Advertisement

Reduced resting-state functional connectivity of the basolateral amygdala to the medial prefrontal cortex in preweaning rats exposed to chronic early-life stress

  • Angela Guadagno
  • Min Su Kang
  • Gabriel A. Devenyi
  • Axel P. Mathieu
  • Pedro Rosa-Neto
  • Mallar Chakravarty
  • Claire-Dominique Walker
Original Article
  • 142 Downloads

Abstract

Early-life stress (ELS) exposure has long-term consequences for both brain structure and function and impacts cognitive and emotional behavior. The basolateral amygdala (BLA) plays an important role in anxiety and fear conditioning through its extensive anatomical and functional connections, in particular to the medial prefrontal cortex (mPFC). However, how ELS affects amygdala function and connectivity in developing rats is unknown. We used the naturalistic limited bedding/nesting (LB) paradigm to induce chronic stress in the pups between postnatal day (PND) 1–10. Male normal bedding (NB, control) or LB offspring underwent structural and resting-state functional MRI (rs-fMRI) on PND18 and in adulthood (PND74–76). Adult male rats were tested for fear conditioning and extinction behavior prior to scanning. Seed-based functional connectivity maps were generated based on four BLA seeds (left, right, anterior and posterior). At both ages, LB induced different effects on anterior and posterior BLA networks, with significant reductions in rs-fMRI connectivity between the anterior BLA and mPFC in LB compared to NB offspring. BLA connectivity was lateralized by preweaning age, with the right hemisphere displaying more connectivity changes than the left. Weak negative volumetric correlations between the BLA and mPFC were also present, mostly in preweaning LB animals. rs-fMRI connectivity and volumetric changes were associated with enhanced fear behaviors in adult LB offspring. Activation of the LB-exposed neonatal amygdala described previously might accelerate the maturation of BLA–mPFC projections and/or modify the activity of reciprocal connections between these structures, leading to a net reduction in rs-fMRI connectivity and increased fear behavior.

Keywords

Basolateral amygdala Resting-state connectivity Neonatal stress Medial prefrontal cortex Preweaning Imaging Volumetry Behavior 

Notes

Acknowledgements

We thank Dr Jürgen Germann and Ms Elisa Guma (Douglas Institute, Imaging Center) for their assistance with the Display software package for manual segmentation analyses and preliminary co-registration analyses, respectively.

Funding

This study was funded by an NSERC Grant to CDW (Grant #138199) and an internal McGill-Faculty of Medicine studentship award to AG.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving animals and ethical approval

All experimental procedures carried out on Sprague–Dawley rats were approved by the University Animal Care Committee at McGill University in accordance with the guidelines of the Canadian Council on Animal Care.

