Brain Structure and Function

, Volume 223, Issue 8, pp 3689–3709 | Cite as

Cell type-specific effects of BDNF in modulating dendritic architecture of hippocampal neurons

  • Marta ZagrebelskyEmail author
  • N. Gödecke
  • A. Remus
  • Martin KorteEmail author
Original Article


Brain-derived neurotrophin factor (BDNF) has been implicated in neuronal survival, differentiation and activity-dependent synaptic plasticity in the central nervous system. It was suggested that during postnatal development BDNF regulates neuronal architecture and spine morphology of neurons within certain brain areas but not others. Particularly striking are the differences between striatum, cortex and hippocampus. Whether this is due to region- or cell type-specific effects is so far not known. We address this question using conditional bdnf knock-out mice to analyze neuronal architecture and spine morphology of pyramidal cortical and hippocampal neurons as well as inhibitory neurons from these brain areas and excitatory granule neurons from the dentate gyrus. While hippocampal and cortical inhibitory neurons and granule cells of the dentate gyrus are strongly impaired in their architecture, pyramidal neurons within the same brain regions only show a mild phenotype. We found a reduced TrkB phosphorylation within hippocampal interneurons and granule cells of the dentate gyrus, accompanied by a significant decrease in dendritic complexity. In contrast, in pyramidal neurons both TrkB phosphorylation and neuronal architecture are not altered. The results suggest diverse levels of responsiveness to BDNF for different hippocampal and cortical neuronal populations within the same brain area. Among the possible mechanisms mediating these differences in BDNF function, we tested whether zinc might be involved in TrkB transactivation specifically in pyramidal neurons. We propose that a BDNF-independent transactivation of TrkB receptor may be able to compensate the lack of BDNF signaling to modulate neuronal morphology in a cell type-specific manner.


Dendrites Spines Structural plasticity Hippocampus TrkB Zinc 



We are grateful to Diane Mundil, Tania Meßerschmidt and Heike Kessler for their excellent technical assistance and to Martin Rothkegel for experimental advice. This work was supported by the DFG Grant KO 1674/5-1 (to M.K. and M.Z.).

Supplementary material

429_2018_1715_MOESM1_ESM.eps (1.5 mb)
Supplementary material 1 (EPS 1521 KB)
429_2018_1715_MOESM2_ESM.eps (1 mb)
Supplementary material 2 (EPS 1026 KB)


  1. Adlard PA, Parncutt JM, Finkelstein DI, Bush AI (2010) Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J Neurosci 30:1631–1636CrossRefGoogle Scholar
  2. Alonso M, Medina JH, Pozzo-Miller L (2004) ERK1/2 activation is necessary for BDNF to increase dendritic spine density in hippocampal CA1 pyramidal neurons. Learn Mem (Cold Spring Harbor, NY) 11:172–178CrossRefGoogle Scholar
  3. Baquet ZC, Gorski JA, Jones KR (2004) Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J Neurosci 24:4250–4258CrossRefGoogle Scholar
  4. Bartrup JT, Moorman JM, Newberry NR (1997) BDNF enhances neuronal growth and synaptic activity in hippocampal cell cultures. Neuroreport 8:3791–3794CrossRefGoogle Scholar
  5. Berg JM, Shi Y (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271:1081–1085CrossRefGoogle Scholar
  6. Bolton MM, Pittman AJ, Lo DC (2000) Brain-derived neurotrophic factor differentially regulates excitatory and inhibitory synaptic transmission in hippocampal cultures. J Neurosci 20:3221–3232CrossRefGoogle Scholar
