Skip to main content
Log in

Prolactin-induced and neuronal activation in the brain of mother mice

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Nursing has important consequences on mothers. To separate the prolactin-mediated and the neuronally-mediated actions of nursing, neurons directly affected by prolactin were visualized using pSTAT5 immunohistochemistry in relation to Fos-expressing neurons in suckled mother mice. In response to pup exposure following 22-h pup deprivation, we found a markedly elevated number of pSTAT5-containing neurons in several brain regions, including the lateral septum, medial amygdaloid nucleus, subparafascicular area, caudal periaqueductal gray, dorsal raphe, lateral parabrachial nucleus, nucleus of the solitary tract, and the periventricular, medial preoptic, paraventricular, arcuate and ventromedial nuclei of the hypothalamus. Pup exposure also induced Fos expression in all of these brain regions except the arcuate and ventromedial hypothalamic nuclei. Bromocriptine treatment known to reduce prolactin levels eliminated pSTAT5 from most brain regions while it did not affect Fos activation following suckling. The degree of colocalization for pSTAT5 and Fos ranged from 8 to 80% in the different brain regions suggesting that most neurons responding to pup exposure in mother mice are driven either by prolactin or direct neuronal input from the pups, while the number of neurons affected by both types of inputs depends on the examined brain area. In addition, both pSTAT5 and Fos were also double-labeled with estrogen receptor alpha (ERα) in mother mice, which revealed a very high degree of colocalization between pSTAT5 and ERα with much less potential interaction between Fos- and ERα-containing neurons suggesting that estrogen-sensitive neurons are more likely to be affected by prolactin than by direct neuronal activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aguggia JP, Suarez MM, Rivarola MA (2013) Early maternal separation: neurobehavioral consequences in mother rats. Behav Brain Res 248:25–31

    PubMed  Google Scholar 

  • Anderson GM, Kieser DC, Steyn FJ, Grattan DR (2008) Hypothalamic prolactin receptor messenger ribonucleic acid levels, prolactin signaling, and hyperprolactinemic inhibition of pulsatile luteinizing hormone secretion are dependent on estradiol. Endocrinology 149:1562–1570

    CAS  PubMed  Google Scholar 

  • Arbogast LA, Voogt JL (1994) Progesterone suppresses tyrosine hydroxylase messenger ribonucleic acid levels in the arcuate nucleus on proestrus. Endocrinology 135:343–350

    CAS  PubMed  Google Scholar 

  • Augustine RA, Bouwer GT, Seymour AJ, Grattan DR, Brown CH (2016) Reproductive regulation of gene expression in the hypothalamic supraoptic and paraventricular nuclei. J Neuroendocrinol 28:1–12

    Google Scholar 

  • Augustine RA, Seymour AJ, Campbell RE, Grattan DR, Brown CH (2018) Integrative neuro-humoral regulation of oxytocin neuron activity in pregnancy and lactation. J Neuroendocrinol. https://doi.org/10.1111/jne.12569

    Article  PubMed  Google Scholar 

  • Banky Z, Nagy GM, Halasz B (1994) Effect of various partial separations of the litters from their mother on plasma prolactin levels of lactating rats. Acta Biol Hung 45:169–178

    CAS  PubMed  Google Scholar 

  • Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA (1998) Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 19:225–268

    CAS  PubMed  Google Scholar 

  • Bridges RS (2015) Neuroendocrine regulation of maternal behavior. Front Neuroendocrinol 36:178–196

    CAS  PubMed  Google Scholar 

  • Bridges RS, Ronsheim PM (1990) Prolactin (PRL) regulation of maternal behavior in rats: bromocriptine treatment delays and PRL promotes the rapid onset of behavior. Endocrinology 126:837–848

    CAS  PubMed  Google Scholar 

  • Bridges RS, Numan M, Ronsheim PM, Mann PE, Lupini CE (1990) Central prolactin infusions stimulate maternal behavior in steroid-treated, nulliparous female rats. Proc Natl Acad Sci USA 87:8003–8007

    CAS  PubMed  Google Scholar 

  • Brown RS, Herbison AE, Grattan DR (2010a) Differential changes in responses of hypothalamic and brainstem neuronal populations to prolactin during lactation in the mouse. Biol Reprod 84:826–836

