Advertisement

Brain Structure and Function

, Volume 223, Issue 5, pp 2323–2334 | Cite as

Vesicular glutamate transporter 1 (VGLUT1)- and VGLUT2-immunopositive axon terminals on the rat jaw-closing and jaw-opening motoneurons

  • Sook Kyung Park
  • Sang Jin Ko
  • Sang Kyoo Paik
  • Jong-Cheol Rah
  • Kea Joo Lee
  • Yong Chul BaeEmail author
Original Article

Abstract

To provide information on the glutamatergic synapses on the trigeminal motoneurons, which may be important for understanding the mechanism of control of jaw movements, we investigated the distribution of vesicular glutamate transporter (VGLUT)1-immunopositive (+) and VGLUT2 + axon terminals (boutons) on the rat jaw-closing (JC) and jaw-opening (JO) motoneurons, and their morphological determinants of synaptic strength by retrograde tracing, electron microscopic immunohistochemistry, and quantitative ultrastructural analysis. We found that (1) the large majority of VGLUT + boutons on JC and JO motoneurons were VGLUT2+, (2) the density of VGLUT1 + boutons terminating on JC motoneurons was significantly higher than that on JO motoneurons, (3) the density of VGLUT1 + boutons terminating on non-primary dendrites of JC motoneurons was significantly higher than that on somata or primary dendrites, whereas the density of VGLUT2 + boutons was not significantly different between JC and JO motoneurons and among various compartments of the postsynaptic neurons, and (4) the bouton volume, mitochondrial volume, and active zone area of the VGLUT1 + boutons forming synapses on JC motoneurons were significantly bigger than those of VGLUT2 + boutons. These findings suggest that JC and JO motoneurons receive glutamatergic input primarily from VGLUT2-expressing intrinsic neurons (premotoneurons), and may be controlled differently by neurons in the trigeminal mesencephalic nucleus and by glutamatergic premotoneurons.

Keywords

Vesicular glutamate transporter Glutamatergic synapse Jaw-closing motoneuron Jaw-opening motoneuron Immunohistochemistry Electron microscopy 

Abbreviations

JC

Jaw-closing

JO

Jaw-opening

VGLUT1

Vesicular glutamate transporter 1

VGLUT2

Vesicular glutamate transporter 2

Vmes

Trigeminal mesencephalic nucleus

Vmo

Trigeminal motor nucleus

Notes

Acknowledgements

The authors sincerely thank Dr. Juli Valtschanoff for helpful discussion and careful reading of the manuscript.

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT, NRF-2017R1A5A2015391).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

