2016) MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 32:3532–3534.  https://doi.org/10.1093/bioinformatics/btw413 CrossRefPubMedGoogle Scholar
  52. Lent R, Guimaraes RZ (1990) Development of interhemispheric connections through the anterior commissure in hamsters. Braz J Med Biol Res 23:671–675PubMedGoogle Scholar
  53. Lent R, Guimaraes RZ (1991) Development of paleocortical projections through the anterior commissure of hamsters adopts progressive, not regressive strategies. J Neurobiol 22:475–498.  https://doi.org/10.1002/neu.480220505 CrossRefPubMedGoogle Scholar
  54. Lent R, Hedin-Pereira C, Menezes JR, Jhaveri S (1990) Neurogenesis and development of callosal and intracortical connections in the hamster. Neuroscience 38:21–37CrossRefGoogle Scholar
  55. Lent R, Uziel D, Baudrimont M, Fallet C (2005) Cellular and molecular tunnels surrounding the forebrain commissures of human fetuses. J Comp Neurol 483:375–382.  https://doi.org/10.1002/cne.20427 CrossRefPubMedGoogle Scholar
  56. Lustig M, Erskine L, Mason CA, Grumet M, Sakurai T (2001) Nr-CAM expression in the developing mouse nervous system: ventral midline structures, specific fiber tracts, and neuropilar regions. J Comp Neurol 434:13–28CrossRefGoogle Scholar
  57. Maeda N (2015) Proteoglycans and neuronal migration in the cerebral cortex during development and disease. Front Neurosci 9:98.  https://doi.org/10.3389/fnins.2015.00098 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Maeda N, Ishii M, Nishimura K, Kamimura K (2011) Functions of chondroitin sulfate and heparan sulfate in the developing brain. Neurochem Res 36:1228–1240.  https://doi.org/10.1007/s11064-010-0324-y CrossRefPubMedGoogle Scholar
  59. Margolis RU, Margolis RK (1997) Chondroitin sulfate proteoglycans as mediators of axon growth and pathfinding. Cell Tissue Res 290:343–348CrossRefGoogle Scholar
  60. Martin-Lopez E, Garcia-Marques J, Nunez-Llaves R, Lopez-Mascaraque L (2013) Clonal astrocytic response to cortical injury. PLoS One 8:e74039.  https://doi.org/10.1371/journal.pone.0074039 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Martin-Lopez E, Ishiguro K, Greer CA (2017) The laminar organization of piriform cortex follows a selective developmental and migratory program established by cell lineage. Cereb Cortex.  https://doi.org/10.1093/cercor/bhx291 CrossRefPubMedGoogle Scholar
  62. Misaki K, Kikkawa S, Terashima T (2004) Reelin-expressing neurons in the anterior commissure and corpus callosum of the rat. Brain Res Dev Brain Res 148:89–96CrossRefGoogle Scholar
  63. Munakata H, Nakamura Y, Matsumoto-Miyai K, Itoh K, Yamasaki H, Shiosaka S (2003) Distribution and densitometry mapping of L1-CAM immunoreactivity in the adult mouse brain—light microscopic observation. BMC Neurosci 4:7CrossRefGoogle Scholar
  64. Nawabi H, Castellani V (2011) Axonal commissures in the central nervous system: how to cross the midline? Cell Mol Life Sci 68:2539–2553.  https://doi.org/10.1007/s00018-011-0691-9 CrossRefPubMedGoogle Scholar
  65. Pires-Neto MA, Lent R (1991) Pioneer axons in the anterior commissure of hamster embryos. Braz J Med Biol Res 24:1067–1070PubMedGoogle Scholar
  66. Pires-Neto MA, Braga-De-Souza S, Lent R (1998) Molecular tunnels and boundaries for growing axons in the anterior commissure of hamster embryos. J Comp Neurol 399:176–188CrossRefGoogle Scholar
  67. Popp S, Andersen JS, Maurel P, Margolis RU (2003) Localization of aggrecan and versican in the developing rat central nervous system. Dev Dyn 227:143–149.  https://doi.org/10.1002/dvdy.10282 CrossRefPubMedGoogle Scholar
  68. Raasakka A, Kursula P (2014) The myelin membrane-associated enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase: on a highway to structure and function. Neurosci Bull 30:956–966.  https://doi.org/10.1007/s12264-013-1437-5 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Ramon y Cajal S (1901) Estudios sobre la corteza cerebral humana IV. Estructura de la corteza cerebral olfativa del hombre y mamíferos. Trabajos del Laboratorio de Investigaciones Biológicas de la Universidad de Madrid 1:1–140Google Scholar