    PubMed  Google Scholar 

  • Brown RS, Kokay IC, Herbison AE, Grattan DR (2010b) Distribution of prolactin-responsive neurons in the mouse forebrain. J Comp Neurol 518:92–102

    CAS  PubMed  Google Scholar 

  • Brown RS, Herbison AE, Grattan DR (2011) Differential changes in responses of hypothalamic and brainstem neuronal populations to prolactin during lactation in the mouse. Biol Reprod 84:826–836

    CAS  PubMed  Google Scholar 

  • Brown RS, Piet R, Herbison AE, Grattan DR (2012) Differential actions of prolactin on electrical activity and intracellular signal transduction in hypothalamic neurons. Endocrinology 153:2375–2384

    CAS  PubMed  Google Scholar 

  • Brown RS, Herbison AE, Grattan DR (2015) Effects of Prolactin and Lactation on A15 Dopamine Neurones in the Rostral Preoptic Area of Female Mice. J Neuroendocrinol 27:708–717

    CAS  PubMed  Google Scholar 

  • Brown RS, Wyatt AK, Herbison RE, Knowles PJ, Ladyman SR, Binart N, Banks WA, Grattan DR (2016) Prolactin transport into mouse brain is independent of prolactin receptor. FASEB J 30:1002–1010

    CAS  PubMed  Google Scholar 

  • Brown RSE, Aoki M, Ladyman SR, Phillipps HR, Wyatt A, Boehm U, Grattan DR (2017) Prolactin action in the medial preoptic area is necessary for postpartum maternal nursing behavior. Proc Natl Acad Sci USA 114:10779–10784

    CAS  PubMed  Google Scholar 

  • Brunton PJ, Russell JA (2008) The expectant brain: adapting for motherhood. Nat Rev Neurosci 9:11–25

    CAS  PubMed  Google Scholar 

  • Bullitt E (1990) Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. J Comp Neurol 296:517–530

    CAS  PubMed  Google Scholar 

  • Cave BJ, Wakerley JB, Luckman SM, Tortonese DJ (2001) Hypothalamic targets for prolactin: assessment of c-Fos induction in tyrosine hydroxylase- and proopiomelanocortin-containing neurones in the rat arcuate nucleus following acute central prolactin administration. Neuroendocrinology 74:386–395

    CAS  PubMed  Google Scholar 

  • Crowley WR (2015) Neuroendocrine regulation of lactation and milk production. Compr Physiol 5:255–291

    PubMed  Google Scholar 

  • Cservenak M, Bodnar I, Usdin TB, Palkovits M, Nagy GM, Dobolyi A (2010) Tuberoinfundibular peptide of 39 residues is activated during lactation and participates in the suckling-induced prolactin release in rat. Endocrinology 151:5830–5840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cservenak M, Keller D, Kis V, Fazekas EA, Ollos H, Leko AH, Szabo ER, Renner E, Usdin TB, Palkovits M, Dobolyi A (2017a) A thalamo-hypothalamic pathway that activates oxytocin neurons in social contexts in female rats. Endocrinology 158:335–348

    PubMed  Google Scholar 

  • Cservenak M, Kis V, Keller D, Dimen D, Menyhart L, Olah S, Szabo ER, Barna J, Renner E, Usdin TB, Dobolyi A (2017b) Maternally involved galanin neurons in the preoptic area of the rat. Brain Struct Funct 222:781–798

    CAS  PubMed  Google Scholar 

  • Cservenák M, Szabó TR, Bodnár I, Lékó A, Palkovits M, Nagy GM, Usdin TB, Dobolyi A (2013) Thalamic neuropeptide mediating the effects of nursing on lactation and maternal motivation. Psychoneuroendocrinology 38:3070–3084

    PubMed  Google Scholar 

  • Dobolyi A, Palkovits M, Usdin TB (2010) The TIP39-PTH2 receptor system: unique peptidergic cell groups in the brainstem and their interactions with central regulatory mechanisms. Prog Neurobiol 90:29–59

    CAS  PubMed  Google Scholar 

  • Dobolyi A, Grattan DR, Stolzenberg DS (2014) Preoptic inputs and mechanisms that regulate maternal responsiveness. J Neuroendocrinol 26:627–640

