Advertisement

Chronotype differences in cortical thickness: grey matter reflects when you go to bed

  • Jessica Rosenberg
  • Heidi I. L. Jacobs
  • Ivan I. Maximov
  • Martina Reske
  • N. J. Shah
Original Article

Abstract

Based on individual circadian cycles and associated cognitive rhythms, humans can be classified via standardised self-reports as being early (EC), late (LC) and intermediate (IC) chronotypes. Alterations in neural cortical structure underlying these chronotype differences have rarely been investigated and are the scope of this study. 16 healthy male ECs, 16 ICs and 16 LCs were measured with a 3 T MAGNETOM TIM TRIO (Siemens, Erlangen) scanner using a magnetization prepared rapid gradient echo sequence. Data were analysed by applying voxel-based morphometry (VBM) and vertex-wise cortical thickness (CTh) analysis. VBM analysis revealed that ECs showed significantly lower grey matter volumes bilateral in the lateral occipital cortex and the precuneus as compared to LCs, and in the right lingual gyrus, occipital fusiform gyrus and the occipital pole as compared to ICs. CTh findings showed lower grey matter volumes for ECs in the left anterior insula, precuneus, inferior parietal cortex, and right pars triangularis than for LCs, and in the right superior parietal gyrus than for ICs. These findings reveal that chronotype differences are associated with specific neural substrates of cortical thickness, surface areas, and folding. We conclude that this might be the basis for chronotype differences in behaviour and brain function. Furthermore, our results speak for the necessity of considering “chronotype” as a potentially modulating factor in all kinds of structural brain-imaging experiments.

Keywords

Chronotype Circadian Cortical thickness Grey matter Voxel-based morphometry 

Notes

Acknowledgements

We gratefully acknowledge the participation of our subjects and we would like to thank (A) Brinck, (B) Elghahwagi, D. Krug, S. Harzheim, A. Heimsoeth, A. Muren, V. Nelles and T. Warbrick for their support in preparing and/or their assistance in conducting the study.

Funding

This research was supported by Grants from JARA, RWTH (JR). NJS is funded in part by the Helmholtz Alliance ICEMED—Imaging and Curing Environmental Metabolic Diseases, through the Initiative and Network Fund of the Helmholtz Association (HA-314).

Compliance with ethical standards

Conflict of interest

The authors do not hold any actual or potential conflicts of interest including any financial, personal or other relationships with other people or organizations that could inappropriately influence, or be perceived to influence this work.

Supplementary material

429_2018_1697_MOESM1_ESM.docx (73 kb)
Supplementary material 1 (DOCX 73 KB)
429_2018_1697_MOESM2_ESM.docx (56 kb)
Supplementary material 2 (DOCX 56 KB)
429_2018_1697_MOESM3_ESM.docx (51 kb)
Supplementary material 3 (DOCX 51 KB)
429_2018_1697_MOESM4_ESM.docx (55 kb)
Supplementary material 4 (DOCX 55 KB)
429_2018_1697_MOESM5_ESM.docx (60 kb)
Supplementary material 5 (DOCX 59 KB)
429_2018_1697_MOESM6_ESM.docx (37 kb)
Supplementary material 6 (DOCX 36 KB)
429_2018_1697_MOESM7_ESM.docx (41 kb)
Supplementary material 7 (DOCX 41 KB)