References

  1. Alvarez FJ, Villalba RM, Zerda R, Schneider SP (2004) Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses. J Comp Neurol 472:257–280CrossRefPubMedGoogle Scholar
  2. Alvarez FJ, Titus-Mitchell HE, Bullinger KL, Kraszpulski M, Nardelli P, Cope TC (2011) Permanent central synaptic disconnection of proprioceptors after nerve injury and regeneration. I. Loss of VGLUT1/IA synapses on motoneurons. J Neurophysiol 106:2450–2470CrossRefPubMedPubMedCentralGoogle Scholar
  3. Atwood HL, Marin L (1983) Ultrastructure of synapses with different transmitter-releasing characteristics on motor axon terminals of a crab, Hyas areneas. Cell Tissue Res 231:103–115CrossRefPubMedGoogle Scholar
  4. Bae YC, Nakagawa S, Yasuda K, Yabuta NH, Yoshida A, Pil PK, Moritani M, Chen K, Nagase Y, Takemura M, Shigenaga Y (1996) Electron microscopic observation of synaptic connections of jaw-muscle spindle and periodontal afferent terminals in the trigeminal motor and supratrigeminal nuclei in the cat. J Comp Neurol 374:421–435CrossRefPubMedGoogle Scholar
  5. Bae YC, Nakamura T, Ihn HJ, Choi MH, Yoshida A, Moritani M, Honma S, Shigenaga Y (1999) Distribution pattern of inhibitory and excitatory synapses in the dendritic tree of single masseter alpha-motoneurons in the cat. J Comp Neurol 14:454–468CrossRefGoogle Scholar
  6. Bae YC, Ihn HJ, Park MJ, Ottersen OP, Moritani M, Yoshida A, Shigenaga Y (2000) Identification of signal substances in synapses made between primary afferents and their associated axon terminals in the rat trigeminal sensory nuclei. J Comp Neurol 418:299–309CrossRefPubMedGoogle Scholar
  7. Bae YC, Kim JP, Choi BJ, Park KP, Choi MK, Moritani M, Yoshida A, Shigenaga Y (2003) Synaptic organization of tooth pulp afferent terminals in the rat trigeminal sensory nuclei. J Comp Neurol 463:13–24CrossRefPubMedGoogle Scholar
  8. Balschun D, Moechars D, Callaerts-Vegh Z, Vermaercke B, Van Acker N, Andries L, D’Hooge R (2010) Vesicular glutamate transporter VGLUT1 has a role in hippocampal long-term potentiation and spatial reversal learning. Cereb Cortex 20:684–693CrossRefPubMedGoogle Scholar
  9. Dittman JS, Regehr WG (1998) Calcium dependence and recovery kinetics of presynaptic depression at the climbing fiber to Purkinje cell synapse. J Neurosci 18:6147–6162CrossRefPubMedGoogle Scholar
  10. Enomoto A, Kogo M, Koizumi H, Ishihama K, Yamanishi T (2002) Localization of premotoneurons for an NMDA-induced repetitive rhythmical activity to TMNs. Neuroreport 13:2303–2307CrossRefPubMedGoogle Scholar
  11. Faunes M, Oñate-Ponce A, Fernández-Collemann S, Henny P (2016) Excitatory and inhibitory innervation of the mouse orofacial motor nuclei: A stereological study. J Comp Neurol 524:738–758CrossRefPubMedGoogle Scholar
  12. Fremeau RT Jr, Voglmaier S, Seal RP, Edwards RH (2004) VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci 27:98–103CrossRefPubMedGoogle Scholar
  13. Ge SN, Ma YF, Hioki H, Wei YY, Kaneko T, Mizuno N, Gao GD, Li JL (2010) Coexpression of VGLUT1 and VGLUT2 in trigeminothalamic projection neurons in the principal sensory trigeminal nucleus of the rat. J Comp Neurol 518:3149–3168CrossRefPubMedGoogle Scholar
  14. Graziano A, Liu XB, Murray KD, Jones EG (2008) Vesicular glutamate transporters define two sets of glutamatergic afferents to the somatosensory thalamus and two thalamocortical projections in the mouse. J Comp Neurol 507:1258–1276CrossRefPubMedGoogle Scholar
  15. Hackett TA, Takahata T, Balaram P (2011) VGLUT1 and VGLUT2 mRNA expression in the primate auditory pathway. Hear Res 274:129–141CrossRefPubMedGoogle Scholar
  16. Hessler NA, Shirke AM, Malinow R (1993) The probability of transmitter release at a mammalian central synapse. Nature 366:569–572CrossRefPubMedGoogle Scholar
  17. Hughes DI, Polgár E, Shehab SA, Todd AJ (2004) Peripheral axotomy induces depletion of the vesicular glutamate transporter VGLUT1 in central terminals of myelinated afferent fibres in the rat spinal cord. Brain Res 1017:69–76CrossRefPubMedGoogle Scholar
  18. Hur EE, Edwards RH, Rommer E, Zaborszky L (2009) Vesicular glutamate transporter 1 and vesicular glutamate transporter 2 synapses on cholinergic neurons in the sublenticular gray of the rat basal forebrain: a double-label electron microscopic study. Neuroscience 164:1721–1731CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kaneko T, Fujiyama F (2002) Complementary distribution of vesicular glutamate transporters in the central nervous system. Neurosci Res 42:243–250CrossRefPubMedGoogle Scholar
  20. Katakura N, Chandler SH (1990) An iontophoretic analysis of the pharmacologic mechanisms responsible for trigeminal motoneuronal discharge during masticatory-like activity in the guinea pig. J Neurophysiol 63:356–369CrossRefPubMedGoogle Scholar
  21. Kidokoro Y, Kubota K, Shuto S, Sumino R (1968) Reflex organization of cat masticatory muscles. J Neurophysiol 31:695–708CrossRefPubMedGoogle Scholar
  22. Kim YS, Park JH, Choi SJ, Bae JY, Ahn DK, McKemy DD, Bae YC (2014) Central connectivity of transient receptor potential melastatin 8-expressing axons in the brain stem and spinal dorsal horn. PLoS One 9:e94080CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kishimoto H, Bae YC, Yoshida A, Moritani M, Takemura M, Nakagawa S, Nagase Y, Wada T, Sessle BJ, Shigenaga Y (1998) Central distribution of synaptic contacts of primary and secondary jaw muscle spindle afferents in the trigeminal motor nucleus of the cat. J Comp Neurol 391:50–63CrossRefPubMedGoogle Scholar
