Brain Structure and Function

, Volume 223, Issue 6, pp 2949–2971 | Cite as

Connectivity of neuronal populations within and between areas of primate somatosensory cortex

  • E. Pálfi
  • L. Zalányi
  • M. Ashaber
  • C. Palmer
  • O. Kántor
  • A. W. Roe
  • R. M. Friedman
  • L. Négyessy
Original Article


Functions of the cerebral cortex emerge via interactions of horizontally distributed neuronal populations within and across areas. However, the connectional underpinning of these interactions is not well understood. The present study explores the circuitry of column-size cortical domains within the hierarchically organized somatosensory cortical areas 3b and 1 using tract tracing and optical intrinsic signal imaging (OIS). The anatomical findings reveal that feedforward connections exhibit high topographic specificity, while intrinsic and feedback connections have a more widespread distribution. Both intrinsic and inter-areal connections are topographically oriented across the finger representations. Compared to area 3b, the low clustering of connections and small cortical magnification factor supports that the circuitry of area 1 scaffolds a sparse functional representation that integrates peripheral information from a large area that is fed back to area 3b. Fast information exchange between areas is ensured by thick axons forming a topographically organized, reciprocal pathway. Moreover, the highest density of projecting neurons and groups of axon arborization patches corresponds well with the size and locations of the functional population response reported by OIS. The findings establish connectional motifs at the mesoscopic level that underpin the functional organization of the cerebral cortex.


Horizontal connections Cortical hierarchy Cortical magnification Optical intrinsic signal imaging Tract tracing 



Supported by the Fogarty International Research Collaboration Award, U.S. National Institutes of Health; Grant numbers: NS059061 (to A.W.R. and L.N.), NS044375 and NS093998 (to A.W.R.) as well as the Hungarian Scientific Research Fund; Grant number: OTKA NN79366 (to L.N.).


Fogarty International Research Collaboration Award, NS059061 (to A.W.R. and L.N.), U.S. National Institutes of Health NS044375 and NS093998 (to A.W.R.). Hungarian Scientific Research Fund; Grant number: OTKA NN79366 (to L.N.)

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants performed by any of the authors.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Animal care and surgeries were performed according to NIH (National Institute of Health) regulations and were in compliance with and approved by the Institutional Animal Care and Use Committee of Vanderbilt University.