References

  1. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11(6 Pt 1):805–821.  https://doi.org/10.1006/nimg.2000.0582 CrossRefPubMedGoogle Scholar
  2. Aston-Jones G, Chen S, Zhu Y, Oshinsky ML (2001) A neural circuit for circadian regulation of arousal. Nat Neurosci 4(7):732–738.  https://doi.org/10.1038/89522 CrossRefPubMedGoogle Scholar
  3. Barulli D, Stern Y (2013) Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve. Trends Cogn Sci 17(10):502–509.  https://doi.org/10.1016/j.tics.2013.08.012 CrossRefPubMedGoogle Scholar
  4. Beck AT, Steer RA (2006) BDI-II Beck depressions-inventar. Gregory K. Brown Harcourt Test Services GmbH., Franfurt/MGoogle Scholar
  5. Bernhardt BC, Bernasconi N, Concha L, Bernasconi A (2010) Cortical thickness analysis in temporal lobe epilepsy: reproducibility and relation to outcome. Neurology 74(22):1776–1784.  https://doi.org/10.1212/WNL.0b013e3181e0f80a CrossRefPubMedGoogle Scholar
  6. Binder JR, Frost JA, Hammeke TA, Bellgowan PSF, Rao SM, Cox RW (1999) Conceptual processing during the conscious resting state: a functional MRI study. J Cognitive Neurosci 11(1):80–93.  https://doi.org/10.1162/089892999563265 CrossRefGoogle Scholar
  7. Bischof M, Bassetti CL (2004) Total dream loss: a distinct neuropsychological dysfunction after bilateral PCA stroke. Ann Neurol 56(4):583–586.  https://doi.org/10.1002/ana.20246 CrossRefPubMedGoogle Scholar
  8. Braun AR, Balkin TJ, Wesensten NJ, Carson RE, Varga M, Baldwin P, Selbie S, Belenky G, Herscovitch P (1997) Regional cerebral blood flow throughout the sleep-wake cycle—an (H2O)-O-15 PET study. Brain 120:1173–1197.  https://doi.org/10.1093/Brain/120.7.1173 CrossRefPubMedGoogle Scholar
  9. Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ (1989) The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 28(2):193–213CrossRefPubMedGoogle Scholar
  10. Cauda F, Palermo S, Costa T, Torta R, Duca S, Vercelli U, Geminiani G, Torta DME (2014) Gray matter alterations in chronic pain: a network-oriented meta-analytic approach. Neuroimage Clin 4:676–686.  https://doi.org/10.1016/j.nicl.2014.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129(Pt 3):564–583.  https://doi.org/10.1093/brain/awl004 CrossRefPubMedGoogle Scholar
  12. Chervin RD (2003) Epworth sleepiness scale. Sleep Med 4(3):175–176CrossRefPubMedGoogle Scholar
  13. Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3(8):655–666.  https://doi.org/10.1038/nrn894 CrossRefPubMedGoogle Scholar
  14. Craig AD (2009) How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci 10(1):59–70.  https://doi.org/10.1038/nrn2555 CrossRefPubMedGoogle Scholar
  15. Dale AM, Sereno MI (1993) Improved localizadon of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5(2):162–176.  https://doi.org/10.1162/jocn.1993.5.2.162 CrossRefPubMedGoogle Scholar
  16. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9(2):179–194.  https://doi.org/10.1006/nimg.1998.0395 CrossRefPubMedGoogle Scholar
  17. Daselaar SM, Iyengar V, Davis SW, Eklund K, Hayes SM, Cabeza RE (2015) Less wiring, more firing: low-performing older adults compensate for impaired white matter with greater neural activity. Cereb Cortex 25(4):983–990.  https://doi.org/10.1093/cercor/bht289 CrossRefPubMedGoogle Scholar
  18. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980.  https://doi.org/10.1016/J.Neuroimage.2006.01.021 CrossRefPubMedGoogle Scholar