    CAS  PubMed  Google Scholar 

  • Dulac C, O’Connell LA, Wu Z (2014) Neural control of maternal and paternal behaviors. Science 345:765–770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fenelon VS, Poulain DA, Theodosis DT (1993) Oxytocin neuron activation and Fos expression: a quantitative immunocytochemical analysis of the effect of lactation, parturition, osmotic and cardiovascular stimulation. Neuroscience 53:77–89

    CAS  PubMed  Google Scholar 

  • Flanagan-Cato LM (2000) Estrogen-induced remodeling of hypothalamic neural circuitry. Front Neuroendocrinol 21:309–329

    CAS  PubMed  Google Scholar 

  • Fleming AS, Luebke C (1981) Timidity prevents the virgin female rat from being a good mother: emotionality differences between nulliparous and parturient females. Physiol Behav 27:863–868

    CAS  PubMed  Google Scholar 

  • Fleming AS, Walsh C (1994) Neuropsychology of maternal behavior in the rat: c-fos expression during mother-litter interactions. Psychoneuroendocrinology 19:429–443

    CAS  PubMed  Google Scholar 

  • Fleming AS, Suh EJ, Korsmit M, Rusak B (1994) Activation of Fos-like immunoreactivity in the medial preoptic area and limbic structures by maternal and social interactions in rats. Behav Neurosci 108:724–734

    CAS  PubMed  Google Scholar 

  • Fodor A, Klausz B, Pinter O, Daviu N, Rabasa C, Rotllant D, Balazsfi D, Kovacs KB, Nadal R, Zelena D (2012) Maternal neglect with reduced depressive-like behavior and blunted c-fos activation in Brattleboro mothers, the role of central vasopressin. Horm Behav 62:539–551

    CAS  PubMed  Google Scholar 

  • Furigo IC, Kim KW, Nagaishi VS, Ramos-Lobos AM, de Alencar A, Pedroso JAB, Metzger M, Donato J (2014) Prolactin-sensitive neurons express estrogen receptor-α and depend on sex hormones for normal responsiveness to prolactin. Brain Res 1566:47–59

    CAS  PubMed  Google Scholar 

  • Furigo IC, Metzger M, Teixeira PD, Soares CR, Donato J (2017) Distribution of growth hormone-responsive cells in the mouse brain. Brain Struct Funct 222:341–363

    CAS  PubMed  Google Scholar 

  • Gala RR, Shevach EM (1993) Influence of bromocriptine administration to mothers on the development of pup thymocyte and splenocyte subsets and on mitogen-induced proliferation in the mouse. Life Sci 53:1981–1994

    CAS  PubMed  Google Scholar 

  • Ganguly R, Mehta NM, Ganguly N, Banerjee MR (1979) Glucocorticoid modulation of casein gene transcription in mouse mammary gland. Proc Natl Acad Sci USA 76:6466–6470

    CAS  PubMed  Google Scholar 

  • Garcia-Dalman C, Gonzalez-Mariscal G (2012) Major role of suckling stimulation for inhibition of estrous behaviors in lactating rabbits: acute and chronic effects. Horm Behav 61:108–113

    CAS  PubMed  Google Scholar 

  • Ghosh R, Sladek CD (1995) Prolactin modulates oxytocin mRNA during lactation by its action on the hypothalamo-neurohypophyseal axis. Brain Res 672:24–28

    CAS  PubMed  Google Scholar 

  • Grattan DR, Steyn FJ, Kokay IC, Anderson GM, Bunn SJ (2008) Pregnancy-induced adaptation in the neuroendocrine control of prolactin secretion. J Neuroendocrinol 20:497–507

    CAS  PubMed  Google Scholar 

  • Guillou A, Romano N, Steyn F, Abitbol K, Le Tissier P, Bonnefont X, Chen C, Mollard P, Martin AO (2015) Assessment of lactotroph axis functionality in mice: longitudinal monitoring of PRL secretion by ultrasensitive-ELISA. Endocrinology 156:1924–1930