  1. Angelucci A, Bressloff PC (2006) Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. Prog Brain Res 154:93–120CrossRefPubMedGoogle Scholar
  2. Angelucci A, Levitt JB, Walton EJ, Hupe JM, Bullier J, Lund JS (2002) Circuits for local and global signal integration in primary visual cortex. J Neurosci 22:8633–8646CrossRefPubMedGoogle Scholar
  3. Ashaber M, Pálfi E, Friedman RM, Palmer C, Jákli B, Chen LM, Kántor O, Roe AW, Négyessy L (2014) Connectivity of somatosensory cortical area 1 forms an anatomical substrate for the emergence of multifinger receptive fields and complex feature selectivity in the squirrel monkey (Saimiri sciureus). J Comp Neurol 522:1769–1785CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bair W (2005) Visual receptive field organization. Curr Opin Neurobiol 15:459–464CrossRefPubMedGoogle Scholar
  5. Barbas H (2015) General cortical and special prefrontal connections: principles from structure to function. Annu Rev Neurosci 38:269–289CrossRefPubMedGoogle Scholar
  6. Barbas H, García-Cabezas M (2016) How the prefrontal executive got its stripes. Curr Opin Neurobiol 40:125–134CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bardy C, Huang JY, Wang C, Fitzgibbon T, Dreher B (2009) ‘Top-down’ influences of ipsilateral or contralateral postero-temporal visual cortices on the extra-classical receptive fields of neurons in cat’s striate cortex. Neuroscience 158:951–968CrossRefPubMedGoogle Scholar
  8. Barone P, Batardiere A, Knoblauch K, Kennedy H (2000) Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule. J Neurosci 20:3263–3281CrossRefPubMedGoogle Scholar
  9. Bullier J, Hupé JM, James A, Girard P (1996) Functional interactions between areas V1 and V2 in the monkey. J Physiol Paris 90:217–220CrossRefPubMedGoogle Scholar
  10. Burton H, Fabri M (1995) Ipsilateral intracortical connections of physiologically defined cutaneous representations in areas 3b and 1 of macaque monkeys: projections in the vicinity of the central sulcus. J Comp Neurol 355:508–538CrossRefPubMedGoogle Scholar
  11. Buzás P, Kovács K, Ferecskó AS, Budd JM, Eysel UT, Kisvárday ZF (2006) Model-based analysis of excitatory lateral connections in the visual cortex. J Comp Neurol 881:499–861Google Scholar
  12. Chen LM, Friedman RM, Ramsden BM, LaMotte RH, Roe AW (2001) Finescale organization of SI (area 3b) in the squirrel monkey revealed with intrinsic optical imaging. J Neurophysiol 86:3011–3029CrossRefPubMedGoogle Scholar
  13. Chen LM, Friedman RM, Roe AW (2003) Optical imaging of a tactile illusion in area 3b of the primary somatosensory cortex. Science 302:881–885CrossRefPubMedGoogle Scholar
  14. Chen LM, Friedman RM, Roe AW (2005) Optical imaging of SI topography in anesthetized and awake squirrel monkeys. J Neurosci 25:7648–7659CrossRefPubMedGoogle Scholar
  15. Cleland TA (2010) Early transformations in odor representation. Trends Neurosci 33:130–13910CrossRefPubMedPubMedCentralGoogle Scholar
  16. Costanzo RM, Gardner EP (1980) A quantitative analysis of responses of direction-sensitive neurons in somatosensory cortex of awake monkeys. J Neurophysiol 43:1319–1341CrossRefPubMedGoogle Scholar
  17. Dombrowski SM, Hilgetag CC, Barbas H (2001) Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. Cereb Cortex 11:975–988CrossRefPubMedGoogle Scholar
  18. Ester M, Kriegel H, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. KDD-96 Proc 34:226–231Google Scholar
  19. Fang P-C, Jain N, Kaas JH (2002) Few intrinsic connections cross the hand-face border of area 3b of new world monkeys. J Comp Neurol 454(3):310–319CrossRefPubMedGoogle Scholar
  20. Favorov O, Whitsel BL (1988) Spatial organization of the peripheral input to area 1 cell columns. I. The detection of “segregates”. Brain Res 472:25–42CrossRefPubMedGoogle Scholar
  21. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47CrossRefPubMedGoogle Scholar
  22. Friedman RM, Chen LM, Roe AW (2004) Modality maps within primate somatosensory cortex. Proc Natl Acad Sci USA 101:12724–12729CrossRefPubMedPubMedCentralGoogle Scholar