References

  1. Arp JM, Ter Horst JP, Loi M, den Blaauwen J, Bangert E, Fernandez G, Joels M, Oitzl MS, Krugers HJ (2016) Blocking glucocorticoid receptors at adolescent age prevents enhanced freezing between repeated cue-exposures after conditioned fear in adult mice raised under chronic early life stress. Neurobiol Learn Mem 133:30–38.  https://doi.org/10.1016/j.nlm.2016.05.009 CrossRefPubMedGoogle Scholar
  2. Arruda-Carvalho M, Wu WC, Cummings KA, Clem RL (2017) Optogenetic examination of prefrontal-amygdala synaptic development. J Neurosci 37(11):2976–2985.  https://doi.org/10.1523/JNEUROSCI.3097-16.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baker KB, Kim JJ (2004) Amygdalar lateralization in fear conditioning: evidence for greater involvement of the right amygdala. Behav Neurosci 118(1):15–23.  https://doi.org/10.1037/0735-7044.118.1.15 CrossRefPubMedGoogle Scholar
  4. Banasr M, Soumier A, Hery M, Mocaer E, Daszuta A (2006) Agomelatine, a new antidepressant, induces regional changes in hippocampal neurogenesis. Biol Psychiatry 59(11):1087–1096.  https://doi.org/10.1016/j.biopsych.2005.11.025 CrossRefPubMedGoogle Scholar
  5. Bast T, Zhang WN, Feldon J (2001) The ventral hippocampus and fear conditioning in rats. Different anterograde amnesias of fear after tetrodotoxin inactivation and infusion of the GABA(A) agonist muscimol. Exp Brain Res 139(1):39–52CrossRefPubMedGoogle Scholar
  6. Bolton JL, Molet J, Regev L, Chen Y, Rismanchi N, Haddad E, Yang DZ, Obenaus A, Baram TZ (2018) Anhedonia following early-life adversity involves aberrant interaction of reward and anxiety circuits and is reversed by partial silencing of amygdala corticotropin-releasing hormone gene. Biol Psychiatry 83(2):137–147.  https://doi.org/10.1016/j.biopsych.2017.08.023 CrossRefPubMedGoogle Scholar
  7. Bouwmeester H, Smits K, Van Ree JM (2002a) Neonatal development of projections to the basolateral amygdala from prefrontal and thalamic structures in rat. J Comp Neurol 450(3):241–255.  https://doi.org/10.1002/cne.10321 CrossRefPubMedGoogle Scholar
  8. Bouwmeester H, Wolterink G, van Ree JM (2002b) Neonatal development of projections from the basolateral amygdala to prefrontal, striatal, and thalamic structures in the rat. J Comp Neurol 442(3):239–249CrossRefPubMedGoogle Scholar
  9. Bukalo O, Pinard CR, Silverstein S, Brehm C, Hartley ND, Whittle N, Colacicco G, Busch E, Patel S, Singewald N, Holmes A (2015) Prefrontal inputs to the amygdala instruct fear extinction memory formation. Sci Adv.  https://doi.org/10.1126/sciadv.1500251 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Burghy CA, Stodola DE, Ruttle PL, Molloy EK, Armstrong JM, Oler JA, Fox ME, Hayes AS, Kalin NH, Essex MJ, Davidson RJ, Birn RM (2012) Developmental pathways to amygdala-prefrontal function and internalizing symptoms in adolescence. Nat Neurosci 15(12):1736–1741.  https://doi.org/10.1038/nn.3257 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Butler RK, Oliver EM, Fadel JR, Wilson MA (2018) Hemispheric differences in the number of parvalbumin-positive neurons in subdivisions of the rat basolateral amygdala complex. Brain Res 1678:214–219.  https://doi.org/10.1016/j.brainres.2017.10.028 CrossRefPubMedGoogle Scholar
  12. Cunningham MG, Bhattacharyya S, Benes FM (2002) Amygdalo-cortical sprouting continues into early adulthood: implications for the development of normal and abnormal function during adolescence. J Comp Neurol 453(2):116–130.  https://doi.org/10.1002/cne.10376 CrossRefPubMedGoogle Scholar
  13. Duvarci S, Pare D (2014) Amygdala microcircuits controlling learned fear. Neuron 82(5):966–980.  https://doi.org/10.1016/j.neuron.2014.04.042 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Eiland L, Ramroop J, Hill MN, Manley J, McEwen BS (2012) Chronic juvenile stress produces corticolimbic dendritic architectural remodeling and modulates emotional behavior in male and female rats. Psychoneuroendocrinology 37(1):39–47.  https://doi.org/10.1016/j.psyneuen.2011.04.015 CrossRefPubMedGoogle Scholar