  7. Carpenter G (1999) Employment of the epidermal growth factor receptor in growth factor-independent signaling pathways. J Cell Biol 146:697–702CrossRefGoogle Scholar
  8. Castren E, Kojima M (2017) Brain-derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiol Dis 97:119–126CrossRefGoogle Scholar
  9. Castren E, Zafra F, Thoenen H, Lindholm D (1992) Light regulates expression of brain-derived neurotrophic factor mRNA in rat visual cortex. Proc Natl Acad Sci USA 89:9444–9448CrossRefGoogle Scholar
  10. Chakravarthy S, Saiepour MH, Bence M, Perry S, Hartman R, Couey JJ, Mansvelder HD, Levelt CN (2006) Postsynaptic TrkB signaling has distinct roles in spine maintenance in adult visual cortex and hippocampus. Proc Natl Acad Sci USA 103:1071–1076CrossRefGoogle Scholar
  11. Chan JP, Unger TJ, Byrnes J, Rios M (2006) Examination of behavioral deficits triggered by targeting Bdnf in fetal or postnatal brains of mice. Neuroscience 142:49–58CrossRefGoogle Scholar
  12. Chan JP, Cordeira J, Calderon GA, Iyer LK, Rios M (2008) Depletion of central BDNF in mice impedes terminal differentiation of new granule neurons in the adult hippocampus. Mol Cell Neurosci 39:372–383CrossRefGoogle Scholar
  13. Chapleau CA, Carlo ME, Larimore JL, Pozzo-Miller L (2008) The actions of BDNF on dendritic spine density and morphology in organotypic slice cultures depend on the presence of serum in culture media. J Neurosci Methods 169:182–190CrossRefGoogle Scholar
  14. Choi DW, Koh JY (1998) Zinc and brain injury. Annu Rev Neurosci 21:347–375CrossRefGoogle Scholar
  15. Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD (1999) Elimination od zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT-3 gene. Proc Natl Acad Sci USA 96:1716–1721CrossRefGoogle Scholar
  16. Danzer SC, Pan E, Nef S, Parada LF, McNamara JO (2004) Altered regulation of brain-derived neurotrophic factor protein in hippocampus following slice preparation. Neuroscience 126:859–869CrossRefGoogle Scholar
  17. Erickson KI, Prakash RS, Voss MW, Chaddock L, Heo S, McLaren M, Pence BD, Martin SA, Vieira VJ, Woods JA, McAuley E, Kramer AF (2010) Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. J Neurosci 30:5368–5375CrossRefGoogle Scholar
  18. Flinn JM, Hunter D, Linkous DH, Lanzirotti A, Smith LN, Brightwell J, Jones BF (2005) Enhanced zinc consumption causes memory deficits and increased brain levels of zinc. Physiol Behav 83:793–803CrossRefGoogle Scholar
  19. Franco-Pons N, Casanovas-Aguilar C, Arroyo S, Rumia J, Perez-Clausell J, Danscher G (2000) Zinc-rich synaptic boutons in human temporal cortex biopsies. Neuroscience 98:429–435CrossRefGoogle Scholar
  20. Frederickson CJ, Danscher G (1990) Zinc-containing neurons in hippocampus and related CNS structures. Prog Brain Res 83:71–84CrossRefGoogle Scholar
  21. Frederickson CJ, Moncrieff DW (1994) Zinc-containing neurons. Biol Signals 3:127–139CrossRefGoogle Scholar
  22. Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB (2000) Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr 130:1471s–1483sCrossRefGoogle Scholar
  23. Frederickson CJ, Suh SW, Koh JY, Cha YK, Thompson RB, LaBuda CJ, Balaji RV, Cuajungco MP (2002) Depletion of intracellular zinc from neurons by use of an extracellular chelator in vivo and in vitro. J Histochem Cytochem 12:1659–1662CrossRefGoogle Scholar
  24. Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462CrossRefGoogle Scholar