  23. Friedman RM, Chen LM, Roe AW (2008) Responses of areas 3b and 1 in anesthetized squirrel monkeys to single- and dual-site stimulation of the digits. J Neurophysiol 100:3185–3196CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gilbert CD, Wiesel TN (1989) Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J Neurosci 9:2432–2442CrossRefPubMedGoogle Scholar
  25. Girard P, Bullier J (1989) Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey. J Neurophysiol 62(6):1287–1302CrossRefPubMedGoogle Scholar
  26. Hackett TA, de la Mothe LA, Camalier CR, Falchier A, Lakatos P, Kajikawa Y, Schroeder CE (2014) Feedforward and feedback projections of caudal belt and parabelt areas of auditory cortex: refining the hierarchical model. Front Neurosc 8:72CrossRefGoogle Scholar
  27. Harrison LM, Stephan KE, Rees G, Friston KJ (2007) Extra-classical receptive field effects measured in striate cortex with fMRI. Neuroimage 34:1199–1208CrossRefPubMedPubMedCentralGoogle Scholar
  28. Harvey BM, Dumoulin SO (2011) The relationship between cortical magnification factor and pRF size in human visual cortex: constancies in cortical architecture. J Neurosci 31:13604–13612CrossRefPubMedGoogle Scholar
  29. Herculano-Houzel S, Collins CE, Wong P, Kaas JH, Lent R (2008) The basic nonuniformity of the cerebral cortex. Proc Natl Acad Sci USA 105:12593–12598CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hilgetag CC, Grant S (2010) Cytoarchitectural differences are a key determinant of laminar projection origins in the visual cortex. Neuroimage 51:1006–1017CrossRefPubMedGoogle Scholar
  31. Hilgetag CC, Medalla M, Beul SF, Barbas H (2016) The primate connectome in context: principles of connections of the cortical visual system. Neuroimage 134:685–702CrossRefPubMedPubMedCentralGoogle Scholar
  32. Horvát S, Gămănuț R, Ercsey-Ravasz M, Magrou L, Gămănuț B, Van Essen DC, Burkhalter A, Knoblauch K, Toroczkai Z, Kennedy H (2016) Spatial embedding and wiring cost constrain the functional layout of the cortical network of rodents and primates. PLoS Biol 14:e1002512CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hupé JM, James AC, Payne BR, Lomber SG, Girard P, Bullier J (1998) Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394:784–787CrossRefPubMedGoogle Scholar
  34. Iwamura Y (1998) Hierarchical somatosensory processing. Curr Opin Neurobiol 8:522–528CrossRefPubMedGoogle Scholar
  35. Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O (1983a) Functional subdivisions representing different finger regions in area 3 of the first somatosensory cortex of the conscious monkey. Exp Brain Res 51:315–326Google Scholar
  36. Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O (1983b) Converging patterns of finger representation and complex response properties of neurons in area 1 of the first somatosensory cortex of the conscious monkey. Exp Brain Res 51:327–337Google Scholar
  37. Jeffs J, Ichida JM, Federer F, Angelucci A (2009) Anatomical evidence for classical and extra-classical receptive field completion across the discontinuous horizontal meridian representation of primate area V2. Cereb Cortex 19:963–981CrossRefPubMedGoogle Scholar
  38. Juliano SL, Friedman DP, Eslin DE (1990) Corticocortical connections predict patches of stimulus-evoked metabolic activity in monkey somatosensory cortex. J Comp Neurol 298:23–39CrossRefPubMedGoogle Scholar
  39. Krubitzer LA, Kaas JH (1990) The organization and connections of somatosensory cortex in marmosets. J Neurosci 10(3):952–974CrossRefGoogle Scholar
  40. Lipton ML, Liszewski MC, O’Connell MN, Mills A, Smiley JF, Branch CA, Isler JR, Schroeder CE (2010) Interactions within the hand representation in primary somatosensory cortex of primates. J Neurosci 30:15895–15903CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lund JS, Angelucci A, Bressloff PC (2003) Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cereb Cortex 13:15–24CrossRefPubMedGoogle Scholar