  70. Raponi E, Agenes F, Delphin C, Assard N, Baudier J, Legraverend C, Deloulme JC (2007) S100B expression defines a state in which GFAP-expressing cells lose their neural stem cell potential and acquire a more mature developmental stage. Glia 55:165–177.  https://doi.org/10.1002/glia.20445 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Robichaux MA, Chenaux G, Ho HY, Soskis MJ, Greenberg ME, Henkemeyer M, Cowan CW (2016) EphB1 and EphB2 intracellular domains regulate the formation of the corpus callosum and anterior commissure. Dev Neurobiol 76:405–420.  https://doi.org/10.1002/dneu.22323 CrossRefPubMedGoogle Scholar
  72. Sahay A, Molliver ME, Ginty DD, Kolodkin AL (2003) Semaphorin 3F is critical for development of limbic system circuitry and is required in neurons for selective CNS axon guidance events. J Neurosci 23:6671–6680CrossRefGoogle Scholar
  73. Sarma AA, Richard MB, Greer CA (2011) Developmental dynamics of piriform cortex. Cereb Cortex 21:1231–1245.  https://doi.org/10.1093/cercor/bhq199 CrossRefPubMedGoogle Scholar
  74. Saxena K et al (2012) A preliminary investigation of corpus callosum and anterior commissure aberrations in aggressive youth with bipolar disorders. J Child Adolesc Psychopharmacol 22:112–119.  https://doi.org/10.1089/cap.2011.0063 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Schambra UB, Lauder JM, Silver J (1992) Atlas of the prenatal mouse brain, 1st edn. Academic Press, San DiegoGoogle Scholar
  76. Schmalfeldt M, Bandtlow CE, Dours-Zimmermann MT, Winterhalter KH, Zimmermann DR (2000) Brain derived versican V2 is a potent inhibitor of axonal growth. J Cell Sci 113(Pt 5):807–816PubMedGoogle Scholar
  77. Schneider S, Gulacsi A, Hatten ME (2011) Lrp12/Mig13a reveals changing patterns of preplate neuronal polarity during corticogenesis that are absent in reeler mutant mice. Cereb Cortex 21:134–144.  https://doi.org/10.1093/cercor/bhq070 CrossRefPubMedGoogle Scholar
  78. Shang F, Ashwell KW, Marotte LR, Waite PM (1997) Development of commissural neurons in the wallaby (Macropus eugenii). J Comp Neurol 387:507–523CrossRefGoogle Scholar
  79. Shen Y (2014) Traffic lights for axon growth: proteoglycans and their neuronal receptors. Neural Regen Res 9:356–361.  https://doi.org/10.4103/1673-5374.128236 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Shen Y, Mani S, Donovan SL, Schwob JE, Meiri KF (2002) Growth-associated protein-43 is required for commissural axon guidance in the developing vertebrate nervous system. J Neurosci 22:239–247CrossRefGoogle Scholar
  81. Silver J, Lorenz SE, Wahlsten D, Coughlin J (1982) Axonal guidance during development of the great cerebral commissures: descriptive and experimental studies, in vivo, on the role of preformed glial pathways. J Comp Neurol 210:10–29.  https://doi.org/10.1002/cne.902100103 CrossRefPubMedGoogle Scholar
  82. Snyder JM, Washington IM, Birkland T, Chang MY, Frevert CW (2015) Correlation of versican expression, accumulation, and degradation during embryonic development by quantitative immunohistochemistry. J Histochem Cytochem 63:952–967.  https://doi.org/10.1369/0022155415610383 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Sturrock RR (1974a) Histogenesis of the anterior limb of the anterior commissure of the mouse brain. 3. An electron microscopic study of gliogenesis. J Anat 117:37–53PubMedPubMedCentralGoogle Scholar
  84. Sturrock RR (1974b) Histogenesis of the anterior limb of the anterior commissure of the mouse brain. I. A quantitative study of changes in the glial population with age. J Anat 117:17–25PubMedPubMedCentralGoogle Scholar
