Brain Structure and Function

, Volume 223, Issue 5, pp 2433–2454 | Cite as

Fast periodic stimulation (FPS): a highly effective approach in fMRI brain mapping

  • Xiaoqing Gao
  • Francesco Gentile
  • Bruno RossionEmail author
Original Article


Defining the neural basis of perceptual categorization in a rapidly changing natural environment with low-temporal resolution methods such as functional magnetic resonance imaging (fMRI) is challenging. Here, we present a novel fast periodic stimulation (FPS)-fMRI approach to define face-selective brain regions with natural images. Human observers are presented with a dynamic stream of widely variable natural object images alternating at a fast rate (6 images/s). Every 9 s, a short burst of variable face images contrasting with object images in pairs induces an objective face-selective neural response at 0.111 Hz. A model-free Fourier analysis achieves a twofold increase in signal-to-noise ratio compared to a conventional block-design approach with identical stimuli and scanning duration, allowing to derive a comprehensive map of face-selective areas in the ventral occipito-temporal cortex, including the anterior temporal lobe (ATL), in all individual brains. Critically, periodicity of the desired category contrast and random variability among widely diverse images effectively eliminates the contribution of low-level visual cues, and lead to the highest values (80–90%) of test–retest reliability in the spatial activation map yet reported in imaging higher level visual functions. FPS-fMRI opens a new avenue for understanding brain function with low-temporal resolution methods.


fMRI Brain mapping Frequency tagging Visual categorization Face 



We thank Valérie Goffaux, Corentin Jacques, Jacques Jonas, Kirsten Petras, and Talia Retter and two anonymous reviewers for their helpful comments on an earlier version of this paper. We also thank Talia Retter for editing the manuscript.

Supplementary material

429_2018_1630_MOESM1_ESM.pdf (5.4 mb)
Supplementary material 1 (PDF 5550 KB)

Supplementary material 2 (MOV 19033 KB)

Supplementary material 3 (MOV 16358 KB)


