Advertisement

A framework based on sulcal constraints to align preterm, infant and adult human brain images acquired in vivo and post mortem

  • J. Lebenberg
  • M. Labit
  • G. Auzias
  • H. Mohlberg
  • C. Fischer
  • D. Rivière
  • E. Duchesnay
  • C. Kabdebon
  • F. Leroy
  • N. Labra
  • F. Poupon
  • T. Dickscheid
  • L. Hertz-Pannier
  • C. Poupon
  • G. Dehaene-Lambertz
  • P. Hüppi
  • K. Amunts
  • J. Dubois
  • J.-F. Mangin
Original Article

Abstract

Robust spatial alignment of post mortem data and in vivo MRI acquisitions from different ages, especially from the early developmental stages, into standard spaces is still a bottleneck hampering easy comparison with the mainstream neuroimaging results. In this paper, we test a landmark-based spatial normalization strategy as a framework for the seamless integration of any macroscopic dataset in the context of the Human Brain Project (HBP). This strategy stems from an approach called DISCO embedding sulcal constraints in a registration framework used to initialize DARTEL, the widely used spatial normalization approach proposed in the SPM software. We show that this strategy is efficient with a heterogeneous dataset including challenging data as preterm newborns, infants, post mortem histological data and a synthetic atlas computed from averaging the ICBM database, as well as more commonly studied data acquired in vivo in adults. We then describe some perspectives for a research program aiming at improving folding pattern matching for atlas inference in the context of the future HBP’s portal.

Keywords

MRI Folding pattern Diffeomorphism Spatial normalization Cytoarchitecture HBP 

Notes

Acknowledgements

The authors thank Yann Le Prince for his involvement in the project in improving the regularization of the registration algorithms.