  15. Eschenko O, Canals S, Simanova I, Logothetis NK (2010) Behavioral, electrophysiological and histopathological consequences of systemic manganese administration in MEMRI. Magn Reson Imaging 28(8):1165–1174.  https://doi.org/10.1016/j.mri.2009.12.022 CrossRefPubMedGoogle Scholar
  16. Essex MJ, Shirtcliff EA, Burk LR, Ruttle PL, Klein MH, Slattery MJ, Kalin NH, Armstrong JM (2011) Influence of early life stress on later hypothalamic–pituitary–adrenal axis functioning and its covariation with mental health symptoms: a study of the allostatic process from childhood into adolescence. Dev Psychopathol 23(4):1039–1058.  https://doi.org/10.1017/s0954579411000484 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Felix-Ortiz AC, Tye KM (2014) Amygdala inputs to the ventral hippocampus bidirectionally modulate social behavior. J Neurosci 34(2):586–595.  https://doi.org/10.1523/JNEUROSCI.4257-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Felix-Ortiz AC, Beyeler A, Seo C, Leppla CA, Wildes CP, Tye KM (2013) BLA to vHPC inputs modulate anxiety-related behaviors. Neuron 79(4):658–664.  https://doi.org/10.1016/j.neuron.2013.06.016 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Felix-Ortiz AC, Burgos-Robles A, Bhagat ND, Leppla CA, Tye KM (2016) Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience 321:197–209.  https://doi.org/10.1016/j.neuroscience.2015.07.041 CrossRefPubMedGoogle Scholar
  20. Franceschini MA, Radhakrishnan H, Thakur K, Wu W, Ruvinskaya S, Carp S, Boas DA (2010) The effect of different anesthetics on neurovascular coupling. Neuroimage 51(4):1367–1377.  https://doi.org/10.1016/j.neuroimage.2010.03.060 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Friedel M, van Eede MC, Pipitone J, Chakravarty MM, Lerch JP (2014) Pydpiper: a flexible toolkit for constructing novel registration pipelines. Front Neuroinform 8:67.  https://doi.org/10.3389/fninf.2014.00067 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Giustino TF, Maren S (2015) The role of the medial prefrontal cortex in the conditioning and extinction of fear. Front Behav Neurosci 9:298.  https://doi.org/10.3389/fnbeh.2015.00298 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Godsil BP, Kiss JP, Spedding M, Jay TM (2013) The hippocampal–prefrontal pathway: the weak link in psychiatric disorders? Eur Neuropsychopharmacol 23(10):1165–1181.  https://doi.org/10.1016/j.euroneuro.2012.10.018 CrossRefPubMedGoogle Scholar
  24. Guadagno A, Wong TP, Walker CD (2018) Morphological and functional changes in the preweaning basolateral amygdala induced by early chronic stress associate with anxiety and fear behavior in adult male, but not female rats. Prog Neuropsychopharmacol Biol Psychiatry 81:25–37.  https://doi.org/10.1016/j.pnpbp.2017.09.025 CrossRefPubMedGoogle Scholar
  25. Haritha AT, Wood KH, Ver Hoef LW, Knight DC (2013) Human trace fear conditioning: right-lateralized cortical activity supports trace-interval processes. Cogn Affect Behav Neurosci 13(2):225–237.  https://doi.org/10.3758/s13415-012-0142-6 CrossRefPubMedGoogle Scholar
  26. Hoover WB, Vertes RP (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212(2):149–179.  https://doi.org/10.1007/s00429-007-0150-4 CrossRefPubMedGoogle Scholar
  27. Huff ML, Emmons EB, Narayanan NS, LaLumiere RT (2016) Basolateral amygdala projections to ventral hippocampus modulate the consolidation of footshock, but not contextual, learning in rats. Learn Mem 23(2):51–60.  https://doi.org/10.1101/lm.039909.115 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jankord R, Herman JP (2008) Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann N Y Acad Sci 1148:64–73.  https://doi.org/10.1196/annals.1410.012 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Johnson FK, Kaffman A (2018) Early life stress perturbs the function of microglia in the developing rodent brain: New insights and future challenges. Brain Behav Immun 69:18–27.  https://doi.org/10.1016/j.bbi.2017.06.008 CrossRefPubMedGoogle Scholar
  30. Kim P, Evans GW, Angstadt M, Ho SS, Sripada CS, Swain JE, Liberzon I, Phan KL (2013) Effects of childhood poverty and chronic stress on emotion regulatory brain function in adulthood. Proc Natl Acad Sci USA 110(46):18442–18447.  https://doi.org/10.1073/pnas.1308240110 CrossRefPubMedGoogle Scholar