    CAS  PubMed  Google Scholar 

  • Gustafson P, Bunn SJ, Grattan DR (2017) The role of prolactin in the suppression of Crh mRNA expression during pregnancy and lactation in the mouse. J Neuroendocrinol 29

  • Hameed S, Jayasena CN, Dhillo WS (2011) Kisspeptin and fertility. J Endocrinol 208:97–105

    CAS  PubMed  Google Scholar 

  • Higo S, Aikawa S, Iijima N, Ozawa H (2015) Rapid modulation of hypothalamic Kiss1 levels by the suckling stimulus in the lactating rat. J Endocrinol 227:105–115

    CAS  PubMed  Google Scholar 

  • Hoffman GE, Smith MS, Verbalis JG (1993) c-Fos and related immediate early gene products as markers of activity in neuroendocrine systems. Front Neuroendocrinol 14:173–213

    CAS  PubMed  Google Scholar 

  • Hunyady B, Krempels K, Harta G, Mezey E (1996) Immunohistochemical signal amplification by catalyzed reporter deposition and its application in double immunostaining. J Histochem Cytochem 44:1353–1362

    CAS  PubMed  Google Scholar 

  • Jacobson CD, Terkel J, Gorski RA, Sawyer CH (1980) Effects of small medial preoptic area lesions on maternal behavior: retrieving and nest building in the rat. Brain Res 194:471–478

    CAS  PubMed  Google Scholar 

  • Kirk SE, Xie TY, Steyn FJ, Grattan DR, Bunn SJ (2017) Restraint stress increases prolactin-mediated phosphorylation of signal transducer and activator of transcription 5 in the hypothalamus and adrenal cortex in the male mouse. J Neuroendocrinol

  • Knight CH, Calvert DT, Flint DJ (1986) Inhibitory effects of bromocriptine on mammary development and function in lactating mice. J Endocrinol 110:263–270

    CAS  PubMed  Google Scholar 

  • Kokay IC, Petersen SL, Grattan DR (2011) Identification of prolactin-sensitive GABA and kisspeptin neurons in regions of the rat hypothalamus involved in the control of fertility. Endocrinology 152:526–535

    CAS  PubMed  Google Scholar 

  • Kow LM, Pfaff DW (1998) Mapping of neural and signal transduction pathways for lordosis in the search for estrogen actions on the central nervous system. Behav Brain Res 92:169–180

    CAS  PubMed  Google Scholar 

  • Larsen CM, Grattan DR (2010) Prolactin-induced mitogenesis in the subventricular zone of the maternal brain during early pregnancy is essential for normal postpartum behavioral responses in the mother. Endocrinology 151:3805–3814

    CAS  PubMed  Google Scholar 

  • Larsen CM, Grattan DR (2012) Prolactin, neurogenesis, and maternal behaviors. Brain Behav Immun 26:201–209

    CAS  PubMed  Google Scholar 

  • Lesueur L, Edery M, Ali S, Paly J, Kelly PA, Djiane J (1991) Comparison of long and short forms of the prolactin receptor on prolactin-induced milk protein gene transcription. Proc Natl Acad Sci USA 88:824–828

    CAS  PubMed  Google Scholar 

  • Li C, Chen P, Smith MS (1999) Neural populations in the rat forebrain and brainstem activated by the suckling stimulus as demonstrated by cFos expression. Neuroscience 94:117–129

    CAS  PubMed  Google Scholar 

  • Lin SH, Miyata S, Matsunaga W, Kawarabayashi T, Nakashima T, Kiyohara T (1998) Metabolic mapping of the brain in pregnant, parturient and lactating rats using fos immunohistochemistry. Brain Res 787:226–236

    CAS  PubMed  Google Scholar 

  • Liu X, Brown RS, Herbison AE, Grattan DR (2014) Lactational anovulation in mice results from a selective loss of kisspeptin input to GnRH neurons. Endocrinology 155:193–203

    CAS  PubMed  Google Scholar 

  • Lonstein JS, Simmons DA, Swann JM, Stern JM (1998) Forebrain expression of c-fos due to active maternal behaviour in lactating rats. Neuroscience 82:267–281