  19. Erickson KI, Leckie RL, Weinstein AM (2014) Physical activity, fitness, and gray matter volume. Neurobiol Aging 35 Suppl 2:S20–S28.  https://doi.org/10.1016/j.neurobiolaging.2014.03.034 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97(20):11050–11055.  https://doi.org/10.1073/pnas.200033797 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2):195–207.  https://doi.org/10.1006/nimg.1998.0396 CrossRefPubMedGoogle Scholar
  22. Fischl B, Liu A, Dale AM (2001) Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20(1):70–80.  https://doi.org/10.1109/42.906426 CrossRefPubMedGoogle Scholar
  23. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355.  https://doi.org/10.1016/S0896-6273(02)00569-X CrossRefPubMedGoogle Scholar
  24. Fischl B, Salat DH, van der Kouwe AJ, Makris N, Segonne F, Quinn BT, Dale AM (2004a) Sequence-independent segmentation of magnetic resonance images. Neuroimage 23 Suppl 1:S69–S84.  https://doi.org/10.1016/j.neuroimage.2004.07.016 CrossRefPubMedGoogle Scholar
  25. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM (2004b) Automatically parcellating the human cerebral cortex. Cereb Cortex 14(1):11–22CrossRefPubMedGoogle Scholar
  26. Fiset P, Paus T, Daloze T, Plourde G, Meuret P, Bonhomme V, Hajj-Ali N, Backman SB, Evans AC (1999) Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J Neurosci 19(13):5506–5513CrossRefPubMedGoogle Scholar
  27. Franklin TR, Wetherill RR, Jagannathan K, Johnson B, Mumma J, Hager N, Rao H, Childress AR (2014) The effects of chronic cigarette smoking on gray matter volume: influence of sex. PLos One.  https://doi.org/10.1371/Journal.Pone.0104102 Google Scholar
  28. Fritz HC, Wittfeld K, Schmidt CO, Domin M, Grabe HJ, Hegenscheid K, Hosten N, Lotze M (2014) Current smoking and reduced gray matter volume—a voxel-based morphometry study. Neuropsychopharmacology 39(11):2594–2600.  https://doi.org/10.1038/npp.2014.112 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gillberg M, Kecklund G, Akerstedt T (1994) Relations between performance and subjective ratings of sleepiness during a night awake. Sleep 17(3):236–241CrossRefPubMedGoogle Scholar
  30. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100(1):253–258.  https://doi.org/10.1073/pnas.0135058100 CrossRefPubMedGoogle Scholar
  31. Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2(10):685–694.  https://doi.org/10.1038/35094500 CrossRefPubMedGoogle Scholar
  32. Honey CJ, Thivierge JP, Sporns O (2010) Can structure predict function in the human brain? Neuroimage 52(3):766–776.  https://doi.org/10.1016/j.neuroimage.2010.01.071 CrossRefPubMedGoogle Scholar
  33. Horne JA, Östberg O (1976) A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol 4:97–110PubMedGoogle Scholar
  34. Hutton C, De Vita E, Ashburner J, Deichmann R, Turner R (2008) Voxel-based cortical thickness measurements in MRI. Neuroimage 40(4):1701–1710.  https://doi.org/10.1016/j.neuroimage.2008.01.027 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hutton C, Draganski B, Ashburner J, Weiskopf N (2009) A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. Neuroimage 48(2):371–380.  https://doi.org/10.1016/j.neuroimage.2009.06.043 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Imbe H, Kimura A, Donishi T, Kaneoke Y (2012) Chronic restraint stress decreases glial fibrillary acidic protein and glutamate transporter in the periaqueductal gray matter. Neuroscience 223:209–218.  https://doi.org/10.1016/j.neuroscience.2012.08.007 CrossRefPubMedGoogle Scholar