Funding

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 785907 (HBP SGA2), No. 720270 (HBP SGA1) and No. 604102 (HBP’s ramp-up phase). Infant MRI acquisitions were financed thanks to a grant from the Fondation de France and Fyssen Foundation. Preterm MRI acquisitions were performed in the context of grants from the Swiss National Science Foundation, the Leenards Foundation and the European consortium NEOBRAIN. The authors thank the UNIACT clinical team from NeuroSpin for precious help in scanning and segmenting infants’ images.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Abdollahi RO, Kolster H, Glasser MF, Robinson EC, Coalson TS, Dierker D, Jenkinson M, Van Essen DC, Orban GA (2014) Correspondences between retinotopic areas and myelin maps in human visual cortex. NeuroImage 99:509–524.  https://doi.org/10.1016/j.neuroimage.2014.06.042 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amunts K, Zilles K (2015) Architectonic mapping of the human brain beyond Brodmann. Neuron 88:1086–1107.  https://doi.org/10.1016/j.neuron.2015.12.001 CrossRefPubMedGoogle Scholar
  3. Amunts, K., Schleicher, A., Bürgel, U., Mohlberg, H., Uylings, H.B.M., Zilles, K., 1999. Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412:319–341. https://doi.org/10.1002/(SICI)1096-9861(19990920)412:2<319::AID-CNE10>3.0.CO;2-7CrossRefPubMedGoogle Scholar
  4. Amunts K, Schleicher A, Zilles K (2007) Cytoarchitecture of the cerebral cortex—more than localization. NeuroImage 37:1061–1065.  https://doi.org/10.1016/j.neuroimage.2007.02.037 CrossRefPubMedGoogle Scholar
  5. Amunts K, Lepage C, Borgeat L, Mohlberg H, Dickscheid T, Rousseau M-É, Bludau S, Bazin P-L, Lewis LB, Oros-Peusquens A-M, Shah NJ, Lippert T, Zilles K, Evans AC (2013) BigBrain: an ultrahigh-resolution 3D human brain model. Science 340:1472–1475.  https://doi.org/10.1126/science.1235381 CrossRefPubMedGoogle Scholar
  6. Amunts K, Ebell C, Muller J, Telefont M, Knoll A, Lippert T (2016) The human brain project: creating a European research infrastructure to decode the human brain. Neuron 92:574–581.  https://doi.org/10.1016/j.neuron.2016.10.046 CrossRefPubMedGoogle Scholar
  7. Ashburner J (2007) A fast diffeomorphic image registration algorithm. NeuroImage 38:95–113.  https://doi.org/10.1016/j.neuroimage.2007.07.007 CrossRefPubMedGoogle Scholar
  8. Assaf Y, Alexander DC, Jones DK, Bizzi A, Behrens TEJ, Clark CA, Cohen Y, Dyrby TB, Huppi PS, Knoesche TR, LeBihan D, Parker GJM, Poupon C (2013) The CONNECT project: combining macro- and micro-structure. NeuroImage Map Connect 80:273–282.  https://doi.org/10.1016/j.neuroimage.2013.05.055 CrossRefGoogle Scholar
  9. Auzias G, Colliot O, Glaunes J-A, Perrot M, Mangin J-F, Trouve A, Baillet S (2011) Diffeomorphic brain registration under exhaustive sulcal constraints. IEEE Trans Med Imaging 30:1214–1227.  https://doi.org/10.1109/TMI.2011.2108665 CrossRefPubMedGoogle Scholar
  10. Bludau S, Eickhoff SB, Mohlberg H, Caspers S, Laird AR, Fox PT, Schleicher A, Zilles K, Amunts K (2014) Cytoarchitecture, probability maps and functions of the human frontal pole. NeuroImage 93(part 2):260–275.  https://doi.org/10.1016/j.neuroimage.2013.05.052 CrossRefPubMedGoogle Scholar
  11. Cachier P, Mangin J-F, Pennec X, Rivière D, Papadopoulos-Orfanos D, Régis J, Ayache N (2001) Multisubject non-rigid registration of brain MRI using intensity and geometric features. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2001. Presented at the International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Berlin, Heidelberg, pp 734–742.  https://doi.org/10.1007/3-540-45468-3_88
  12. Chi JG, Dooling EC, Gilles FH (1977) Gyral development of the human brain. Ann Neurol 1:86–93.  https://doi.org/10.1002/ana.410010109 CrossRefPubMedGoogle Scholar