  31. Krettek JE, Price JL (1977) Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. J Comp Neurol 172(4):687–722.  https://doi.org/10.1002/cne.901720408 CrossRefPubMedGoogle Scholar
  32. Leslie RA, James MF (2000) Pharmacological magnetic resonance imaging: a new application for functional MRI. Trends Pharmacol Sci 21(8):314–318CrossRefPubMedGoogle Scholar
  33. Luczynski P, Moquin L, Gratton A (2015) Chronic stress alters the dendritic morphology of callosal neurons and the acute glutamate stress response in the rat medial prefrontal cortex. Stress 18(6):654–667.  https://doi.org/10.3109/10253890.2015.1073256 CrossRefPubMedGoogle Scholar
  34. Lv H, Wang Z, Tong E, Williams LM, Zaharchuk G, Zeineh M, Goldstein-Piekarski AN, Ball TM, Liao C, Wintermark M (2018) Resting-state functional MRI: everything that non-experts have always wanted to know. Am J Neuroradiol.  https://doi.org/10.3174/ajnr.A5527 CrossRefPubMedGoogle Scholar
  35. Magnuson ME, Thompson GJ, Pan WJ, Keilholz SD (2014) Time-dependent effects of isoflurane and dexmedetomidine on functional connectivity, spectral characteristics, and spatial distribution of spontaneous BOLD fluctuations. NMR Biomed 27(3):291–303.  https://doi.org/10.1002/nbm.3062 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Marek R, Strobel C, Bredy TW, Sah P (2013) The amygdala and medial prefrontal cortex: partners in the fear circuit. J Physiol 591(10):2381–2391.  https://doi.org/10.1113/jphysiol.2012.248575 CrossRefPubMedPubMedCentralGoogle Scholar
  37. McDonald AJ (1991) Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience 44(1):1–14CrossRefPubMedGoogle Scholar
  38. McGinty VB, Grace AA (2008) Selective activation of medial prefrontal-to-accumbens projection neurons by amygdala stimulation and Pavlovian conditioned stimuli. Cereb Cortex 18(8):1961–1972.  https://doi.org/10.1093/cercor/bhm223 CrossRefPubMedGoogle Scholar
  39. McKlveen JM, Myers B, Herman JP (2015) The medial prefrontal cortex: coordinator of autonomic, neuroendocrine and behavioural responses to stress. J Neuroendocrinol 27(6):446–456.  https://doi.org/10.1111/jne.12272 CrossRefPubMedPubMedCentralGoogle Scholar
  40. McLaughlin RJ, Verlezza S, Gray JM, Hill MN, Walker CD (2016) Inhibition of anandamide hydrolysis dampens the neuroendocrine response to stress in neonatal rats subjected to suboptimal rearing conditions. Stress 19(1):114–124.  https://doi.org/10.3109/10253890.2015.1117448 CrossRefPubMedGoogle Scholar
  41. Molet J, Maras PM, Avishai-Eliner S, Baram TZ (2014) Naturalistic rodent models of chronic early-life stress. Dev Psychobiol 56(8):1675–1688.  https://doi.org/10.1002/dev.21230 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Molet J, Maras PM, Kinney-Lang E, Harris NG, Rashid F, Ivy AS, Solodkin A, Obenaus A, Baram TZ (2016) MRI uncovers disrupted hippocampal microstructure that underlies memory impairments after early-life adversity. Hippocampus 26(12):1618–1632.  https://doi.org/10.1002/hipo.22661 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Moriceau S, Wilson DA, Levine S, Sullivan RM (2006) Dual circuitry for odor-shock conditioning during infancy: corticosterone switches between fear and attraction via amygdala. J Neurosci 26(25):6737–6748.  https://doi.org/10.1523/JNEUROSCI.0499-06.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Naninck EF, Hoeijmakers L, Kakava-Georgiadou N, Meesters A, Lazic SE, Lucassen PJ, Korosi A (2015) Chronic early life stress alters developmental and adult neurogenesis and impairs cognitive function in mice. Hippocampus 25(3):309–328.  https://doi.org/10.1002/hipo.22374 CrossRefPubMedGoogle Scholar
  45. Pan D, Schmieder AH, Wickline SA, Lanza GM (2011) Manganese-based MRI contrast agents: past, present and future. Tetrahedron 67(44):8431–8444.  https://doi.org/10.1016/j.tet.2011.07.076 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Paolicelli RC, Gross CT (2011) Microglia in development: linking brain wiring to brain environment. Neuron Glia Biol 7(1):77–83.  https://doi.org/10.1017/S1740925X12000105 CrossRefPubMedGoogle Scholar