  37. Jacobs HI, Van Boxtel MP, Jolles J, Verhey FR, Uylings HB (2012) Parietal cortex matters in Alzheimer’s disease: an overview of structural, functional and metabolic findings. Neurosci Biobehav Rev 36(1):297–309.  https://doi.org/10.1016/j.neubiorev.2011.06.009 CrossRefPubMedGoogle Scholar
  38. Katzenberg D, Young T, Finn L, Lin L, King DP, Takahashi JS, Mignot E (1998) A CLOCK polymorphism associated with human diurnal preference. Sleep 21(6):569–576CrossRefPubMedGoogle Scholar
  39. Kerkhof GA, Van Dongen HP (1996) Morning-type and evening-type individuals differ in the phase position of their endogenous circadian oscillator. Neurosci Lett 218(3):153–156CrossRefPubMedGoogle Scholar
  40. Killgore WDS, Schwab ZJ, Kipman M, DelDonno SR, Weber M (2012) Voxel-based morphometric gray matter correlates of daytime sleepiness. Neurosci Lett 518(1):10–13.  https://doi.org/10.1016/j.neulet.2012.04.029 CrossRefPubMedGoogle Scholar
  41. Kremen WS, O’Brien RC, Panizzon MS, Prom-Wormley E, Eaves LJ, Eisen SA, Eyler LT, Hauger RL, Fennema-Notestine C, Fischl B, Grant MD, Hellhammer DH, Jak AJ, Jacobson KC, Jernigan TL, Lupien SJ, Lyons MJ, Mendoza SP, Neale MC, Seidman LJ, Thermenos HW, Tsuang MT, Dale AM, Franz CE (2010) Salivary cortisol and prefrontal cortical thickness in middle-aged men: a twin study. Neuroimage 53(3):1093–1102.  https://doi.org/10.1016/j.neuroimage.2010.02.026 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kuperberg GR, Broome MR, McGuire PK, David AS, Eddy M, Ozawa F, Goff D, West WC, Williams SC, van der Kouwe AJ, Salat DH, Dale AM, Fischl B (2003) Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 60(9):878–888.  https://doi.org/10.1001/archpsyc.60.9.878 CrossRefPubMedGoogle Scholar
  43. Langner R, Eickhoff SB (2013) Sustaining attention to simple tasks: a meta-analytic review of the neural mechanisms of vigilant attention. Psychol Bull 139(4):870–900.  https://doi.org/10.1037/a0030694 CrossRefPubMedGoogle Scholar
  44. Laureys S, Goldman S, Phillips C, Van Bogaert P, Aerts J, Luxen A, Franck G, Maquet P (1999) Impaired effective cortical connectivity in vegetative state: preliminary investigation using PET. Neuroimage 9(4):377–382.  https://doi.org/10.1006/Nimg.1998.0414 CrossRefPubMedGoogle Scholar
  45. Laureys S, Owen AM, Schiff ND (2004) Brain function in coma, vegetative state, and related disorders. Lancet Neurol 3(9):537–546.  https://doi.org/10.1016/S1474-4422(04)00852-X CrossRefPubMedGoogle Scholar
  46. Lerch JP, Pruessner JC, Zijdenbos A, Hampel H, Teipel SJ, Evans AC (2005) Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cereb Cortex 15(7):995–1001.  https://doi.org/10.1093/cercor/bhh200 CrossRefPubMedGoogle Scholar
  47. Lighthall NR, Huettel SA, Cabeza R (2014) Functional compensation in the ventromedial prefrontal cortex improves memory-dependent decisions in older adults. J Neurosci 34(47):15648–15657.  https://doi.org/10.1523/JNEUROSCI.2888-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Maquet P, Peters JM, Aerts J, Delfiore G, Degueldre C, Luxen A, Franck G (1996) Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 383(6596):163–166.  https://doi.org/10.1038/383163a0 CrossRefPubMedGoogle Scholar
  49. Maquet P, Degueldre C, Delfiore G, Aerts J, Peters JM, Luxen A, Franck G (1997) Functional neuroanatomy of human slow wave sleep. J Neurosci 17(8):2807–2812CrossRefPubMedGoogle Scholar
  50. Maquet P, Faymonville ME, Degueldre C, Delfiore G, Franck G, Luxen A, Lamy M (1999) Functional neuroanatomy of hypnotic state. Biol Psychiatry 45(3):327–333.  https://doi.org/10.1016/S0006-3223(97)00546-5 CrossRefPubMedGoogle Scholar