  25. Friedman WJ, Black IB, Kaplan DR (1998) Distribution of the neurotrophins brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 in the postnatal rat brain: an immunocytochemical study. Neuroscience 84:101–114CrossRefGoogle Scholar
  26. Gao X, Smith GM, Chen J (2009) Impaired dendritic development and synaptic formation of postnatal-born dentate gyrus granular neurons in the absence of brain-derived neurotrophic factor signaling. Exp Neurol 215:178–190CrossRefGoogle Scholar
  27. Gorski JA, Zeiler SR, Tamowski S, Jones KR (2003) Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites. J Neurosci 23:6856–6865CrossRefGoogle Scholar
  28. He W, Lu Y, Qahwash I, Hu XY, Chang A, Yan R (2004a) Reticulon family members modulate BACE1 activity and amyloid-beta peptide generation. Nat Med 10:959–965CrossRefGoogle Scholar
  29. He XP, Kotloski R, Nef S, Luikart BW, Parada LF, McNamara JO (2004b) Conditional deletion of TrkB but not BDNF prevents epileptogenesis in the kindling model. Neuron 43:31–42CrossRefGoogle Scholar
  30. He XP, Butler L, Liu X, McNamara JO (2006) The tyrosine receptor kinase B ligand, neurotrophin-4, is not required for either epileptogenesis or tyrosine receptor kinase B activation in the kindling model. Neuroscience 141:515–520CrossRefGoogle Scholar
  31. Hong EJ, McCord AE, Greenberg ME (2008) A biological function for the neuronal activity-dependent component of Bdnf transcription in the development of cortical inhibition. Neuron 60:610–624CrossRefGoogle Scholar
  32. Horch HW, Kruttgen A, Portbury SD, Katz LC (1999) Destabilization of cortical dendrites and spines by BDNF. Neuron 23:353–364CrossRefGoogle Scholar
  33. Huang YZ, McNamara JO (2010) Mutual regulation of Src family kinases and the neurotrophin receptor TrkB. J Biol Chem 285:8207–8217CrossRefGoogle Scholar
  34. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736CrossRefGoogle Scholar
  35. Huang YZ, Pan E, Xiong ZQ, McNamara JO (2008) Zinc-mediated transactivation of TrkB potentiates the hippocampal mossy fiber-CA3 pyramid synapse. Neuron 57:546–558CrossRefGoogle Scholar
  36. Ip NY, Ibanez CF, Nye SH, McClain J, Jones PF, Gies DR, Belluscio L, Le Beau MM, Espinosa R III, Squinto SP et al (1992) Mammalian neurotrophin-4: structure, chromosomal localization, tissue distribution, and receptor specificity. Proc Natl Acad Sci USA 89:3060–3064CrossRefGoogle Scholar
  37. Ivkovic S, Ehrlich ME (1999) Expression of the striatal DARPP-32/ARPP-21 phenotype in GABAergic neurons requires neurotrophins in vivo and in vitro. J Neurosci 19:5409–5419CrossRefGoogle Scholar
  38. Jeanneteau F, Chao MV (2006) Promoting neurotrophic effects by GPCR ligands. Novartis Found Symp 276:181–189 (discussion 189–192, 187–233, 181–275) PubMedGoogle Scholar
  39. Ji Y, Pang PT, Feng L, Lu B (2005) Cyclic AMP controls BDNF-induced TrkB phosphorylation and dendritic spine formation in mature hippocampal neurons. Nat Neurosci 8:164–172CrossRefGoogle Scholar
  40. Ji Y, Lu Y, Yang F, Shen W, Tang TT, Feng L, Duan S, Lu B (2010) Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons. Nat Neurosci 13:302–309CrossRefGoogle Scholar
  41. Jones KR, Farinas I, Backus C, Reichardt LF (1994) Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76:989–999CrossRefGoogle Scholar
  42. Kellner Y, Godecke N, Dierkes T, Thieme N, Zagrebelsky M, Korte M (2014) The BDNF effects on dendritic spines of mature hippocampal neurons depend on neuronal activity. Front Synaptic Neurosci 6:5CrossRefGoogle Scholar