  47. Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Elsevier Academic Press, AmsterdamGoogle Scholar
  48. Pitkanen A, Pikkarainen M, Nurminen N, Ylinen A (2000) Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann N Y Acad Sci 911:369–391CrossRefPubMedGoogle Scholar
  49. Quirk GJ, Mueller D (2008) Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33(1):56–72.  https://doi.org/10.1038/sj.npp.1301555 CrossRefPubMedGoogle Scholar
  50. Raineki C, Moriceau S, Sullivan RM (2010) Developing a neurobehavioral animal model of infant attachment to an abusive caregiver. Biological psychiatry 67(12):1137–1145.  https://doi.org/10.1016/j.biopsych.2009.12.019 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Raineki C, Cortes MR, Belnoue L, Sullivan RM (2012) Effects of early-life abuse differ across development: infant social behavior deficits are followed by adolescent depressive-like behaviors mediated by the amygdala. J Neurosci 32(22):7758–7765.  https://doi.org/10.1523/JNEUROSCI.5843-11.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Rincon-Cortes M, Sullivan RM (2016) Emergence of social behavior deficit, blunted corticolimbic activity and adult depression-like behavior in a rodent model of maternal maltreatment. Transl Psychiatry 6(10):e930.  https://doi.org/10.1038/tp.2016.205 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sarabdjitsingh RA, Loi M, Joels M, Dijkhuizen RM, van der Toorn A (2017) Early life stress-induced alterations in rat brain structures measured with high resolution MRI. PLoS One 12(9):e0185061.  https://doi.org/10.1371/journal.pone.0185061 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Scicli AP, Petrovich GD, Swanson LW, Thompson RF (2004) Contextual fear conditioning is associated with lateralized expression of the immediate early gene c-fos in the central and basolateral amygdalar nuclei. Behav Neurosci 118(1):5–14.  https://doi.org/10.1037/0735-7044.118.1.5 CrossRefPubMedGoogle Scholar
  55. Sharp BM (2017) Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction. Transl Psychiatry 7(8):e1194.  https://doi.org/10.1038/tp.2017.161 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sherwood NM, Timiras PS (1970) A stereotaxic atlas of the developing rat brain. University of California Press, BerkeleyGoogle Scholar
  57. Sierra-Mercado D, Padilla-Coreano N, Quirk GJ (2011) Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology 36(2):529–538.  https://doi.org/10.1038/npp.2010.184 CrossRefPubMedGoogle Scholar
  58. Silvers JA, Goff B, Gabard-Durnam LJ, Gee DG, Fareri DS, Caldera C, Tottenham N (2017) Vigilance, the amygdala, and anxiety in youths with a history of institutional care. Biol Psychiatry Cogn Neurosci Neuroimaging 2(6):493–501.  https://doi.org/10.1016/j.bpsc.2017.03.016 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Smitha KA, Akhil Raja K, Arun KM, Rajesh PG, Thomas B, Kapilamoorthy TR, Kesavadas C (2017) Resting state fMRI: a review on methods in resting state connectivity analysis and resting state networks. Neuroradiol J 30(4):305–317.  https://doi.org/10.1177/1971400917697342 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sotres-Bayon F, Quirk GJ (2010) Prefrontal control of fear: more than just extinction. Curr Opin Neurobiol 20(2):231–235.  https://doi.org/10.1016/j.conb.2010.02.005 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sperry MM, Kandel BM, Wehrli S, Bass KN, Das SR, Dhillon PS, Gee JC, Barr GA (2017) Mapping of pain circuitry in early post-natal development using manganese-enhanced MRI in rats. Neuroscience 352:180–189.  https://doi.org/10.1016/j.neuroscience.2017.03.052 CrossRefPubMedGoogle Scholar
  62. Stern JM, Levin R (1976) Food availability as a determinant of the rats’ circadian rhythm in maternal behavior. Dev Psychobiol 9(2):137–148.  https://doi.org/10.1002/dev.420090206 CrossRefPubMedGoogle Scholar
  63. Stevenson CW (2011) Role of amygdala-prefrontal cortex circuitry in regulating the expression of contextual fear memory. Neurobiol Learn Mem 96(2):315–323.  https://doi.org/10.1016/j.nlm.2011.06.005 CrossRefPubMedGoogle Scholar