  51. McClernon FJ (2009) Neuroimaging of nicotine dependence: key findings and application to the study of smoking-mental illness co-morbidity. J Dual Diagn 5(2):168–178.  https://doi.org/10.1080/15504260902869204 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Mecacci L, Rocchetti G (1998) Morning and evening types: stress-related personality aspects. Personal Individ Diff 25:537–542CrossRefGoogle Scholar
  53. Miller GA, Chapman JP (2001) Misunderstanding analysis of covariance. J Abnorm Psychol 110(1):40–48.  https://doi.org/10.1037//0021-843X.110.1.40 CrossRefPubMedGoogle Scholar
  54. Mitchell JP, Heatherton TF, Macrae CN (2002) Distinct neural systems subserve person and object knowledge. Proc Natl Acad Sci USA 99(23):15238–15243.  https://doi.org/10.1073/pnas.232395699 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Narr KL, Bilder RM, Toga AW, Woods RP, Rex DE, Szeszko PR, Robinson D, Sevy S, Gunduz-Bruce H, Wang YP, DeLuca H, Thompson PM (2005) Mapping cortical thickness and gray matter concentration in first episode schizophrenia. Cereb Cortex 15(6):708–719.  https://doi.org/10.1093/cercor/bhh172 CrossRefPubMedGoogle Scholar
  56. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMedGoogle Scholar
  57. Pfefferbaum A, Sullivan EV, Rosenbloom MJ, Mathalon H, Lim KO (1998) A controlled study of cortical gray matter and ventricular changes in alcoholic men over a 5-year interval. Arch Gen Psychiatry 55(10):905–912.  https://doi.org/10.1001/Archpsyc.55.10.905 CrossRefPubMedGoogle Scholar
  58. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682.  https://doi.org/10.1073/Pnas.98.2.676 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rainville P, Hofbauer RK, Paus T, Duncan GH, Bushnell MC, Price DD (1999) Cerebral mechanisms of hypnotic induction and suggestion. J Cognitive Neurosci 11(1):110–125.  https://doi.org/10.1162/089892999563175 CrossRefGoogle Scholar
  60. Reske M, Rosenberg J, Plapp S, Kellermann T, Shah NJ (2015a) fMRI identifies chronotype-specific brain activation associated with attention to motion—why we need to know when subjects go to bed. Neuroimage 111:602–610.  https://doi.org/10.1016/j.neuroimage.2015.02.013 CrossRefPubMedGoogle Scholar
  61. Reske M, Stewart JL, Flagan TM, Paulus MP (2015b) Attenuated neural processing of risk in young adults at risk for stimulant dependence. PLoS One 10(6):e0127010.  https://doi.org/10.1371/journal.pone.0127010 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Roenneberg T, Wirz-Justice A, Merrow M (2003) Life between clocks: daily temporal patterns of human chronotypes. J Biol Rhythms 18(1):80–90CrossRefPubMedGoogle Scholar
  63. Roenneberg T, Kuehnle T, Juda M, Kantermann T, Allebrandt K, Gordijn M, Merrow M (2007) Epidemiology of the human circadian clock. Sleep Med Rev 11(6):429–438CrossRefPubMedGoogle Scholar
  64. Rosenberg J, Maximov II, Reske M, Grinberg F, Shah NJ (2014) “Early to bed, early to rise”: diffusion tensor imaging identifies chronotype-specificity. Neuroimage 84:428–434.  https://doi.org/10.1016/J.Neuroimage.2013.07.086 CrossRefPubMedGoogle Scholar
  65. Rosenberg J, Reske M, Warbrick T, Shah NJ (2015) Chronotype modulates language processing-related cerebral activity during functional MRI (fMRI). Plos One.  https://doi.org/10.1371/journal.pone.0137197 Google Scholar
