Advertisement

Brain Structure and Function

, Volume 223, Issue 6, pp 2973–2988 | Cite as

18F-F13640 preclinical evaluation in rodent, cat and primate as a 5-HT1A receptor agonist for PET neuroimaging

  • Benjamin Vidal
  • Sylvain Fieux
  • Matthieu Colom
  • Thierry Billard
  • Caroline Bouillot
  • Olivier Barret
  • Cristian Constantinescu
  • Gilles Tamagnan
  • Adrian Newman-Tancredi
  • Luc Zimmer
Original Article

Abstract

Serotonin 1A receptors are known to play an important role in many psychiatric and neurodegenerative disorders. Currently, all available 5-HT1A receptor PET radiopharmaceuticals that are radiolabeled with fluorine-18 are antagonists. As agonists bind preferentially to the high-affinity state of receptors, it would be of great interest to develop agonist radioligands which could provide a measure of the functional 5-HT1A receptors in pathophysiological processes. The 5-HT1A receptor agonist candidates we recently proposed had promising in vitro properties but were not optimal in terms of PET imaging. F13640, a.k.a befiradol or NLX-112, is a 5-HT1A receptor agonist with a high affinity (Ki = 1 nM) and a high selectivity that would be suitable for a potential PET radiopharmaceutical. With propose here the first preclinical evaluation of 18F-F13640. 18F-F13640’s nitro-precursor was synthesized and radiolabeled via a fluoro-nucleophilic substitution. Its radiopharmacological characterization included autoradiographic studies, metabolic studies, and in vivo PET scans in rat, cat and non-human primate. Some of the results were compared with the radiotracer 18F-MPPF, a 5-HT1A receptor antagonist. The radiochemical purity of 18F-F13640 was > 98%. In vitro binding pattern was consistent with the 5-HT1A receptor distribution. Metabolic studies revealed that the radiotracer rapidly entered the brain and led to few brain radiometabolites. Although 18F-F13640 in vivo binding was blocked by the 5-HT1A antagonist WAY-100635 and the 5-HT1A agonist 8-OH-DPAT, the distribution pattern was markedly different from antagonist radiotracers in the three species, suggesting it provides novel information on 5-HT1A receptors. Preliminary studies also suggest a high sensitivity of 18F-F13640 to endogenous serotonin release. 18F-F13640 has suitable characteristics for probing in vitro and in vivo the 5-HT1A receptors in high-affinity state. Quantification analyses with kinetic modeling are in progress to prepare the first-in-man study of 18F-F13640.