  43. Kohara K, Kitamura A, Adachi N, Nishida M, Itami C, Nakamura S, Tsumoto T (2003) Inhibitory but not excitatory cortical neurons require presynaptic brain-derived neurotrophic factor for dendritic development, as revealed by chimera cell culture. J Neurosci 23:6123–6131CrossRefGoogle Scholar
  44. Kohara K, Yasuda H, Huang Y, Adachi N, Sohya K, Tsumoto T (2007) A local reduction in cortical GABAergic synapses after a loss of endogenous brain-derived neurotrophic factor, as revealed by single-cell gene knock-out method. J Neurosci 27:7234–7244CrossRefGoogle Scholar
  45. Korets-Smith E, Lindemann L, Tucker KL, Jiang C, Kabacs N, Belteki G, Haigh J, Gertsenstein M, Nagy A (2004) Cre recombinase specificity defined by the tau locus. Genesis 40:131–138CrossRefGoogle Scholar
  46. Kroczka B, Branski P, Palucha A, Pilc A, Nowak G (2001) Antidepressant-like properties of zinc in rodent forced swim test. Brain Res Bull 55:297–300CrossRefGoogle Scholar
  47. Kwon HB, Sabatini BL (2011) Glutamate induces de novo growth of functional spines in developing cortex. Nature 474:100–104CrossRefGoogle Scholar
  48. Lee FS, Chao MV (2001) Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci USA 98:3555–3560CrossRefGoogle Scholar
  49. Lee FS, Rajagopal R, Kim AH, Chang PC, Chao MV (2002) Activation of Trk neurotrophin receptor signaling by pituitary adenylate cyclase-activating polypeptides. J Biol Chem 277:9096–9102CrossRefGoogle Scholar
  50. Linkous DH, Flinn JM, Koh JY, Lanzirotti A, Bertsch PM, Jones BF, Giblin LJ, Frederickson CJ (2008) Evidence that the ZNT3 protein controls the total amount of elemental zinc in synaptic vesicles. J Histochem Cytochem 56(1):3–6CrossRefGoogle Scholar
  51. Linkous DH, Adlard PA, Wanschura PB, Conko KM, Flinn JM (2009a) The effects of enhanced zinc on spatial memory and plaque formation in transgenic mice. J Alzheimers Dis 18:565–579CrossRefGoogle Scholar
  52. Linkous DH, Flinn JM, Koh JY, Lanzirotti A, Bertsch PM, Jones BF, Giblin LJ, Frederickson CJ (2009b) Evidence that the ZnT-3 protein controls the total amount id elemental zinc in synaptic vesicles. J Histochem Cytochem 56(1):3–6CrossRefGoogle Scholar
  53. Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol Organ Soc Miner Trace Elem (GMS) 20:3–18CrossRefGoogle Scholar
  54. Marty S, Berninger B, Carroll P, Thoenen H (1996) GABAergic stimulation regulates the phenotype of hippocampal interneurons through the regulation of brain-derived neurotrophic factor. Neuron 16:565–570CrossRefGoogle Scholar
  55. Marty S, Wehrle R, Sotelo C (2000) Neuronal activity and brain-derived neurotrophic factor regulate the density of inhibitory synapses in organotypic slice cultures of postnatal hippocampus. J Neurosci 20:8087–8095CrossRefGoogle Scholar
  56. McAllister AK, Lo DC, Katz LC (1995) Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15:791–803CrossRefGoogle Scholar
  57. McAllister AK, Katz LC, Lo DC (1996) Neurotrophin regulation of cortical dendritic growth requires activity. Neuron 17:1057–1064CrossRefGoogle Scholar
  58. McAllister AK, Katz LC, Lo DC (1997) Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron 18(5):767–778CrossRefGoogle Scholar
  59. McAllister AK, Katz LC, Lo DC (1999) Neurotrophins and synaptic plasticity. Annu Rev Neurosci 22:295–318CrossRefGoogle Scholar
  60. Minichiello L (2009) TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10:850–860CrossRefGoogle Scholar