  13. Cointepas Y, Mangin J-F, Garnero L, Poline J-B, Benali H (2001) BrainVISA: software platform for visualization and analysis of multi-modality brain data. In: OHBM. Presented at the OHBM, BrightonGoogle Scholar
  14. Collins DL, Goualher GL, Evans AC (1998) Non-linear cerebral registration with sulcal constraints. In: Wells WM, Colchester A, Delp S (eds) Medical Image computing and computer-assisted intervention—MICCAI’98. Lecture notes in computer science. Springer, Berlin, Heidelberg, pp 974–984.  https://doi.org/10.1007/BFb0056286 CrossRefGoogle Scholar
  15. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302.  https://doi.org/10.2307/1932409 CrossRefGoogle Scholar
  16. Dubois J, Benders M, Cachia A, Lazeyras F, Leuchter RH-V, Sizonenko SV, Borradori-Tolsa C, Mangin JF, Hüppi PS (2008) Mapping the early cortical folding process in the preterm newborn brain. Cereb Cortex 18:1444–1454.  https://doi.org/10.1093/cercor/bhm180 CrossRefPubMedGoogle Scholar
  17. Dubois J, Benders M, Lazeyras F, Borradori-Tolsa C, Leuchter RH-V, Mangin JF, Hüppi PS (2010) Structural asymmetries of perisylvian regions in the preterm newborn. NeuroImage 52:32–42.  https://doi.org/10.1016/j.neuroimage.2010.03.054 CrossRefPubMedGoogle Scholar
  18. Dubois J, Poupon C, Thirion B, Simonnet H, Kulikova S, Leroy F, Hertz-Pannier L, Dehaene-Lambertz G (2015) Exploring the early organization and maturation of linguistic pathways in the human infant brain. Cereb Cortex.  https://doi.org/10.1093/cercor/bhv082 (1991)CrossRefPubMedGoogle Scholar
  19. Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25:1325–1335.  https://doi.org/10.1016/j.neuroimage.2004.12.034 CrossRefPubMedGoogle Scholar
  20. Eskildsen SF, Coupé P, Fonov V, Manjón JV, Leung KK, Guizard N, Wassef SN, Østergaard LR, Collins DL (2012) BEaST: brain extraction based on nonlocal segmentation technique. NeuroImage 59:2362–2373.  https://doi.org/10.1016/j.neuroimage.2011.09.012 CrossRefPubMedGoogle Scholar
  21. Evans AC, Janke AL, Collins DL, Baillet S (2012) Brain templates and atlases. NeuroImage 62:911–922.  https://doi.org/10.1016/j.neuroimage.2012.01.024 CrossRefPubMedGoogle Scholar
  22. Fischer C, Operto G, Laguitton S, Perrot M, Denghien I, Rivière D, Mangin J-F (2012) Morphologist 2012: the new morphological pipeline of BrainVISA. In: Presented at the OHBM, BeijingGoogle Scholar
  23. Fischl B, Rajendran N, Busa E, Augustinack J, Hinds O, Yeo BTT, Mohlberg H, Amunts K, Zilles K (2008) Cortical folding patterns and predicting cytoarchitecture. Cereb Cortex 18:1973–1980.  https://doi.org/10.1093/cercor/bhm225 CrossRefPubMedGoogle Scholar
  24. Fonov V, Evans A, McKinstry R, Almli C, Collins D (2009) Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 47(Supplement 1):S102.  https://doi.org/10.1016/S1053-8119(09)70884-5 CrossRefGoogle Scholar
  25. Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL (2011) Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54:313–327.  https://doi.org/10.1016/j.neuroimage.2010.07.033 CrossRefPubMedGoogle Scholar
  26. Fox PT, Lancaster JL, Laird AR, Eickhoff SB (2014) Meta-analysis in human neuroimaging: computational modeling of large-scale databases. Annu Rev Neurosci 37:409–434.  https://doi.org/10.1146/annurev-neuro-062012-170320 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fritzsch H, Gell-Mann M (2002) Current algebra: quarks and what else? ArXivhep-Ph0208010Google Scholar