Keywords

Serotonin 1A receptor PET tracer Agonist Rat Cat Primate 

References

  1. Andrade R, Huereca D, Lyons JG, Andrade EM, McGregor KM (2015) 5-HT1A receptor-mediated autoinhibition and the control of serotonergic cell firing. ACS Chem Neurosci 6(7):1110–1115.  https://doi.org/10.1021/acschemneuro.5b00034 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Avissar S, Schreiber G (2006) The involvement of G proteins and regulators of receptor-G protein coupling in the pathophysiology, diagnosis and treatment of mood disorders. Clin Chim Acta (1–2):37–47.  https://doi.org/10.1016/j.cca.2005.11.003
  3. Aznavour N, Rbah L, Leger L, Buda C, Sastre JP, Imhof A, Charnay Y, Zimmer L (2006) A comparison of in vivo and in vitro neuroimaging of 5-HT 1A receptor binding sites in the cat brain. J Chem Neuroanat 31(3):226–232.  https://doi.org/10.1016/j.jchemneu.2006.01.006 CrossRefPubMedGoogle Scholar
  4. Bantick RA, Montgomery AJ, Bench CJ, Choudhry T, Malek N, McKenna PJ, Quested DJ, Deakin JF, Grasby PM (2004a) A positron emission tomography study of the 5-HT1A receptor in schizophrenia and during clozapine treatment. J Psychopharmacol (3):346–354.  https://doi.org/10.1177/026988110401800304
  5. Bantick RA, Rabiner EA, Hirani E, de Vries MH, Hume SP, Grasby PM (2004b) Occupancy of agonist drugs at the 5-HT1A receptor. Neuropsychopharmacology 29(5):847–859.  https://doi.org/10.1038/sj.npp.1300390 CrossRefPubMedGoogle Scholar
  6. Becker G, Streichenberger N, Billard T, Newman-Tancredi A, Zimmer L (2014) A postmortem study to compare agonist and antagonist 5-HT1A receptor-binding sites in Alzheimer’s disease. CNS Neurosci Ther 20(10):930–934.  https://doi.org/10.1111/cns.12306 CrossRefPubMedGoogle Scholar
  7. Bishop C, Krolewski DM, Eskow KL, Barnum CJ, Dupre KB, Deak T, Walker PD (2009) Contribution of the striatum to the effects of 5-HT1A receptor stimulation in L-DOPA-treated hemiparkinsonian rats. J Neurosci Res 87(7):1645–1658.  https://doi.org/10.1002/jnr.21978 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Colpaert FC, Tarayre JP, Koek W, Pauwels PJ, Bardin L, Xu XJ, Wiesenfeld-Hallin Z, Cosi C, Carilla-Durand E, Assie MB, Vacher B (2002) Large-amplitude 5-HT1A receptor activation: a new mechanism of profound, central analgesia. Neuropharmacology 43(6):945–958CrossRefPubMedGoogle Scholar
  9. Ganz M, Feng L, Hansen HD, Beliveau V, Svarer C, Knudsen GM, Greve DN (2017) Cerebellar heterogeneity and its impact on PET data quantification of 5-HT receptor radioligands. J Cereb Blood Flow Metab 37(9):3243–3252.  https://doi.org/10.1177/0271678X16686092 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gozlan H, Thibault S, Laporte AM, Lima L, Hamon M (1995) The selective 5-HT1A antagonist radioligand [3H]WAY 100635 labels both G-protein-coupled and free 5-HT1A receptors in rat brain membranes. Eur J Pharmacol 288(2):173–186CrossRefPubMedGoogle Scholar
  11. Hendry N, Christie I, Rabiner EA, Laruelle M, Watson J (2011) In vitro assessment of the agonist properties of the novel 5-HT1A receptor ligand, CUMI-101 (MMP), in rat brain tissue. Nucl Med Biol 38(2):273–277.  https://doi.org/10.1016/j.nucmedbio.2010.08.003 CrossRefPubMedGoogle Scholar
  12. Heusler P, Palmier C, Tardif S, Bernois S, Colpaert FC, Cussac D (2010) [(3)H]-F13640, a novel, selective and high-efficacy serotonin 5-HT(1A) receptor agonist radioligand. Naunyn Schmiedebergs Arch Pharmacol 382(4):321–330.  https://doi.org/10.1007/s00210-010-0551-4 CrossRefPubMedGoogle Scholar