  42. Mancini F, Haggard P, Iannetti GD, Longo MR, Sereno MI (2012) Fine-grained nociceptive maps in primary somatosensory cortex. J Neurosci 32:17155–17162CrossRefPubMedPubMedCentralGoogle Scholar
  43. Manger PR, Woods TM, Muñoz A, Jones EG (1997) Hand/face border as a limiting boundary in the body representation in monkey somatosensory cortex. J Neurosci 17(16):6338–6351CrossRefPubMedGoogle Scholar
  44. Markov NT, Misery P, Falchier A, Lamy C, Vezoli J, Quilodran R, Gariel MA, Giroud P, Ercsey-Ravasz M, Pilaz LJ, Huissoud C, Barone P, Dehay C, Toroczkai Z, Van Essen DC, Kennedy H, Knoblauch K (2011) Weight consistency specifies regularities of macaque cortical networks. Cereb Cortex 21:1254–1272CrossRefPubMedGoogle Scholar
  45. Markov NT, Ercsey-Ravasz M, Van Essen DC, Knoblauch K, Toroczkai Z, Kennedy H (2013) Cortical high-density counterstream architectures. Science 342:1238406CrossRefPubMedPubMedCentralGoogle Scholar
  46. Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran R, Huissoud C, Lamy C, Misery P, Giroud P, Ullman S, Barone P, Dehay C, Knoblauch K, Kennedy H (2014) Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J Comp Neurol 522:225–259CrossRefPubMedGoogle Scholar
  47. Merzenich MM, Nelson RJ, Kaas JH, Stryker MP, Jenkins WM, Zook JM, Cynader MS, Schoppmann A (1987) Variability in hand surface representations in areas 3b and 1 in adult owl and squirrel monkeys. J Comp Neurol 258:281–296CrossRefPubMedGoogle Scholar
  48. Negwer M, Liu YJ, Schubert D, Lyon DC (2017) V1 connections reveal a series of elongated higher visual areas in the California ground squirrel, Otospermophilus beecheyi. J Comp Neurol 525:1909–1921CrossRefPubMedGoogle Scholar
  49. Négyessy L, Pálfi E, Ashaber M, Palmer C, Jákli B, Friedman RM, Roe AW (2013) Intrinsic horizontal connections process global tactile features in the primary somatosensory cortex: neuroanatomical evidence. J Comp Neurol 521:2798–2817CrossRefPubMedPubMedCentralGoogle Scholar
  50. Négyessy L, Pálfi E, Ashaber M, Zalányi L, Palmer C, Kántor O, Friedman RM, Roe AW (2015) Complementary role of intra- and inter-areal cortical connections in somatosensory processing in primates. Society for Neuroscience, ChicagoGoogle Scholar
  51. Négyessy L, Pálfi E, Zalányi L, Ashaber M, Palmer C, Kántor O, Friedman RM, Roe AW (2016) Comparison of intrinsic and inter-areal cortical connectivity in the somatosensory cortex. IBRO Workshop. Budapest, HungaryGoogle Scholar
  52. Pálfi E, Zalányi L, Ashaber M, Palmer C, Friedman RM, Roe AW, Négyessy L (2016) Intrinsic and interareal connections in the primate somatosensory cortex. 10th FENS Forum of Neuroscience, Copenhagen, DenmarkGoogle Scholar
  53. Paul RL, Merzenich M, Goodman H (1972) Representation of slowly and rapidly adapting cutaneous mechanoreceptors of the hand in Brodmann’s areas 3 and 1 of Macaca mulatta. Brain Res 36:229–249CrossRefPubMedGoogle Scholar
  54. Pearson RC, Powell TP (1978) The cortico-cortical connections to area 5 of the parietal lobe from the primary somatic sensory cortex of the monkey. Proc R Soc Lond B Biol Sci 200:103–108CrossRefPubMedGoogle Scholar
  55. Pei YC, Denchev PV, Hsiao SS, Craig JC, Bensmaia SJ (2009) Convergence of submodality-specific input onto neurons in primary somatosensory cortex. J Neurophysiol 102:1843–1853CrossRefPubMedPubMedCentralGoogle Scholar
  56. Rasch MJ, Chen M, Wu S, Lu HD, Roe AW (2013) Quantitative inference of population response properties across eccentricity from motion-induced maps in macaque V1. J Neurophysiol 109:1233–1249CrossRefPubMedGoogle Scholar
  57. Reed JL, Pouget P, Qi HX, Zhou Z, Bernard MR, Burish MJ, Haitas J, Bonds AB, Kaas JH (2008) Widespread spatial integration in primary somatosensory cortex. Proc Natl Acad Sci USA 105:10233–10237CrossRefPubMedPubMedCentralGoogle Scholar