    CAS  PubMed  Google Scholar 

  • Lonstein JS, Greco B, De Vries GJ, Stern JM, Blaustein JD (2000) Maternal behavior stimulates c-fos activity within estrogen receptor alpha-containing neurons in lactating rats. Neuroendocrinology 72:91–101

    CAS  PubMed  Google Scholar 

  • Lucas BK, Ormandy CJ, Binart N, Bridges RS, Kelly PA (1998) Null mutation of the prolactin receptor gene produces a defect in maternal behavior. Endocrinology 139:4102–4107

    CAS  PubMed  Google Scholar 

  • Luckman SM (1995) Fos expression within regions of the preoptic area, hypothalamus and brainstem during pregnancy and parturition. Brain Res 669:115–124

    CAS  PubMed  Google Scholar 

  • Mann M, Michael SD, Svare B (1980) Ergot drugs suppress plasma prolactin and lactation but not aggression in parturient mice. Horm Behav 14:319–328

    CAS  PubMed  Google Scholar 

  • Mathieson WB, Wilkinson M, Brown RE, Bond TL, Taylor SW, Neumann PE (2002) FOS and FOSB expression in the medial preoptic nucleus pars compacta of maternally active C57BL/6J and DBA/2J mice. Brain Res 952:170–175

    CAS  PubMed  Google Scholar 

  • Matsushita N, Muroi Y, Kinoshita K, Ishii T (2015) Comparison of c-Fos expression in brain regions involved in maternal behavior of virgin and lactating female mice. Neurosci Lett 590:166–171

    CAS  PubMed  Google Scholar 

  • McKinley MJ, Yao ST, Uschakov A, McAllen RM, Rundgren M, Martelli D (2015) The median preoptic nucleus: front and centre for the regulation of body fluid, sodium, temperature, sleep and cardiovascular homeostasis. Acta Physiol 214:8–32

    CAS  Google Scholar 

  • Meerlo P, Easton A, Bergmann BM, Turek FW (2001) Restraint increases prolactin and REM sleep in C57BL/6J mice but not in BALB/cJ mice. Am J Physiol Regul Integr Comp Physiol 281:R846-854

    Google Scholar 

  • Merchenthaler I, Lane MV, Numan S, Dellovade TL (2004) Distribution of estrogen receptor alpha and beta in the mouse central nervous system: in vivo autoradiographic and immunocytochemical analyses. J Comp Neurol 473:270–291

    CAS  PubMed  Google Scholar 

  • Morgan JI, Curran T (1991) Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14:421–451

    CAS  PubMed  Google Scholar 

  • Nagy GM, Halasz B (1983) Time course of the litter removal-induced depletion in plasma prolactin levels of lactating rats. An immediate full blockade of the hormone release after separation. Neuroendocrinology 37:459–462

    CAS  PubMed  Google Scholar 

  • Neill JD, Nagy GM (1994) Prolactin secretion and its control. In: Knobil E, Neill JD (eds) Physiology of Reproduction. Raven Press, New York, pp 1833–1860

    Google Scholar 

  • Neville MC (2006) Lactation and Its Hormonal Control. In: Neill JD (ed) Physiology of Reproduction. Academic Press, Amsterdam, pp 2993–3054

    Google Scholar 

  • Nishimori K, Young LJ, Guo Q, Wang Z, Insel TR, Matzuk MM (1996) Oxytocin is required for nursing but is not essential for parturition or reproductive behavior. Proc Natl Acad Sci USA 93:11699–11704

    CAS  PubMed  Google Scholar 

  • Numan M, Numan MJ (1994) Expression of Fos-like immunoreactivity in the preoptic area of maternally behaving virgin and postpartum rats. Behav Neurosci 108:379–394

    CAS  PubMed  Google Scholar 

  • Numan M, Woodside B (2010) Maternity: neural mechanisms, motivational processes, and physiological adaptations. Behav Neurosci 124:715–741

    PubMed  Google Scholar 

  • O’Neal KD, Yu-Lee LY (1994) Differential signal transduction of the short, Nb2, and long prolactin receptors. Activation of interferon regulatory factor-1 and cell proliferation. J Biol Chem 269:26076–26082