  13. Hirvonen J, Kajander J, Allonen T, Oikonen V, Nagren K, Hietala J (2007) Measurement of serotonin 5-HT1A receptor binding using positron emission tomography and [carbonyl-(11)C]WAY-100635-considerations on the validity of cerebellum as a reference region. J Cereb Blood Flow Metab 27(1):185–195.  https://doi.org/10.1038/sj.jcbfm.9600326 CrossRefPubMedGoogle Scholar
  14. Iderberg H, McCreary AC, Varney MA, Kleven MS, Koek W, Bardin L, Depoortere R, Cenci MA, Newman-Tancredi A (2015) NLX-112, a novel 5-HT1A receptor agonist for the treatment of L-DOPA-induced dyskinesia: Behavioral and neurochemical profile in rat. Exp Neurol 271:335–350.  https://doi.org/10.1016/j.expneurol.2015.05.021 CrossRefPubMedGoogle Scholar
  15. Jagoda EM, Lang L, Tokugawa J, Simmons A, Ma Y, Contoreggi C, Kiesewetter D, Eckelman WC (2006) Development of 5-HT1A receptor radioligands to determine receptor density and changes in endogenous 5-HT. Synapse 59(6):330–341.  https://doi.org/10.1002/syn.20246 CrossRefPubMedGoogle Scholar
  16. Kumar JS, Prabhakaran J, Majo VJ, Milak MS, Hsiung SC, Tamir H, Simpson NR, Van Heertum RL, Mann JJ, Parsey RV (2007) Synthesis and in vivo evaluation of a novel 5-HT1A receptor agonist radioligand [O-methyl- 11C]2-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)dione in nonhuman primates. Eur J Nucl Med Mol Imaging 34(7):1050–1060.  https://doi.org/10.1007/s00259-006-0324-y CrossRefPubMedGoogle Scholar
  17. Kumar JS, Parsey RV, Kassir SA, Majo VJ, Milak MS, Prabhakaran J, Simpson NR, Underwood MD, Mann JJ, Arango V (2013) Autoradiographic evaluation of [3H]CUMI-101, a novel, selective 5-HT1AR ligand in human and baboon brain. Brain Res 1507:11–18.  https://doi.org/10.1016/j.brainres.2013.02.035 CrossRefPubMedGoogle Scholar
  18. Lancelot S, Roche R, Slimen A, Bouillot C, Levigoureux E, Langlois JB, Zimmer L, Costes N (2014) A multi-atlas based method for automated anatomical rat brain MRI segmentation and extraction of PET activity. PloS one 9(10):e109113.  https://doi.org/10.1371/journal.pone.0109113 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lanfumey L, Hamon M (2000) Central 5-HT(1A) receptors: regional distribution and functional characteristics. Nucl Med Biol 27(5):429–435CrossRefPubMedGoogle Scholar
  20. Le Bars D, Lemaire C, Ginovart N, Plenevaux A, Aerts J, Brihaye C, Hassoun W, Leviel V, Mekhsian P, Weissmann D, Pujol JF, Luxen A, Comar D (1998) High-yield radiosynthesis and preliminary in vivo evaluation of p-[18F]MPPF, a fluoro analog of WAY-100635. Nucl Med Biol 25(4):343–350CrossRefPubMedGoogle Scholar
  21. Lemoine L, Verdurand M, Vacher B, Blanc E, Le Bars D, Newman-Tancredi A, Zimmer L (2010) [18F]F15599, a novel 5-HT1A receptor agonist, as a radioligand for PET neuroimaging. Eur J Nucl Med Mol Imaging 37(3):594–605.  https://doi.org/10.1007/s00259-009-1274-y CrossRefPubMedGoogle Scholar
  22. Lemoine L, Becker G, Vacher B, Billard T, Lancelot S, Newman-Tancredi A, Zimmer L (2012) Radiosynthesis and preclinical evaluation of 18F-F13714 as a fluorinated 5-HT1A receptor agonist radioligand for PET neuroimaging. J Nucl Med 53(6):969–976.  https://doi.org/10.2967/jnumed.111.101212 CrossRefPubMedGoogle Scholar
  23. Mannoury la Cour C, El Mestikawy S, Hanoun N, Hamon M, Lanfumey L (2006) Regional differences in the coupling of 5-hydroxytryptamine-1A receptors to G proteins in the rat brain. Mol Pharmacol 70(3):1013–1021.  https://doi.org/10.1124/mol.106.022756 CrossRefPubMedGoogle Scholar