  61. Mizuno K, Carnahan J, Nawa H (1994) Brain-derived neurotrophic factor promotes differentiation of striatal GABAergic neurons. Dev Biol 165:243–256CrossRefGoogle Scholar
  62. Monteggia LM, Luikart B, Barrot M, Theobold D, Malkovska I, Nef S, Parada LF, Nestler EJ (2007) Brain-derived neurotrophic factor conditional knockouts show gender differences in depression-related behaviors. Biol Psychiatry 61:187–197CrossRefGoogle Scholar
  63. Nowak G, Siwek M, Dudek D, Zieba A, Pilc A (2003) Effect of zinc supplementation on antidepressant therapy in unipolar depression: a preliminary placebo-controlled study. Pol J Pharmacol 55:1143–1147CrossRefGoogle Scholar
  64. Puehringer D, Orel N, Luningschror P, Subramanian N, Herrmann T, Chao MV, Sendtner M (2013) EGF transactivation of Trk receptors regulates the migration of newborn cortical neurons. Nat Neurosci 16:407–415CrossRefGoogle Scholar
  65. Rajagopal R, Chen ZY, Lee FS, Chao MV (2004) Transactivation of Trk neurotrophin receptors by G-protein-coupled receptor ligands occurs on intracellular membranes. J Neurosci 24:6650–6658CrossRefGoogle Scholar
  66. Rauskolb S, Zagrebelsky M, Dreznjak A, Deogracias R, Matsumoto T, Wiese S, Erne B, Sendtner M, Schaeren-Wiemers N, Korte M, Barde YA (2010) Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth. J Neurosci 30:1739–1749CrossRefGoogle Scholar
  67. Rios M, Fan G, Fekete C, Kelly J, Bates B, Kuehn R, Lechan RM, Jaenisch R (2001) Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol Endocrinol 15:1748–1757CrossRefGoogle Scholar
  68. Rosa AO, Lin J, Calixto JB, Santos AR, Rodrigues AL (2003) Involvement of NMDA receptors and l-arginine-nitric oxide pathway in the antidepressant-like effects of zinc in mice. Behav Brain Res 144:87–93CrossRefGoogle Scholar
  69. Rutherford LC, DeWan A, Lauer HM, Turrigiano GG (1997) Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures. J Neurosci 17:4527–4535CrossRefGoogle Scholar
  70. Schen H, Zhang Y, Xu J, Long J, Qin H, Liu F, Guo J (2007) Zinc distribution and expression pattern of ZnT-3 in mouse brain. Biol Trace Elem Res 119(2):166–174CrossRefGoogle Scholar
  71. Segal RA, Bhattacharyya A, Rua LA, Alberta JA, Stephens RM, Kaplan DR, Stiles CD (1996) Differential utilization of Trk autophosphorylation sites. J Biol Chem 271:20175–20181CrossRefGoogle Scholar
  72. Seil FJ, Drake-Baumann R (2000) TrkB receptor ligands promote activity-dependent inhibitory synaptogenesis. J Neurosci 20:5367–5373CrossRefGoogle Scholar
  73. Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87:387–406PubMedPubMedCentralGoogle Scholar
  74. Sindreu C, Palmiter RD, Storm DR (2011) Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory. Proc Natl Acad Sci USA 108:3366–3370CrossRefGoogle Scholar
  75. Stranahan AM (2011) Physiological variability in brain-derived neurotrophic factor expression predicts dendritic spine density in the mouse dentate gyrus. Neurosci Lett 495:60–62CrossRefGoogle Scholar
  76. Suh SW, Won SJ, Hamby AM, Yoo BH, Fan Y, Sheline CT, Tamano H, Takeda A, Liu J (2009) Decreased brain zinc availability reduces hippocampal neurogenesis in mice and rats. J cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 29:1579–1588CrossRefGoogle Scholar
  77. Takeda A (2000) Movement of zinc and its functional significance in the brain. Brain Res Brain Res Rev 34:137–148CrossRefGoogle Scholar
  78. Takeda A, Tamano H (2014) Cognitive decline due to excess synaptic Zn(2+) signaling in the hippocampus. Front Aging Neurosci 6:26PubMedPubMedCentralGoogle Scholar