  66. Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E, Morris JC, Dale AM, Fischl B (2004) Thinning of the cerebral cortex in aging. Cereb Cortex 14(7):721–730.  https://doi.org/10.1093/cercor/bhh032 CrossRefPubMedGoogle Scholar
  67. Saß H, Zaudig MGH (1996) Diagnostisches und statistisches manual psychischer Störungen DSM-IV (German version).Göttingen, HogrefeGoogle Scholar
  68. Schmidt C, Collette F, Leclercq Y, Sterpenich V, Vandewalle G, Berthomier P, Berthomier C, Phillips C, Tinguely G, Darsaud A, Gais S, Schabus M, Desseilles M, Dang-Vu TT, Salmon E, Balteau E, Degueldre C, Luxen A, Maquet P, Cajochen C, Peigneux P (2009) Homeostatic sleep pressure and responses to sustained attention in the suprachiasmatic area. Science 324(5926):516–519.  https://doi.org/10.1126/science.1167337 CrossRefPubMedGoogle Scholar
  69. Schmidt C, Peigneux P, Leclercq Y, Sterpenich V, Vandewalle G, Phillips C, Berthomier P, Berthomier C, Tinguely G, Gais S, Schabus M, Desseilles M, Dang-Vu T, Salmon E, Degueldre C, Balteau E, Luxen A, Cajochen C, Maquet P, Collette F (2012) Circadian preference modulates the neural substrate of conflict processing across the day. PLoS One 7(1):e29658.  https://doi.org/10.1371/journal.pone.0029658 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Schmidt C, Collette F, Reichert CF, Maire M, Vandewalle G, Peigneux P, Cajochen C (2015) Pushing the limits: chronotype and time of day modulate working memory-dependent cerebral activity. Front Neurol 6:199.  https://doi.org/10.3389/fneur.2015.00199 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Segonne F, Pacheco J, Fischl B (2007) Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging 26(4):518–529.  https://doi.org/10.1109/TMI.2006.887364 CrossRefPubMedGoogle Scholar
  72. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97.  https://doi.org/10.1109/42.668698 CrossRefPubMedGoogle Scholar
  73. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155.  https://doi.org/10.1002/hbm.10062 CrossRefPubMedGoogle Scholar
  74. Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44(1):83–98.  https://doi.org/10.1016/j.neuroimage.2008.03.061 CrossRefPubMedGoogle Scholar
  75. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219.  https://doi.org/10.1016/j.neuroimage.2004.07.051 CrossRefPubMedGoogle Scholar
  76. Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18:643–662CrossRefGoogle Scholar
  77. Taillard J, Philip P, Bioulac B (1999) Morningness/eveningness and the need for sleep. J Sleep Res 8(4):291–295CrossRefPubMedGoogle Scholar
  78. Takeuchi H, Taki Y, Sassa Y, Hashizume H, Sekiguchi A, Fukushima A, Kawashima R (2011) Regional gray matter density associated with emotional intelligence: evidence from voxel-based morphometry. Hum Brain Mapp 32(9):1497–1510.  https://doi.org/10.1002/hbm.21122 CrossRefPubMedGoogle Scholar
  79. Takeuchi H, Taki Y, Nouchi R, Sekiguchi A, Kotozaki Y, Miyauchi CM, Yokoyama R, Iizuka K, Hashizume H, Nakagawa S, Kunitoki K, Sassa Y, Kawashima R (2014) Regional gray matter density is associated with achievement motivation: evidence from voxel-based morphometry. Brain Struct Funct 219(1):71–83.  https://doi.org/10.1007/s00429-012-0485-3 CrossRefPubMedGoogle Scholar
  80. Takeuchi H, Taki Y, Sekiguchi A, Nouchi R, Kotozaki Y, Nakagawa S, Miyauchi CM, Iizuka K, Yokoyama R, Shinada T, Yamamoto Y, Hanawa S, Araki T, Hashizume H, Kunitoki K, Sassa Y, Kawashima R (2015) Regional gray matter density is associated with morningness-eveningness: evidence from voxel-based morphometry. Neuroimage 117:294–304.  https://doi.org/10.1016/j.neuroimage.2015.05.037 CrossRefPubMedGoogle Scholar