    PubMed  Google Scholar 

  • Ogawa S, Eng V, Taylor J, Lubahn DB, Korach KS, Pfaff DW (1998) Roles of estrogen receptor-alpha gene expression in reproduction-related behaviors in female mice. Endocrinology 139:5070–5081

    CAS  PubMed  Google Scholar 

  • Okabe S, Nagasawa M, Kihara T, Kato M, Harada T, Koshida N, Mogi K, Kikusui T (2013) Pup odor and ultrasonic vocalizations synergistically stimulate maternal attention in mice. Behav Neurosci 127:432–438

    PubMed  Google Scholar 

  • Osterlund M, Kuiper GG, Gustafsson JA, Hurd YL (1998) Differential distribution and regulation of estrogen receptor-[alpha] and-[beta] mRNA within the female rat brain. Brain Res Mol Brain Res 54:175–178

    CAS  PubMed  Google Scholar 

  • Parker SL, Armstrong WE, Sladek CD, Grosvenor CE, Crowley WR (1991) Prolactin stimulates the release of oxytocin in lactating rats: evidence for a physiological role via an action at the neural lobe. Neuroendocrinology 53:503–510

    CAS  PubMed  Google Scholar 

  • Péter A (2016) Solomon Coder: a simple solution for behavior coding. v 16.06.26. 2015: http://solomoncoder.com/

  • Pfaus JG, Kleopoulos SP, Mobbs CV, Gibbs RB, Pfaff DW (1993) Sexual stimulation activates c-fos within estrogen-concentrating regions of the female rat forebrain. Brain Res 624:253–267

    CAS  PubMed  Google Scholar 

  • Romano N, Yip SH, Hodson DJ, Guillou A, Parnaudeau S, Kirk S, Tronche F, Bonnefont X, Le Tissier P, Bunn SJ, Grattan DR, Mollard P, Martin AO (2013) Plasticity of hypothalamic dopamine neurons during lactation results in dissociation of electrical activity and release. J Neurosci 33:4424–4433

    CAS  PubMed  Google Scholar 

  • Salais-Lopez H, Lanuza E, Agustin-Pavon C, Martinez-Garcia F (2017) Tuning the brain for motherhood: prolactin-like central signalling in virgin, pregnant, and lactating female mice. Brain Struct Funct 222:895–921

    CAS  PubMed  Google Scholar 

  • Sapsford TJ, Kokay IC, Ostberg L, Bridges RS, Grattan DR (2012) Differential sensitivity of specific neuronal populations of the rat hypothalamus to prolactin action. J Comp Neurol 520:1062–1077

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scott N, Prigge M, Yizhar O, Kimchi T (2015) A sexually dimorphic hypothalamic circuit controls maternal care and oxytocin secretion. Nature 525:519–522

    CAS  PubMed  Google Scholar 

  • Sheehan TP, Cirrito J, Numan MJ, Numan M (2000) Using c-Fos immunocytochemistry to identify forebrain regions that may inhibit maternal behavior in rats. Behav Neurosci 114:337–352

    CAS  PubMed  Google Scholar 

  • Shugrue PJ, Lanc MV, Merchentaler I (1997) Comparative distribution of estrogen receptor- α and -β mRNA in the rat central nervous system. J Comp Neurol 388:507–525

    Google Scholar 

  • Simerly RB, Chang C, Muramatsu M, Swanson LW (1990) Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. J Comp Neurol 294:76–95

    CAS  PubMed  Google Scholar 

  • Sjoeholm A, Bridges RS, Grattan DR, Anderson GM (2011) Region-, neuron-, and signaling pathway-specific increases in prolactin responsiveness in reproductively experienced female rats. Endocrinology 152:1979–1988

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slattery DA, Neumann ID (2008) No stress please! Mechanisms of stress hyporesponsiveness of the maternal brain. J Physiol 586:377–385

    CAS  PubMed  Google Scholar 

  • Stack EC, Numan M (2000) The temporal course of expression of c-Fos and Fos B within the medial preoptic area and other brain regions of postpartum female rats during prolonged mother–young interactions. Behav Neurosci 114:609–622

    CAS  PubMed  Google Scholar 

  • Stern JM, Lonstein JS (2001) Neural mediation of nursing and related maternal behaviors. Prog Brain Res 133:263–278