  85. Sturrock RR (1975) A quantitative electron microscopic study of myelination in the anterior limb of the anterior commissure of the mouse brain. J Anat 119:67–75PubMedPubMedCentralGoogle Scholar
  86. Sturrock RR (1976) Development of the mouse anterior commissure. Part I. A comparison of myelination in the anterior and posterior limbs of the anterior commissure of the mouse brain. Zent Vet C 5:54–67Google Scholar
  87. Sturrock RR (1977) Neurons in the mouse anterior commissure. A light microscopic, electron microscopic and autoradiographic study. J Anat 123:751–762PubMedPubMedCentralGoogle Scholar
  88. Suarez R, Gobius I, Richards LJ (2014) Evolution and development of interhemispheric connections in the vertebrate forebrain. Front Hum Neurosci 8:497.  https://doi.org/10.3389/fnhum.2014.00497 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Suto F et al (2005) Plexin-a4 mediates axon-repulsive activities of both secreted and transmembrane semaphorins and plays roles in nerve fiber guidance. J Neurosci 25:3628–3637.  https://doi.org/10.1523/JNEUROSCI.4480-04.2005 CrossRefPubMedGoogle Scholar
  90. Tissir F, Bar I, Jossin Y, De Backer O, Goffinet AM (2005) Protocadherin Celsr3 is crucial in axonal tract development. Nat Neurosci 8:451–457.  https://doi.org/10.1038/nn1428 CrossRefPubMedGoogle Scholar
  91. Tole S, Gutin G, Bhatnagar L, Remedios R, Hebert JM (2006) Development of midline cell types and commissural axon tracts requires Fgfr1 in the cerebrum. Dev Biol 289:141–151.  https://doi.org/10.1016/j.ydbio.2005.10.020 CrossRefPubMedGoogle Scholar
  92. Treloar HB, Purcell AL, Greer CA (1999) Glomerular formation in the developing rat olfactory bulb. J Comp Neurol 413:289–304CrossRefGoogle Scholar
  93. Wahlsten D (1981) Prenatal schedule of appearance of mouse brain commissures. Brain Res 227:461–473CrossRefGoogle Scholar
  94. Wang Y, Thekdi N, Smallwood PM, Macke JP, Nathans J (2002) Frizzled-3 is required for the development of major fiber tracts in the rostral. CNS J Neurosci 22:8563–8573CrossRefGoogle Scholar
  95. Wang B et al (2017) The autophagy-inducing kinases, ULK1 and ULK2, regulate axon guidance in the developing mouse forebrain via a noncanonical pathway. Autophagy.  https://doi.org/10.1080/15548627.2017.1386820 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Wise SP, Jones EG (1976) The organization and postnatal development of the commissural projection of the rat somatic sensory cortex. J Comp Neurol 168:313–343.  https://doi.org/10.1002/cne.901680302 CrossRefPubMedGoogle Scholar
  97. Wu Y et al (2004) Versican V1 isoform induces neuronal differentiation and promotes neurite outgrowth. Mol Biol Cell 15:2093–2104.  https://doi.org/10.1091/mbc.E03-09-0667 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Yamaguchi J et al (2018) Atg9a deficiency causes axon-specific lesions including neuronal circuit dysgenesis. Autophagy 14:764–777.  https://doi.org/10.1080/15548627.2017.1314897 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Zhang J et al (2005) Magnetic resonance diffusion tensor microimaging reveals a role for Bcl-x in brain development and homeostasis. J Neurosci 25:1881–1888.  https://doi.org/10.1523/JNEUROSCI.4129-04.2005 CrossRefPubMedGoogle Scholar
  100. Zhou L et al (2008) Early forebrain wiring: genetic dissection using conditional Celsr3 mutant mice. Science 320:946–949.  https://doi.org/10.1126/science.1155244 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Eduardo Martin-Lopez
    • 1
    • 2
  • Sarah J. Meller
    • 1
    • 2
  • Charles A. Greer
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of NeuroscienceYale University School of MedicineNew HavenUSA
  2. 2.Department of NeurosurgeryYale University School of MedicineNew HavenUSA
  3. 3.The Interdepartmental Neuroscience Graduate ProgramYale University School of MedicineNew HavenUSA

Personalised recommendations