Brain Structure and Function

, Volume 223, Issue 6, pp 2809–2821 | Cite as

How do cortico-striatal projections impact on downstream pallidal circuitry?

  • Sarah R. Heilbronner
  • Mariah A. A. Meyer
  • Eun Young Choi
  • Suzanne N. Haber
Original Article


The frontal cortico-basal ganglia network plays a central role in action selection, associative learning, and motivation, processes requiring the integration of information from functionally distinct cortical regions. The cortico-striatal projection is a likely substrate of information integration, as terminal fields from different cortical regions converge in the striatum. These intersecting projections form complex zones of unique cortical inputs. Here, our goal was to follow these projection zones downstream in the basal ganglia to the globus pallidus. We combined a sizable database of 3D models of striato-pallidal chartings in macaques with maps of frontal cortical inputs to determine the topography of the striato-pallidal projection and the indirect cortical influence over the pallidum. We found that the striato-pallidal projection is highly topographic, with the location of the striatal injection site strongly predicting the location of the resulting pallidal terminal fields. Furthermore, striato-pallidal projections are specific and largely nonoverlapping. Thus, striatal hubs receiving unique combinations of cortical inputs have distinct projections to the pallidum. However, because of the strong convergence of cortical terminal fields in the striatum, the indirect pallidal representation of any given frontal cortical region remains broad. We illustrate this arrangement by contrasting the pallidal projections from two nearby striatal cases: one a putative hub for cortical attentional bias signals, and the other with a different, more ventral set of cortical inputs. Thus, the striato-pallidal projection faithfully conveys unique combinations of cortical inputs to different locations within the pallidum via the striatum.


Basal ganglia Prefrontal cortex Globus pallidus Striatum 



This work was supported by Grant nos. R01MH045573, P50MH086404 (SNH), F32MH103931, and a Tourette Syndrome Postdoctoral Fellowship (SRH). The authors declare no competing financial interests.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Human and animal rights

Animal research was approved by the University Committee on Animal Resources at the University of Rochester Medical Center and was conducted according to the Guide for the Care and Use of Laboratory Animals.