  64. Tallett AJ, Blundell JE, Rodgers RJ (2009) Night and day: diurnal differences in the behavioural satiety sequence in male rats. Physiol Behav 97(1):125–130.  https://doi.org/10.1016/j.physbeh.2009.01.022 CrossRefPubMedGoogle Scholar
  65. Tallot L, Doyere V, Sullivan RM (2016) Developmental emergence of fear/threat learning: neurobiology, associations and timing. Genes Brain Behav 15(1):144–154.  https://doi.org/10.1111/gbb.12261 CrossRefPubMedGoogle Scholar
  66. Thompson JM, Neugebauer V (2017) Amygdala plasticity and pain. Pain Res Manag 2017:8296501.  https://doi.org/10.1155/2017/8296501 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Tottenham N, Gabard-Durnam LJ (2017) The developing amygdala: a student of the world and a teacher of the cortex. Curr Opin Psychol 17:55–60.  https://doi.org/10.1016/j.copsyc.2017.06.012 CrossRefPubMedGoogle Scholar
  68. VanTieghem MR, Tottenham N (2017) Neurobiological programming of early life stress: functional development of amygdala-prefrontal circuitry and vulnerability for stress-related psychopathology. Curr Top Behav Neurosci.  https://doi.org/10.1007/7854_2016_42 PubMedCrossRefGoogle Scholar
  69. Venkatraghavan L, Bharadwaj S, Wourms V, Tan A, Jurkiewicz MT, Mikulis DJ, Crawley AP (2017) Brain resting-state functional connectivity is preserved under sevoflurane anesthesia in patients with pervasive developmental disorders: a pilot study. Brain Connect 7(4):250–257.  https://doi.org/10.1089/brain.2016.0448 CrossRefPubMedGoogle Scholar
  70. Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51(1):32–58.  https://doi.org/10.1002/syn.10279 CrossRefPubMedGoogle Scholar
  71. Verwer RW, Vulpen EH Van, Uum JF Van (1996) Postnatal development of amygdaloid projections to the prefrontal cortex in the rat studied with retrograde and anterograde tracers. J Comp Neurol 376(1):75–96. https://doi.org/10.1002/(SICI)1096-9861(19961202)376:1<75::AID-CNE5>3.0.CO;2-LCrossRefPubMedGoogle Scholar
  72. Vyas A, Jadhav S, Chattarji S (2006) Prolonged behavioral stress enhances synaptic connectivity in the basolateral amygdala. Neuroscience 143(2):387–393.  https://doi.org/10.1016/j.neuroscience.2006.08.003 CrossRefPubMedGoogle Scholar
  73. Walker CD, Bath K, Joels M, Korosi A, Larauche M, Lucassen PJ, Morris M, Raineki C, Roth TL, Sullivan RM, Tache Y, Baram TZ (2017) Chronic early life stress induced by limited bedding and nesting (LBN) material in rodents: critical considerations of methodology, outcomes and translational potential. Stress 20(5):421–448.  https://doi.org/10.1080/10253890.2017.1343296 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Wilber AA, Walker AG, Southwood CJ, Farrell MR, Lin GL, Rebec GV, Wellman CL (2011) Chronic stress alters neural activity in medial prefrontal cortex during retrieval of extinction. Neuroscience 174:115–131.  https://doi.org/10.1016/j.neuroscience.2010.10.070 CrossRefPubMedGoogle Scholar
  75. Wu Y, Dissing-Olesen L, MacVicar BA, Stevens B (2015) Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol 36(10):605–613.  https://doi.org/10.1016/j.it.2015.08.008 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Wu TL, Mishra A, Wang F, Yang PF, Gore JC, Chen LM (2016) Effects of isoflurane anesthesia on resting-state fMRI signals and functional connectivity within primary somatosensory cortex of monkeys. Brain Behav 6(12):e00591.  https://doi.org/10.1002/brb3.591 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Yan CG, Rincon-Cortes M, Raineki C, Sarro E, Colcombe S, Guilfoyle DN, Yang Z, Gerum S, Biswal BB, Milham MP, Sullivan RM, Castellanos FX (2017) Aberrant development of intrinsic brain activity in a rat model of caregiver maltreatment of offspring. Transl Psychiatry 7(1):e1005.  https://doi.org/10.1038/tp.2016.276 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Integrated Program in NeurosciencesMcGill UniversityMontrealCanada
  2. 2.Department of PsychiatryMcGill UniversityMontrealCanada
  3. 3.Douglas Mental Health University InstituteCentre d’Imagerie CerebraleMontrealCanada

Personalised recommendations