  79. Tolwani RJ, Buckmaster PS, Varma S, Cosgaya JM, Wu Y, Suri C, Shooter EM (2002) BDNF overexpression increases dendrite complexity in hippocampal dentate gyrus. Neuroscience 114:795–805CrossRefGoogle Scholar
  80. Turrigiano G (2007) Homeostatic signaling: the positive side of negative feedback. Curr Opin Neurobiol 17:318–324CrossRefGoogle Scholar
  81. Tyler WJ, Pozzo-Miller LD (2001) BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. J Neurosci 21:4249–4258CrossRefGoogle Scholar
  82. Tyler WJ, Pozzo-Miller L (2003) Miniature synaptic transmission and BDNF modulate dendritic spine growth and form in rat CA1 neurones. J Physiol 553:497–509CrossRefGoogle Scholar
  83. Unger TJ, Calderon GA, Bradley LC, Sena-Esteves M, Rios M (2007) Selective deletion of Bdnf in the ventromedial and dorsomedial hypothalamus of adult mice results in hyperphagic behavior and obesity. J Neurosci 27:14265–14274CrossRefGoogle Scholar
  84. Vicario-Abejon C, Collin C, McKay RD, Segal M (1998) Neurotrophins induce formation of functional excitatory and inhibitory synapses between cultured hippocampal neurons. J Neurosci 18:7256–7271CrossRefGoogle Scholar
  85. von Bohlen und Halbach O (2010) Involvement of BDNF in age-dependent alterations in the hippocampus. Front Aging Neurosci. CrossRefPubMedGoogle Scholar
  86. Wang L, Chang X, She L, Xu D, Huang W, Poo MM (2015) Autocrine action of BDNF on dendrite development of adult-born hippocampal neurons. J Neurosci 35:8384–8393CrossRefGoogle Scholar
  87. Waterhouse EG, An JJ, Orefice LL, Baydyuk M, Liao GY, Zheng K, Lu B, Xu B (2012) BDNF promotes differentiation and maturation of adult-born neurons through GABAergic transmission. J Neurosci 32:14318–14330CrossRefGoogle Scholar
  88. Wenzel HJ, Cole TB, Born DE, Schwartzkroin PA, PAlmiter RD (1997) Ultrastructural localization of zinc transporter-3 (ZnT-3) to synaptic vesicle membranes within mossy fibers boutons in the hippocampus of mouse and monkeys. Proc Natl Acad Sci USA 94:12676–12681CrossRefGoogle Scholar
  89. Widmer HR, Hefti F (1994) Neurotrophin-4/5 promotes survival and differentiation of rat striatal neurons developing in culture. Eur J Neurosci 6:1669–1679CrossRefGoogle Scholar
  90. Wiese S, Jablonka S, Holtmann B, Orel N, Rajagopal R, Chao MV, Sendtner M (2007) Adenosine receptor A2A-R contributes to motoneuron survival by transactivating the tyrosine kinase receptor TrkB. Proc Natl Acad Sci USA 104(43):17210–17215CrossRefGoogle Scholar
  91. Yacoubian TA, Lo DC (2000) Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth. Nat Neurosci 3:342–349CrossRefGoogle Scholar
  92. Yamada MK, Nakanishi K, Ohba S, Nakamura T, Ikegaya Y, Nishiyama N, Matsuki N (2002) Brain-derived neurotrophic factor promotes the maturation of GABAergic mechanisms in cultured hippocampal neurons. J Neurosci 22:7580–7585CrossRefGoogle Scholar
  93. Zagrebelsky M, Korte M (2014) Form follows function: BDNF and its involvement in sculpting the function and structure of synapses. Neuropharmacology 76(Pt C):628–638CrossRefGoogle Scholar
  94. Zagrebelsky M, Schweigreiter R, Bandtlow CE, Schwab ME, Korte M (2010) Nogo-A stabilizes the architecture of hippocampal neurons. J Neurosci 30:13220–13234CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Cellular Neurobiology, Zoological InstituteTU BraunschweigBrunswickGermany
  2. 2.Helmholtz Centre for Infection ResearchAG NINDBrunswickGermany

Personalised recommendations