  28. Ghosh SS, Kakunoori S, Augustinack J, Nieto-Castanon A, Kovelman I, Gaab N, Christodoulou JA, Triantafyllou C, Gabrieli JDE, Fischl B (2010) Evaluating the validity of volume-based and surface-based brain image registration for developmental cognitive neuroscience studies in children 4-to-11 years of age. NeuroImage 53:85–93.  https://doi.org/10.1016/j.neuroimage.2010.05.075 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gilmore JH, Shi F, Woolson SL, Knickmeyer RC, Short SJ, Lin W, Zhu H, Hamer RM, Styner M, Shen D (2011) Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cereb Cortex.  https://doi.org/10.1093/cercor/bhr327 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171–178.  https://doi.org/10.1038/nature18933 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Glaunes J, Trouve A, Younes L (2004) Diffeomorphic matching of distributions: a new approach for unlabelled point-sets and sub-manifolds matching. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004. Presented at the Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, p. II-712–II-718, vol 2.  https://doi.org/10.1109/CVPR.2004.1315234
  32. Guevara P, Duclap D, Poupon C, Marrakchi-Kacem L, Fillard P, Le Bihan D, Leboyer M, Houenou J, Mangin J-F (2012) Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas. NeuroImage 61:1083–1099.  https://doi.org/10.1016/j.neuroimage.2012.02.071 CrossRefPubMedGoogle Scholar
  33. Guevara M, Román C, Houenou J, Duclap D, Poupon C, Mangin JF, Guevara P (2017) Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography. NeuroImage 147:703–725.  https://doi.org/10.1016/j.neuroimage.2016.11.066 CrossRefPubMedGoogle Scholar
  34. Hellier P, Barillot C (2003) Coupling dense and landmark-based approaches for nonrigid registration. IEEE Trans Med Imaging 22:217–227.  https://doi.org/10.1109/TMI.2002.808365 CrossRefPubMedGoogle Scholar
  35. Hopkins WD, Meguerditchian A, Coulon O, Bogart S, Mangin J-F, Sherwood CC, Grabowski MW, Bennett AJ, Pierre PJ, Fears S, Woods R, Hof PR, Vauclair J (2014) Evolution of the central sulcus morphology in primates. Brain Behav Evol 84:19–30.  https://doi.org/10.1159/000362431 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Joshi AA, Shattuck DW, Thompson PM, Leahy RM (2007) Surface-constrained volumetric brain registration using harmonic mappings. IEEE Trans Med Imaging 26:1657–1669CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kabdebon C, Leroy F, Simmonet H, Perrot M, Dubois J, Dehaene-Lambertz G (2014) Anatomical correlations of the international 10–20 sensor placement system in infants. NeuroImage 99:342–356.  https://doi.org/10.1016/j.neuroimage.2014.05.046 CrossRefPubMedGoogle Scholar
  38. Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang M-C, Christensen GE, Collins DL, Gee J, Hellier P, Song JH, Jenkinson M, Lepage C, Rueckert D, Thompson P, Vercauteren T, Woods RP, Mann JJ, Parsey RV (2009) Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage 46:786–802.  https://doi.org/10.1016/j.neuroimage.2008.12.037 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Klein A, Ghosh SS, Avants B, Yeo BTT, Fischl B, Ardekani B, Gee JC, Mann JJ, Parsey RV (2010) Evaluation of volume-based and surface-based brain image registration methods. NeuroImage 51:214–220.  https://doi.org/10.1016/j.neuroimage.2010.01.091 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Klein A, Ghosh SS, Bao FS, Giard J, Häme Y, Stavsky E, Lee N, Rossa B, Reuter M, Neto EC, Keshavan A (2017) Mindboggling morphometry of human brains. PLOS Comput Biol 13:e1005350.  https://doi.org/10.1371/journal.pcbi.1005350 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lebenberg J, Mangin JF, Thirion B, Poupon C, Hertz-Pannier L, Leroy F, Adibpour P, Dehaene-Lambertz G, Dubois J (2018) Mapping the asynchrony of cortical maturation in the infant brain: a MRI multi-parametric clustering approach. NeuroImage.  https://doi.org/10.1016/j.neuroimage.2018.07.022 CrossRefPubMedGoogle Scholar