  24. Maurel JL, Autin JM, Funes P, Newman-Tancredi A, Colpaert F, Vacher B (2007) High-efficacy 5-HT1A agonists for antidepressant treatment: a renewed opportunity. J Med Chem (20):5024–5033.  https://doi.org/10.1021/jm070714l CrossRefGoogle Scholar
  25. Meadows SM, Chambers NE, Conti MM, Bossert SC, Tasber C, Sheena E, Varney M, Newman-Tancredi A, Bishop C (2017) Characterizing the differential roles of striatal 5-HT1A auto- and hetero-receptors in the reduction of l-DOPA-induced dyskinesia. Exp Neurol 292:168–178.  https://doi.org/10.1016/j.expneurol.2017.03.013 CrossRefPubMedGoogle Scholar
  26. Milak MS, DeLorenzo C, Zanderigo F, Prabhakaran J, Kumar JS, Majo VJ, Mann JJ, Parsey RV (2010) In vivo quantification of human serotonin 1A receptor using 11C-CUMI-101, an agonist PET radiotracer. J Nucl Med 51(12):1892–1900.  https://doi.org/10.2967/jnumed.110.076257 CrossRefPubMedGoogle Scholar
  27. Mongeau R, Welner SA, Quirion R, Suranyi-Cadotte BE (1992) Further evidence for differential affinity states of the serotonin1A receptor in rat hippocampus. Brain Res 590(1–2):229–238CrossRefPubMedGoogle Scholar
  28. Newman-Tancredi A, Martel JC, Cosi C, Heusler P, Lestienne F, Varney MA, Cussac D (2017) Distinctive in vitro signal transduction profile of NLX-112, a potent and efficacious serotonin 5-HT1A receptor agonist. J Pharm Pharmacol 69(9):1178–1190.  https://doi.org/10.1111/jphp.12762 CrossRefPubMedGoogle Scholar
  29. Parsey RV, Arango V, Olvet DM, Oquendo MA, Van Heertum RL, John Mann J (2005) Regional heterogeneity of 5-HT1A receptors in human cerebellum as assessed by positron emission tomography. J Cereb Blood Flow Metab 25(7):785–793.  https://doi.org/10.1038/sj.jcbfm.9600072 CrossRefPubMedGoogle Scholar
  30. Paterson LM, Tyacke RJ, Nutt DJ, Knudsen GM (2010) Measuring endogenous 5-HT release by emission tomography: promises and pitfalls. J Cereb Blood Flow Metab 30(10):1682–1706.  https://doi.org/10.1038/jcbfm.2010.104 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Pauwels PJ, Colpaert FC (2003) Ca2 + responses in Chinese hamster ovary-K1 cells demonstrate an atypical pattern of ligand-induced 5-HT1A receptor activation. J Pharmacol Exp Ther 307(2):608–614.  https://doi.org/10.1124/jpet.103.055871 CrossRefPubMedGoogle Scholar
  32. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, New YorkGoogle Scholar
  33. Pinborg LH, Feng L, Haahr ME, Gillings N, Dyssegaard A, Madsen J, Svarer C, Yndgaard S, Kjaer TW, Parsey RV, Hansen HD, Ettrup A, Paulson OB, Knudsen GM (2012) No change in [(1)(1)C]CUMI-101 binding to 5-HT(1A) receptors after intravenous citalopram in human. Synapse 66(10):880–884.  https://doi.org/10.1002/syn.21579 CrossRefPubMedGoogle Scholar
  34. Pucadyil TJ, Chattopadhyay A (2007) The human serotonin1A receptor exhibits G-protein-dependent cell surface dynamics. Glycoconj J 24(1):25–31.  https://doi.org/10.1007/s10719-006-9008-x CrossRefPubMedGoogle Scholar
  35. Ren J, Ding X, Greer JJ (2015) 5-HT1A receptor agonist Befiradol reduces fentanyl-induced respiratory depression, analgesia, and sedation in rats. Anesthesiology 122(2):424–434.  https://doi.org/10.1097/ALN.0000000000000490 CrossRefPubMedGoogle Scholar
  36. Rohlfing T, Kroenke CD, Sullivan EV, Dubach MF, Bowden DM, Grant KA, Pfefferbaum A (2012) The INIA19 Template and NeuroMaps Atlas for Primate Brain Image Parcellation and Spatial Normalization. Front Neuroinf 6:27.  https://doi.org/10.3389/fninf.2012.00027 CrossRefGoogle Scholar