    CAS  PubMed  Google Scholar 

  • Sugiyama T, Minoura H, Kawabe N, Tanaka M, Nakashima K (1994) Preferential expression of long form prolactin receptor mRNA in the rat brain during the oestrous cycle, pregnancy and lactation: hormones involved in its gene expression. J Endocrinol 141:325–333

    CAS  PubMed  Google Scholar 

  • Torner L (2016) Actions of Prolactin in the Brain: From Physiological Adaptations to Stress and Neurogenesis to Psychopathology. Front Endocrinol (Lausanne) 7:25

    Google Scholar 

  • Tsukamura H, Maeda K (2001) Non-metabolic and metabolic factors causing lactational anestrus: rat models uncovering the neuroendocrine mechanism underlying the suckling-induced changes in the mother. Prog Brain Res 133:187–205

    CAS  PubMed  Google Scholar 

  • Tsuneoka Y, Maruyama T, Yoshida S, Nishimori K, Kato T, Numan M, Kuroda KO (2013) Functional, anatomical, and neurochemical differentiation of medial preoptic area subregions in relation to maternal behavior in the mouse. J Comp Neurol 521:1633–1663

    CAS  PubMed  Google Scholar 

  • Wang J, Palkovits M, Usdin TB, Dobolyi A (2006) Forebrain projections of tuberoinfundibular peptide of 39 residues (TIP39)-containing subparafascicular neurons. Neuroscience 138:1245–1263

    CAS  PubMed  Google Scholar 

  • Woodside B (2007) Prolactin and the hyperphagia of lactation. Physiology Behavior 91:375–382

    CAS  PubMed  Google Scholar 

  • Wu Z, Autry AE, Bergan JF, Watabe-Uchida M, Dulac CG (2014) Galanin neurons in the medial preoptic area govern parental behaviour. Nature 509:325–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yip SH, Eguchi R, Grattan DR, Bunn SJ (2012) Prolactin signalling in the mouse hypothalamus is primarily mediated by signal transducer and activator of transcription factor 5b but not 5a. J Neuroendocrinol 24:1484–1491

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the Hungarian Academy of Sciences, the National Research, Development and Innovation Office – NKFIH OTKA K116538, the NKFIH-4300-1/2017-NKP_17, the NKFIH-2920-1/2016-VEKOP-2.3.-15, the NKFIH-6785-1/2016-VEKOP-2.3.3–15, the NKFIH NVKP_16-1-2016-0016 Research Grants for AD, and a Bolyai János Fellowship of the Hungarian Academy of Sciences for MCs. The authors also thank Nikolett Hanák, Szilvia Deák, and Erzsébet Oszwald Horváthné for technical assistance.

Funding

The work was supported by the Hungarian Academy of Sciences, the National Research, Development and Innovation Office – NKFIH OTKA K116538, the NKFIH-4300-1/2017-NKP_17, the NKFIH-2920-1/2016-VEKOP-2.3.-15, the NKFIH-6785-1/2016-VEKOP-2.3.3–15, the NKFIH NVKP_16-1-2016-0016 Research Grants for AD, and a Bolyai János Fellowship of the Hungarian Academy of Sciences for MCs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpád Dobolyi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

The research involved animals but did not involve humans. Experiments were carried out according to protocols approved (approval number: PEI/001/37-4/2015) by the Animal Examination Ethical Council of the Animal Protection Advisory Board at Eötvös Loránd University and met the guidelines of the Animal Hygiene and Food Control Department, Ministry of Agriculture, Hungary, which conform with the guidelines of the European Communities Council Directive 24 November 1986 (86/609/EEC) and EU Directive 2010/63/EU to use and treat animals in experimental laboratories.

Ethical approval

The authors declare that they refrain from misrepresenting research results, which could damage the trust in the journal, the professionalism of scientific authorship, and ultimately the entire scientific endeavor.

Informed consent

Informed consent was not obtained as human subjects or samples were not involved in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oláh, S., Cservenák, M., Keller, D. et al. Prolactin-induced and neuronal activation in the brain of mother mice. Brain Struct Funct 223, 3229–3250 (2018). https://doi.org/10.1007/s00429-018-1686-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-018-1686-1

Keywords

Navigation