  42. Leroy F, Mangin J-F, Rousseau F, Glasel H, Hertz-Pannier L, Dubois J, Dehaene-Lambertz G (2011) Atlas-free surface reconstruction of the cortical grey-white interface in infants. PLoS One 6:e27128.  https://doi.org/10.1371/journal.pone.0027128 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lewis LB, Lepage C, Fournier M, Zilles K, Amunts K, Evans AC (2014) BigBrain: initial tissue classification and surface extraction. In: Presented at the OHBM, HamburgGoogle Scholar
  44. Li G, Guo L, Nie J, Liu T (2010) An automated pipeline for cortical sulcal fundi extraction. Med Image Anal 14:343–359.  https://doi.org/10.1016/j.media.2010.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Li G, Wang L, Shi F, Gilmore JH, Lin W, Shen D (2015) Construction of 4D high-definition cortical surface atlases of infants: methods and applications. Med Image Anal 25:22–36.  https://doi.org/10.1016/j.media.2015.04.005 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lorenz S, Weiner KS, Caspers J, Mohlberg H, Schleicher A, Bludau S, Eickhoff SB, Grill-Spector K, Zilles K, Amunts K (2015) Two new cytoarchitectonic areas on the human mid-fusiform gyrus. Cereb Cortex.  https://doi.org/10.1093/cercor/bhv225 CrossRefGoogle Scholar
  47. Mangin J-F, Rivière D, Cachia A, Duchesnay E, Cointepas Y, Papadopoulos-Orfanos D, Scifo P, Ochiai T, Brunelle F, Régis J (2004) A framework to study the cortical folding patterns. NeuroImage 23(Supplement 1):S129–S138.  https://doi.org/10.1016/j.neuroimage.2004.07.019 CrossRefPubMedGoogle Scholar
  48. Mangin J-F, Auzias G, Coulon O, Sun ZY, Rivière D, Régis J (2015) Sulci as landmarks. Brain mapping. Elsevier, New York, pp 45–52Google Scholar
  49. Mangin J-F, Lebenberg J, Lefranc S, Labra N, Auzias G, Labit M, Guevara M, Mohlberg H, Roca P, Guevara P, Dubois J, Leroy F, Dehaene-Lambertz G, Cachia A, Dickscheid T, Coulon O, Poupon C, Rivière D, Amunts K, Sun ZY (2016) Spatial normalization of brain images and beyond. Med Image Anal.  https://doi.org/10.1016/j.media.2016.06.008 CrossRefPubMedGoogle Scholar
  50. Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, Woods R, Paus T, Simpson G, Pike B, Holmes C, Collins L, Thompson P, MacDonald D, Iacoboni M, Schormann T, Amunts K, Palomero-Gallagher N, Geyer S, Parsons L, Narr K, Kabani N, Le Goualher G, Boomsma D, Cannon T, Kawashima R, Mazoyer B (2001) A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM). Philos Trans R Soc Lond Ser B 356:1293–1322.  https://doi.org/10.1098/rstb.2001.0915 CrossRefGoogle Scholar
  51. Perrot M, Rivière D, Mangin J-F (2011) Cortical sulci recognition and spatial normalization. Med Image Anal 15:529–550.  https://doi.org/10.1016/j.media.2011.02.008 CrossRefPubMedGoogle Scholar
  52. Pizzagalli F, Auzias G, Delon-Martin C, Dojat M (2013) Local landmark alignment for high-resolution fMRI group studies: toward a fine cortical investigation of hand movements in human. J Neurosci Methods 218:83–95.  https://doi.org/10.1016/j.jneumeth.2013.05.005 CrossRefPubMedGoogle Scholar
  53. Robinson EC, Jbabdi S, Glasser MF, Andersson J, Burgess GC, Harms MP, Smith SM, Van Essen DC, Jenkinson M (2014) MSM: a new flexible framework for multimodal surface matching. NeuroImage 100:414–426.  https://doi.org/10.1016/j.neuroimage.2014.05.069 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Rosenke M, Weiner KS, Barnett MA, Zilles K, Amunts K, Goebel R, Grill-Spector K (2017) A cross-validated cytoarchitectonic atlas of the human ventral visual stream. NeuroImage.  https://doi.org/10.1016/j.neuroimage.2017.02.040 PubMedCrossRefGoogle Scholar
  55. Schleicher A, Morosan P, Amunts K, Zilles K (2009) Quantitative architectural analysis: a new approach to cortical mapping. J Autism Dev Disord 39:1568–1581.  https://doi.org/10.1007/s10803-009-0790-8 CrossRefPubMedGoogle Scholar
  56. Shi F, Yap P-T, Wu G, Jia H, Gilmore JH, Lin W, Shen D (2011) Infant brain atlases from neonates to 1- and 2-year-olds. PLOS One 6:e18746.  https://doi.org/10.1371/journal.pone.0018746 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289.  https://doi.org/10.1006/nimg.2001.0978 CrossRefPubMedGoogle Scholar