  37. Shrestha SS, Liow JS, Lu S, Jenko K, Gladding RL, Svenningsson P, Morse CL, Zoghbi SS, Pike VW, Innis RB (2014) (11)C-CUMI-101, a PET radioligand, behaves as a serotonin 1A receptor antagonist and also binds to alpha(1) adrenoceptors in brain. J Nucl Med 55(1):141–146.  https://doi.org/10.2967/jnumed.113.125831 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Shrestha SS, Liow JS, Jenko K, Ikawa M, Zoghbi SS, Innis RB (2016) The 5-HT1A Receptor PET Radioligand 11C-CUMI-101 Has Significant Binding to alpha1-Adrenoceptors in Human Cerebellum, Limiting Its Use as a Reference Region. J Nucl Med 57(12):1945–1948.  https://doi.org/10.2967/jnumed.116.174151 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Tavares A, Becker G, Barret O, Morley T, Alagille D, Vacher B, Newman-Tancredi A, Tamagnan G, Zimmer L (2013) Initial evaluation of [18F]F13714, a novel 5-HT1A receptor agonist in non-human primates. Annual Congress of EANMGoogle Scholar
  40. Udo de Haes JI, Harada N, Elsinga PH, Maguire RP, Tsukada H (2006) Effect of fenfluramine-induced increases in serotonin release on [18F]MPPF binding: a continuous infusion PET study in conscious monkeys. Synapse 59(1):18–26.  https://doi.org/10.1002/syn.20209 CrossRefPubMedGoogle Scholar
  41. Vidal B, Sebti J, Verdurand M, Fieux S, Billard T, Streichenberger N, Troakes C, Newman-Tancredi A, Zimmer L (2016) Agonist and antagonist bind differently to 5-HT1A receptors during Alzheimer’s disease: a post-mortem study with PET radiopharmaceuticals. Neuropharmacology 109:88–95.  https://doi.org/10.1016/j.neuropharm.2016.05.009 CrossRefPubMedGoogle Scholar
  42. Wurch T, Colpaert FC, Pauwels PJ (2003) Mutation in a protein kinase C phosphorylation site of the 5-HT1A receptor preferentially attenuates Ca2 + responses to partial as opposed to higher-efficacy 5-HT1A agonists. Neuropharmacology 44(7):873–881CrossRefPubMedGoogle Scholar
  43. Yokoyama C, Mawatari A, Kawasaki A, Takeda C, Onoe K, Doi H, Newman-Tancredi A, Zimmer L, Onoe H (2016) Marmoset serotonin 5-HT1A receptor mapping with a biased agonist PET probe 18F-F13714: comparison with an antagonist tracer 18F-MPPF in awake and anesthetized states. Int J Neuropsychopharmacol 19 (12).  https://doi.org/10.1093/ijnp/pyw079
  44. Zimmer L (2016) Pharmacological agonists for more-targeted CNS radio-pharmaceuticals. Oncotarget 7(49):80111–80112.  https://doi.org/10.18632/oncotarget.13418 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Zimmer L, Le Bars D (2013) Current status of positron emission tomography radiotracers for serotonin receptors in humans. J Labelled Comp Radiopharm 56(3–4):105–113.  https://doi.org/10.1002/jlcr.3001 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Benjamin Vidal
    • 1
  • Sylvain Fieux
    • 1
  • Matthieu Colom
    • 1
  • Thierry Billard
    • 2
  • Caroline Bouillot
    • 3
  • Olivier Barret
    • 4
  • Cristian Constantinescu
    • 4
  • Gilles Tamagnan
    • 4
  • Adrian Newman-Tancredi
    • 5
  • Luc Zimmer
    • 1
    • 3
  1. 1.Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, INSERM, CNRSLyonFrance
  2. 2.Institute of Chemistry and Biochemistry, CNRSUniversité Claude Bernard Lyon 1VilleurbanneFrance
  3. 3.Hospices Civils de Lyon, Lyon, CERMEP-Imaging PlatformLyonFrance
  4. 4.Molecular NeuroImagingNew HavenUSA
  5. 5.Neurolixis IncDana PointUSA

Personalised recommendations