  1. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375CrossRefPubMedGoogle Scholar
  2. Averbeck BB, Lehman J, Jacobson M, Haber SN (2014) Estimates of projection overlap and zones of convergence within frontal-striatal circuits. J Neurosci 34:9497–9505. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bar-Gad I, Bergman H (2001) Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr Opin Neurobiol 11:689–695CrossRefPubMedGoogle Scholar
  4. Bar-Gad I, Morris G, Bergman H (2003) Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Prog Neurobiol 71:439–473CrossRefPubMedGoogle Scholar
  5. Beckstead RM (1983) A pallidostriatal projection in the cat and monkey. Brain Res Bull 11:629–632CrossRefPubMedGoogle Scholar
  6. Calzavara R, Mailly P, Haber SN (2007) Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: an anatomical substrate for cognition to action. Eur J Neurosci 26:2005–2024. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Carpenter MB (1976) Anatomical organization of the corpus striatum and related nuclei. In: Yahr MD (ed) The Basal Ganglia. Raven Press, New York, pp 1–36Google Scholar
  8. Choi EY, Ding SL, Haber SN (2017a) Combinatorial inputs to the ventral striatum from the temporal cortex, frontal cortex, and amygdala: Implications for segmenting the striatum. eNeuro 4:1–15. CrossRefGoogle Scholar
  9. Choi EY, Tanimura Y, Vage PR et al (2017b) Convergence of prefrontal and parietal anatomical projections in a connectional hub in the striatum. Neuroimage 146:821–832. CrossRefPubMedGoogle Scholar
  10. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215. CrossRefPubMedGoogle Scholar
  11. Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58:306–324. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cowan WM, Powell TPS (1966) Striatoplallidal projection in the monkey. J Neurol Neurosurg Psychiatry 29:426–439CrossRefPubMedPubMedCentralGoogle Scholar
  13. DeLong MR, Georgopoulos AP, Crutcher MD et al (1984) Functional organization of the basal ganglia: contributions of single-cell recording studies. In: Functions of the basal ganglia. Pitman, London, pp 64–82Google Scholar
  14. Draganski B, Kherif F, Kloppel S et al (2008) Evidence for segregated and integrative connectivity patterns in the human Basal Ganglia. J Neurosci 28:7143–7152. CrossRefPubMedGoogle Scholar
  15. Drevets WC, Videen TO, Price JL et al (1992) A functional anatomical study of unipolar depression. J Neurosci 12:3628–3641CrossRefPubMedGoogle Scholar
  16. Filion M, Tremblay L, Bedard PJ (1988) Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain Res 444:165–176CrossRefPubMedGoogle Scholar
  17. Fox CH, Andrade HN, Du Qui IJ, Rafols JA (1974) The primate globus pallidus. A Golgi and electron microscope study. J R Hirnforsch 15:75–93Google Scholar
  18. Graybiel AM (2000) The basal ganglia. Curr Biol 10:R509-11CrossRefPubMedGoogle Scholar
  19. Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26:317–330CrossRefPubMedGoogle Scholar
  20. Haber SN, Lynd E, Klein C, Groenewegen HJ (1990a) Topographic organization of the ventral striatal efferent projections in the rhesus monkey: an anterograde tracing study. J Comp Neurol 293:282–298. CrossRefPubMedGoogle Scholar
  21. Haber SN, Wolfe DP, Groenewegen HJ (1990b) The relationship between ventral striatal efferent fibers and the distribution of peptide-positive woolly fibers in the forebrain of the rhesus-monkey. Neuroscience 39:323–338. CrossRefPubMedGoogle Scholar
  22. Haber SN, Lynd-Balta E, Mitchell SJ (1993) The organization of the descending ventral pallidal projections in the monkey. J Comp Neurol 329:111–128. CrossRefPubMedGoogle Scholar
  23. Haber SN, Kunishio K, Mizobuchi M, Lynd-Balta E (1995) The orbital and medial prefrontal circuit through the primate basal ganglia. J Neurosci 15:4851–4867CrossRefPubMedGoogle Scholar
  24. Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369–2382CrossRefPubMedGoogle Scholar
  25. Haber SN, Kim KS, Mailly P, Calzavara R (2006) Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J Neurosci 26:8368–8376. CrossRefPubMedGoogle Scholar
  26. Hazrati LN, Parent A (1992) The striatopallidal projection displays a high degree of anatomical specificity in the primate. Brain Res 592:213–227CrossRefPubMedGoogle Scholar
  27. Hazrati LN, Parent A, Mitchell S, Haber SN (1990) Evidence for interconnections between the two segments of the globus pallidus in primates: a PHA-L anterograde tracing study. Brain Res 533:171–175CrossRefPubMedGoogle Scholar
  28. Hedreen JC, DeLong MR (1991) Organization of striatopallidal, striatonigral, and nigrostriatal projections in the Macaque. J Comp Neurol 304:569–595CrossRefPubMedGoogle Scholar
  29. Heilbronner SR, Rodriguez-Romaguera J, Quirk GJ et al (2016) Circuit-based corticostriatal homologies between rat and primate. Biol Psychiatry. PubMedPubMedCentralCrossRefGoogle Scholar
  30. Heimer L (1978) The olfactory cortex and the ventral striatum. In: Livingston KE, Hornykiewicz O (eds) Limbic mechanisms. Plenum Press, New York, pp 95–187CrossRefGoogle Scholar
  31. Hokama H, Shenton ME, Nestor PG et al (1995) Caudate, putamen, and globus pallidus volume in schizophrenia: a quantitative MRI study. Psychiatry Res 61:209–229CrossRefPubMedGoogle Scholar
  32. Hubner CB, Koob GF (1990) The ventral pallidum plays a role in mediating cocaine and heroin self-administration in the rat. Brain Res 508:20–29CrossRefPubMedGoogle Scholar