  58. Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23:903–921.  https://doi.org/10.1109/TMI.2004.828354 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Weiner KS, Golarai G, Caspers J, Chuapoco MR, Mohlberg H, Zilles K, Amunts K, Grill-Spector K (2014) The mid-fusiform sulcus: a landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex. NeuroImage 84:453–465.  https://doi.org/10.1016/j.neuroimage.2013.08.068 CrossRefPubMedGoogle Scholar
  60. Weiner KS, Barnett MA, Lorenz S, Caspers J, Stigliani A, Amunts K, Zilles K, Fischl B, Grill-Spector K (2017) The cytoarchitecture of domain-specific regions in human high-level visual cortex. Cereb Cortex 27:146–161.  https://doi.org/10.1093/cercor/bhw361 CrossRefPubMedGoogle Scholar
  61. Westfall PH, Young SS (1993) Resampling-based multiple testing: examples and methods for P-value adjustment. Wiley, HobokenGoogle Scholar
  62. Wu Y, Wu G, Wang L, Munsell BC, Wang Q, Lin W, Feng Q, Chen W, Shen D (2015) Hierarchical and symmetric infant image registration by robust longitudinal-example-guided correspondence detection. Med Phys 42:4174–4189.  https://doi.org/10.1118/1.4922393 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Xue H, Srinivasan L, Jiang S, Rutherford M, Edwards AD, Rueckert D, Hajnal JV (2007) Longitudinal Cortical Registration for Developing Neonates. In: Ayache N, Ourselin S, Maeder A (eds) Medical Image computing and computer-assisted intervention—MICCAI 2007. Lecture notes in computer science. Springer, Berlin, Heidelberg, pp 127–135.  https://doi.org/10.1007/978-3-540-75759-7_16 CrossRefGoogle Scholar
  64. Yassa MA, Stark CEL (2009) A quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobe. NeuroImage 44:319–327.  https://doi.org/10.1016/j.neuroimage.2008.09.016 CrossRefPubMedGoogle Scholar
  65. Zilles K, Amunts K (2010) TIMELINE centenary of Brodmann’s map—conception and fate. Nat Rev Neurosci 11:139–145.  https://doi.org/10.1038/nrn2776 CrossRefPubMedGoogle Scholar
  66. Zilles K, Schleicher A, Palomero-Gallagher N, Amunts K (2002) Quantitative analysis of cyto- and receptor architecture of the human brain. Brain mapping: the methods. Elsevier, Hoboken, pp 573–602Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • J. Lebenberg
    • 1
  • M. Labit
    • 2
  • G. Auzias
    • 3
  • H. Mohlberg
    • 4
  • C. Fischer
    • 2
  • D. Rivière
    • 1
  • E. Duchesnay
    • 1
  • C. Kabdebon
    • 5
  • F. Leroy
    • 5
  • N. Labra
    • 1
  • F. Poupon
    • 1
  • T. Dickscheid
    • 4
  • L. Hertz-Pannier
    • 6
  • C. Poupon
    • 7
  • G. Dehaene-Lambertz
    • 5
  • P. Hüppi
    • 8
  • K. Amunts
    • 4
    • 9
  • J. Dubois
    • 5
  • J.-F. Mangin
    • 1
    • 2
  1. 1.UNATI, CEA DRF/Institut JoliotUniversité Paris-Sud, Université Paris-Saclay, NeuroSpin centerGif-Sur-YvetteFrance
  2. 2.CATI Multicenter Neuroimaging Platform, cati-neuroimaging.com FranceParisFrance
  3. 3.CNRS, INTMarseilleFrance
  4. 4.Institute of Neuroscience and Medicine, INM-1, Forschungszentrum Jülich GmbHJülichGermany
  5. 5.Cognitive Neuroimaging Unit U992, INSERM, CEA DRF/Institut JoliotUniversité Paris-Sud, Université Paris-Saclay, NeuroSpin centerGif-Sur-YvetteFrance
  6. 6.UNIACT, CEA DRF/Institut Joliot, INSERM U1129Université Paris-Sud, Université Paris-Saclay, Université Paris-Descartes, NeuroSpin centerGif/yvetteFrance
  7. 7.UNIRS, CEA DRF/Institut JoliotUniversité Paris-Sud, Université Paris-Saclay, NeuroSpin centerGif-Sur-YvetteFrance
  8. 8.Department of PediatricsGeneva University HospitalsGenevaSwitzerland
  9. 9.Heinrich Heine University DuesseldorfUniversity Hospital DuesseldorfDuesseldorfGermany

Personalised recommendations