  81. Tomasi D, Wang RL, Telang F, Boronikolas V, Jayne MC, Wang GJ, Fowler JS, Volkow ND (2009) Impairment of attentional networks after 1 night of sleep deprivation. Cereb Cortex 19(1):233–240.  https://doi.org/10.1093/cercor/bhn073 CrossRefPubMedGoogle Scholar
  82. Van Horn JD (2004) The new perspectives in fMRI research award: exploring patterns of default-mode brain activity. J Cognitive Neurosci 16(9):1479–1480CrossRefGoogle Scholar
  83. van der Werff SJ, van den Berg SM, Pannekoek JN, Elzinga BM, van der Wee NJ (2013) Neuroimaging resilience to stress: a review. Front Behav Neurosci 7:39.  https://doi.org/10.3389/fnbeh.2013.00039 PubMedPubMedCentralGoogle Scholar
  84. Wiers CE, Gawron CK, Gropper S, Spengler S, Stuke H, Lindenmeyer J, Walter H, Bermpohl F (2015) Decreased gray matter volume in inferior frontal gyrus is related to stop-signal task performance in alcohol-dependent patients. Psychiatry Res.  https://doi.org/10.1016/j.pscychresns.2015.05.006 PubMedGoogle Scholar
  85. Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE (2014) Permutation inference for the general linear model. Neuroimage 92:381–397.  https://doi.org/10.1016/j.neuroimage.2014.01.060 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Wittmann M, Dinich J, Merrow M, Roenneberg T (2006) Social jetlag: misalignment of biological and social time. Chronobiol Int 23(1–2):497–509.  https://doi.org/10.1080/07420520500545979 CrossRefPubMedGoogle Scholar
  87. Xiao P, Dai Z, Zhong J, Zhu Y, Shi H, Pan P (2015) Regional gray matter deficits in alcohol dependence: a meta-analysis of voxel-based morphometry studies. Drug Alcohol Depend 153:22–28.  https://doi.org/10.1016/j.drugalcdep.2015.05.030 CrossRefPubMedGoogle Scholar
  88. Yu F, Duong T, Tantiwongkosi B (2015) Advanced MR imaging of the visual pathway. Neuroimaging Clin N Am 25(3):383–393.  https://doi.org/10.1016/j.nic.2015.05.003 CrossRefPubMedGoogle Scholar
  89. Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20(1):45–57.  https://doi.org/10.1109/42.906424 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jessica Rosenberg
    • 1
    • 2
    • 3
  • Heidi I. L. Jacobs
    • 4
    • 5
    • 6
  • Ivan I. Maximov
    • 1
    • 7
  • Martina Reske
    • 1
    • 2
    • 8
  • N. J. Shah
    • 1
    • 2
    • 3
    • 9
  1. 1.Institute of Neuroscience and Medicine (INM-4), Medical Imaging PhysicsForschungszentrum Jülich GmbHJülichGermany
  2. 2.JARA-Translational Brain MedicineRWTH Aachen UniversityAachenGermany
  3. 3.Department of NeurologyUniversity Clinic AachenAachenGermany
  4. 4.Institute of Neuroscience and Medicine (INM-3)Forschungszentrum Juelich GmbHJülichGermany
  5. 5.Alzheimer Centre Limburg, School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life SciencesMaastricht University Medical CentreMaastrichtThe Netherlands
  6. 6.Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
  7. 7.Experimental Physics IIITU Dortmund UniversityDortmundGermany
  8. 8.Institute of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience, and Institute for Advanced Simulation (IAS-6), Theoretical NeuroscienceForschungszentrum Jülich GmbHJülichGermany
  9. 9.Department of Electrical and Computer Systems Engineering, and Monash Biomedical Imaging, School of Psychological SciencesMonash UniversityMelbourneAustralia

Personalised recommendations