  33. Ichise M, Vines DC, Gura T et al (2006) Effects of early life stress on [11C]DASB positron emission tomography imaging of serotonin transporters in adolescent peer- and mother-reared rhesus monkeys. J Neurosci 26:4638–4643CrossRefPubMedGoogle Scholar
  34. Johnson TN, Rosvold HE (1971) Topographic projections on the globus pallidus and the substantia nigra of selectively placed lesions in the precommissural caudate nucleus and putamen in the monkey. Exp Neurol 33:584–596CrossRefPubMedGoogle Scholar
  35. Kemp JM, Powell TP (1971) The connexions of the striatum and globus pallidus: synthesis and speculation. Philos Trans R Soc Lond Ser B Biol Sci 262:441–457CrossRefGoogle Scholar
  36. Kim R, Nakano K, Jayaraman A, Carpenter MB (1976) Projections of the globus pallidus and adjacent structures: an autoradiographic study in the monkey. J Comp Neurol 169:263–290CrossRefPubMedGoogle Scholar
  37. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76. CrossRefPubMedGoogle Scholar
  38. Kuo J, Carpenter MB (1973) Organization of pallidothalamic projections in the Rhesus monkey. J Comp Neurol 151:201–236CrossRefPubMedGoogle Scholar
  39. Lo CC, Wang XJ (2006) Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks. Nat Neurosci 9:956–963. CrossRefPubMedGoogle Scholar
  40. Lynd-Balta E, Haber SN (1994) Primate striatonigral projections: a comparison of the sensorimotor-related striatum and the ventral striatum. J Comp Neurol 345:562–578. CrossRefPubMedGoogle Scholar
  41. Mailly P, Aliane V, Groenewegen HJ et al (2013) The rat prefrontostriatal system analyzed in 3D: evidence for multiple interacting functional units. J Neurosci 33:5718–5727. CrossRefPubMedGoogle Scholar
  42. Matsumura M, Tremblay L, Richard H, Filion M (1995) Activity of pallidal neurons in the monkey during dyskinesia induced by injection of bicuculline in the external pallidum. Neuroscience 65:59–70CrossRefPubMedGoogle Scholar
  43. Melendez RI, Rodd-Henricks ZA, McBride WJ, Murphy JM (2003) Alcohol stimulates the release of dopamine in the ventral pallidum but not in the globus pallidus: a dual-probe microdialysis study. Neuropsychopharmacology 28:939–946. CrossRefPubMedGoogle Scholar
  44. Nini A, Feingold A, Slovin H, Bergman H (1995) Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. Journal Neurophysiol 74:1800–1805CrossRefGoogle Scholar
  45. Parent A, Hazrati L-N (1994) Multiple striatal representation in primate substantia nigra. J Comp Neurol 344:305–320CrossRefPubMedGoogle Scholar
  46. Parent A, Charara A, Pinault D (1995) Single striatofugal axons arborizing in both pallidal segments and in the substantia nigra in primates. Brain Res 698:280–284CrossRefPubMedGoogle Scholar
  47. Parent A, Hazrati L-N, Charara A et al (1997) The striatopallidal fiber system in primates. In: Obeso MR, Ohye C, Marsden CDJD (eds) The basal ganglia and new surgical approaches for Parkinson’s disease, advances in neurology. Lippincott-Raven, Philadelphia, pp 19–29Google Scholar
  48. Park MR, Falls WM, Kitai ST (1982) An intracellular HRP study of the rat globus pallidus. I. Responses and light microscopic analysis. J Comp Neurol 211:284–294CrossRefPubMedGoogle Scholar
  49. Percheron G, Filion M (1991) Parallel processing in the basal ganglia: up to a point. Trends Neurosci 14:55–59CrossRefPubMedGoogle Scholar
  50. Percheron G, Francois C, Yelnik J, Fenelon G (1989). The primate nigro-striato-pallido-nigral system. Not a mere loop. Neural Mechanisms in Disorders of Movement, pp 103–109Google Scholar
  51. Saga Y, Hoshi E, Tremblay L (2017) Roles of Multiple Globus Pallidus Territories of Monkeys and Humans in Motivation, Cognition and Action: An Anatomical, Physiological and Pathophysiological Review. Front Neuroanat. PubMedPubMedCentralCrossRefGoogle Scholar
  52. Spooren WP, Lynd-Balta E, Mitchell S, Haber SN (1996) Ventral pallidostriatal pathway in the monkey: evidence for modulation of basal ganglia circuits. J Comp Neurol 370:295–312CrossRefPubMedGoogle Scholar
  53. Staines WA, Atmadja S, Fibiger HC (1981) Demonstration of a pallidostriatal pathway by retrograde transport of HRP-labeled lectin. Brain Res 206(2):446–450CrossRefGoogle Scholar
  54. Steinmetz MA, Constantinidis C (1995) Neurophysiological evidence for a role of posterior parietal cortex in redirecting visual attention. Cereb Cortex 5:448–456CrossRefPubMedGoogle Scholar
  55. Szabo J (1962) Topical distribution of the striatal efferents in the monkey. Exp Neurol 5:21–36CrossRefGoogle Scholar
  56. Szabo J (1967) The efferent projections of the putamen in the monkey. Exp Neurol 19:463–476CrossRefPubMedGoogle Scholar
  57. Szabo J (1970) Projections from the body of the caudate nucleus in the rhesus monkey. Exp Neurol 27:1–15CrossRefPubMedGoogle Scholar
  58. Wichmann T, DeLong MR (1996) Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 6:751–758CrossRefPubMedGoogle Scholar
  59. Wise SP (2008) Forward frontal fields: phylogeny and fundamental function. Trends Neurosci 31:599–608. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Yeterian EH, Van Hoesen GW (1978) Cortico-striate projections in the rhesus monkey: the organization of certain cortico-caudate connections. Brain Res 139:43–63CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pharmacology and PhysiologyUniversity of RochesterRochesterUSA

Personalised recommendations