  58. Reed JL, Qi HX, Pouget P, Burish MJ, Bond AB, Kaas JH (2010a) Modular processing in the hand representation of primate primary somatosensory cortex coexists with widespread activation. J Neurophysiol 104:3136–3145CrossRefPubMedPubMedCentralGoogle Scholar
  59. Reed JL, Qi HX, Zhou Z, Bernard MR, Burish MJ, Bonds AB, Kaas JH (2010b) Response properties of neurons in primary somatosensory cortex of owl monkeys reflect widespread spatiotemporal integration. J Neurophysiol 103:2139–2157CrossRefPubMedPubMedCentralGoogle Scholar
  60. Rockland KS (2015) About connections. Front Neuroanat 9:61CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sathian K (2016) Analysis of haptic information in the cerebral cortex. J Neurophysiol 116:1795–1806CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sincich LC, Blasdel GG (2001) Oriented axon projections in primary visual cortex of the monkey. J Neurosci 21:4416–4426CrossRefPubMedGoogle Scholar
  63. Sripati AP, Yoshioka T, Denchev P, Hsiao SS, Johnson KO (2006) Spatiotemporal receptive fields of peripheral afferents and cortical area 3b and 1 neurons in the primate somatosensory system. J Neurosci 26:2101–2114CrossRefPubMedPubMedCentralGoogle Scholar
  64. Sur M, Merzenich MM, Kaas JH (1980) Magnification, receptive-field area, and “hypercolumn” size in areas 3b and 1 of somatosensory cortex in owl monkeys. J Neurophysiol 44:295–311CrossRefPubMedGoogle Scholar
  65. Sur M, Wall JT, Kaas JH (1981) Modular segregation of functional cell classes within the postcentral somatosensory cortex of monkeys. Science 212:1059–1061CrossRefPubMedGoogle Scholar
  66. Sur M, Nelson RJ, Kaas JH (1982) Representations of the body surface in cortical areas 3b and 1 of squirrel monkeys: comparisons with other primates. J Comp Neurol 211:177–192CrossRefPubMedGoogle Scholar
  67. Sur M, Garraghty PE, Bruce CJ (1985) Somatosensory cortex in macaque monkeys: laminar differences in receptive field size in areas 3b and 1. Brain Res 342:391–395CrossRefPubMedGoogle Scholar
  68. Thakur PH, Fitzgerald PJ, Hsiao SS (2012) Second-order receptive fields reveal multidigit interactions in area 3b of the macaque monkey. J Neurophysiol 108:243–262CrossRefPubMedPubMedCentralGoogle Scholar
  69. Vezoli J, Falchier A, Jouve B, Knoblauch K, Young M, Kennedy H (2004) Quantitative analysis of connectivity in the visual cortex: extracting function from structure. Neuroscientist 10:476–482CrossRefPubMedGoogle Scholar
  70. Vincis R, Fontanini A (2016) A gustocentric perspective to understanding primary sensory cortices. Curr Opin Neurobiol 40:118–124CrossRefPubMedPubMedCentralGoogle Scholar
  71. Wandell BA, Winawer J (2015) Computational neuroimaging and population receptive fields. Trends Cogn Sci 19:349–357CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wang Z, Chen LM, Négyessy L, Friedman RM, Mishra A, Gore JC, Roe AW (2013) The relationship of anatomical and functional connectivity to resting-state connectivity in primate somatosensory cortex. Neuron 78:1116–1126CrossRefPubMedPubMedCentralGoogle Scholar
  73. Yau JM, Kim SS, Thakur PH, Bensmaia SJ (2016) Feeling form: the neural basis of haptic shape perception. J Neurophysiol 115:631–642CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Anatomy, Histology and EmbryologySemmelweis UniversityBudapestHungary
  2. 2.Complex Systems and Computational Neuroscience Group, Wigner Research Centre for PhysicsHungarian Academy of SciencesBudapestHungary
  3. 3.Department of Physiology and Biochemistry, Faculty of Veterinary ScienceSzent István UniversityBudapestHungary
  4. 4.Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUSA
  5. 5.Department of Mathematical SciencesUniversity of MontanaMissoulaUSA
  6. 6.Department of Neuroanatomy, Faculty of Medicine, Institute of Anatomy and Cell BiologyUniversity of FreiburgFreiburgGermany
  7. 7.Division of NeuroscienceOregon Health and Science UniversityPortlandUSA
  8. 8.Interdisciplinary Institute of Neuroscience and TechnologyZhejiang UniversityHangzhouChina

Personalised recommendations