  24. Kogo M, Funk GD, Chandler SH (1996) Rhythmical oral-motor activity recorded in an in vitro brainstem preparation. Somatosens Mot Res 13:39–48CrossRefPubMedGoogle Scholar
  25. Landry M, Bouali-Benazzouz R, El Mestikawy S, Ravassard P, Nagy F (2004) Expression of vesicular glutamate transporters in rat lumbar spinal cord, with a note on dorsal root ganglia. J Comp Neurol 468:380–394CrossRefPubMedGoogle Scholar
  26. Li JL, Xiong KH, Dong YL, Fujiyama F, Kaneko T, Mizuno N (2003) Vesicular glutamate transporters, VGluT1 and VGluT2, in the trigeminal ganglion neurons of the rat, with special reference to coexpression. J Comp Neurol 463:212–220CrossRefPubMedGoogle Scholar
  27. Liguz-Lecznar M, Skangiel-Kramska J (2007) Vesicular glutamate transporters (VGLUTs): the three musketeers of glutamatergic system. Acta Neurobiol Exp (Wars) 67:207–218Google Scholar
  28. Lund JP, Sadeghi S, Athanassiadis T, Caram Salas N, Auclair F, Thivierge B, Arsenault I, Rompré P, Westberg KG, Kolta A (2010) Assessment of the potential role of muscle spindle mechanoreceptor afferents in chronic muscle pain in the rat masseter muscle. PLoS One 5:e11131CrossRefPubMedPubMedCentralGoogle Scholar
  29. Malet M, Brumovsky PR (2015) VGLUTs and glutamate synthesis-focus on DRG neurons and pain. Biomolecules 5:3416–3137CrossRefPubMedPubMedCentralGoogle Scholar
  30. Matesz C (1994) Synaptic relations of the trigeminal motoneurons in a frog (Rana esculenta). Eur J Morphol 32:117–121PubMedGoogle Scholar
  31. Oliveira AL, Hydling F, Olsson E, Shi T, Edwards RH, Fujiyama F, Kaneko T, Hökfelt T, Cullheim S, Meister B (2003) Cellular localization of three vesicular glutamate transporter mRNAs and proteins in rat spinal cord and dorsal root ganglia. Synapse 50:117–129CrossRefPubMedGoogle Scholar
  32. Paik SK, Kim SK, Choi SJ, Yang ES, Ahn SH, Bae YC (2012) Vesicular glutamate transporters in axons that innervate the human dental pulp. J Endod 38:470–474CrossRefPubMedGoogle Scholar
  33. Pang YW, Li JL, Nakamura K, Wu S, Kaneko T, Mizuno N (2006) Expression of vesicular glutamate transporter 1 immunoreactivity in peripheral and central endings of trigeminal mesencephalic nucleus neurons in the rat. J Comp Neurol 498:129–141CrossRefPubMedGoogle Scholar
  34. Pang YW, Ge SN, Nakamura KC, Li JL, Xiong KH, Kaneko T, Mizuno N (2009) Axon terminals expressing vesicular glutamate transporter VGLUT1 or VGLUT2 within the trigeminal motor nucleus of the rat: origins and distribution patterns. J Comp Neurol 512:595–612CrossRefPubMedGoogle Scholar
  35. Peters A, Palay SL, Webster HdeF (1991) The fine structure of the nervous system, 3rd edn. Oxford university press, New York, pp 70–100Google Scholar
  36. Propst JW, Ko CP (1987) Correlations between active zone ultrastructure and synaptic function studied with freeze-fracture of physiologically identified neuromuscular junctions. J Neurosci 7:3654–3664CrossRefPubMedGoogle Scholar
  37. Rosenmund C, Clements JD, Westbrook GL (1993) Nonuniform probability of glutamate release at a hippocampal synapse. Science 262:754–757CrossRefPubMedGoogle Scholar
  38. Shepherd GM, Koch C (1990) Appendix: Dendritic electrotonus and synaptic integration. In: Shepherd GM (ed) The synaptic organization of the brain. Oxford university press, New York, pp 439–473Google Scholar
  39. Todd AJ, Hughes DI, Polgár E, Nagy GG, Mackie M, Ottersen OP, Maxwell DJ (2003) The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn. Eur J Neurosci 17:13–27CrossRefPubMedGoogle Scholar
  40. Travers JB, Yoo JE, Chandran R, Herman K, Travers SP (2005) Neurotransmitter phenotypes of intermediate zone reticular formation projections to the motor trigeminal and hypoglossal nuclei in the rat. J Comp Neurol 488:28–47CrossRefPubMedGoogle Scholar
  41. Varoqui H, Schäfer MK, Zhu H, Weihe E, Erickson JD (2002) Identification of the differentiation-associated Na+/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci 22:142–155CrossRefPubMedGoogle Scholar
  42. Weinberg RJ, van Eyck SL (1991) A tetramethylbenzidine/tungstate reaction for horseradish peroxidase histochemistry. J Histochem Cytochem 39:1143–1148CrossRefPubMedGoogle Scholar
  43. Wu SX, Koshimizu Y, Feng YP, Okamoto K, Fujiyama F, Hioki H, Li YQ, Kaneko T, Mizuno N (2004) Vesicular glutamate transporter immunoreactivity in the central and peripheral endings of muscle-spindle afferents. Brain Res 1011:247–251CrossRefPubMedGoogle Scholar
  44. Yeo EJ, Cho YS, Paik SK, Yoshida A, Park MJ, Ahn DK, Moon C, Kim YS, Bae YC (2010) Ultrastructural analysis of the synaptic connectivity of TRPV1-expressing primary afferent terminals in the rat trigeminal caudal nucleus. J Comp Neurol 518:4134–4146CrossRefPubMedGoogle Scholar
  45. Yeow MB, Peterson EH (1991) Active zone organization and vesicle content scale with bouton size at a vertebrate central synapse. J Comp Neurol 307:475–486CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Anatomy and Neurobiology, School of DentistryKyungpook National UniversityDaeguSouth Korea
  2. 2.Research DivisionKorea Brain Research InstituteDaeguSouth Korea

Personalised recommendations