  1. Aguirre GK, D’Esposito M (1999) Experimental design for brain fMRI. Functional MRI. In: Moonen CTW, Bandettini PA (eds) Functional MRI. Springer, Berlin, pp 369–380Google Scholar
  2. Amunts K, Zilles K (2015) Architectonic mapping of the human brain beyond Brodmann. Neuron 88:1086–1107PubMedCrossRefGoogle Scholar
  3. Andrews TJ, Watson DM, Rice GE, Hartley T (2015) Low-level properties of natural images predict topographic patterns of neural response in the ventral visual pathway. J Vis 15(7):3PubMedPubMedCentralCrossRefGoogle Scholar
  4. Avidan G, Tanzer M, Hadj-Bouziane F, Liu N, Ungerleider LG, Behrmann M (2014) Selective dissociation between core and extended regions of the face processing network in congenital prosopagnosia. Cereb Cortex 24:1565–1578PubMedCrossRefGoogle Scholar
  5. Axelrod V, Yovel G (2013) The challenge of localizing the anterior temporal face area: a possible solution. NeuroImage 81:371–380PubMedCrossRefGoogle Scholar
  6. Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS (1993) Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 30:161–173PubMedCrossRefGoogle Scholar
  7. Bennett CM, Miller MB (2010) How reliable are the results from functional magnetic resonance imaging? Ann N Y Acad Sci 1191:133–155PubMedCrossRefGoogle Scholar
  8. Benuzzi F, Pugnaghi M, Meletti S, Lui F, Serafini M, Baraldi P, Nichelli P (2007) Processing the socially relevant parts of faces. Brain Res Bull 74:344–356PubMedCrossRefGoogle Scholar
  9. Berman MG, Park J, Gonzalez R, Polk TA, Gehrke A, Knaffla S, Jonides J (2010) Evaluating functional localizers: the case of the FFA. NeuroImage 50:56–71PubMedCrossRefGoogle Scholar
  10. Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16:4207–4221PubMedCrossRefGoogle Scholar
  11. Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth JA, LeipzigGoogle Scholar
  12. Busigny T, van Belle G, Jemel B, Hosein A, Joubert S, Rossion B (2014) Face-specific impairment in holistic perception following focal lesion of the right anterior temporal lobe. Neuropsychologia 56:312–333PubMedCrossRefGoogle Scholar
  13. Buxton RB, Wong EC, Frank LR (1998) Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med 39:855–864PubMedCrossRefGoogle Scholar
  14. Buxton RB, Uludağ K, Dubowitz DJ, Liu TT (2004) Modeling the hemodynamic response to brain activation. NeuroImage 23:S220–S233PubMedCrossRefGoogle Scholar
  15. Calder AJ, Young AW (2005) Understanding the recognition of facial identity and facial expression. Nat Rev Neurosci 6:641–651PubMedCrossRefGoogle Scholar
  16. Chan AWY, Downing PE (2011) Faces and eyes in human lateral prefrontal cortex. Front Hum Neurosci 5(51):1–10Google Scholar
  17. Collins JA, Olson IR (2014) Beyond the FFA: the role of the ventral anterior temporal lobes in face processing. Neuropsychologia 61:65–79PubMedCrossRefGoogle Scholar
  18. Collins JA, Koski JE, Olson IR (2016) More than meets the eye: the merging of perceptual and conceptual knowledge in the anterior temporal face area. Front Hum Neurosci 10:189. PubMedPubMedCentralCrossRefGoogle Scholar
  19. Crouzet SM, Thorpe SJ (2011) Low-level cues and ultra-fast face detection. Front Psychol 2:342. PubMedPubMedCentralCrossRefGoogle Scholar
  20. D’Esposito M (2010) Why methods matter in the study of the biological basis of the mind: A behavioral neurologist’s perspective. In: Reuter-Lorenz PA, Baynes K, Mangun GR, Phelps EA (eds) The cognitive neuroscience of mind: a tribute to Michael S. Gazzaniga. MIT Press, Cambridge, pp 203–221CrossRefGoogle Scholar
  21. Dale AM (1999) Optimal experimental design for event-related fMRI. Hum Brain Mapp 8:109–114PubMedCrossRefGoogle Scholar
  22. de Heering A, Rossion B (2015) Rapid categorization of natural face images in the infant right hemisphere. eLife 4:1–14CrossRefGoogle Scholar
  23. Destrieux C, Fischl B, Dale A, Halgren E (2010) Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage 53:1–15PubMedPubMedCentralCrossRefGoogle Scholar
  24. Devlin JT, Russell RP, Davis MH, Price CJ, Wilson J, Moss HE, Tyler LK et al (2000) Susceptibility-induced loss of signal: comparing PET and fMRI on a semantic task. NeuroImage 11:589–600PubMedCrossRefGoogle Scholar
  25. Dormal G, Lepore F, Harissi-Dagher M, Albouy G, Bertone A, Rossion B, Collignon O (2015) Tracking the evolution of crossmodal plasticity and visual functions before and after sight restoration. J Neurophysiol 113:1727–1742PubMedCrossRefGoogle Scholar
  26. Duchaine B, Yovel G (2015) A revised neural framework for face processing. Annu Rev Vis Sci 1:393–416PubMedCrossRefGoogle Scholar
  27. Duncan KJ, Devlin JT (2011) Improving the reliability of functional localizers. NeuroImage 57(3):1022–1030CrossRefGoogle Scholar
  28. Duncan KJ, Pattamadilok C, Knierim I, Devlin JT (2009) Consistency and variability in functional localisers. NeuroImage 46:1018–1026PubMedPubMedCentralCrossRefGoogle Scholar
  29. Embleton KV, Haroon HA, Morris DM, Ralph MA, Parker GJ (2010) Distortion correction for diffusion-weighted MRI tractography and fMRI in the temporal lobes. Hum Brain Mapp 31:1570–1587PubMedCrossRefGoogle Scholar
  30. Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7:181–192PubMedCrossRefGoogle Scholar
  31. Fischl B, Sereno MI, Tootell RBH, Dale AM (1999) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8:272–284PubMedCrossRefGoogle Scholar
  32. Fox C, Moon S, Iaria G, Barton J (2009) The correlates of subjective perception of identity and expression in the face network: an fMRI adaptation study. NeuroImage 44:569–580PubMedCrossRefGoogle Scholar
  33. Fox CJ, Hanif HM, Iaria G, Duchaine BC, Barton JJ (2011) Perceptual and anatomic patterns of selective deficits in facial identity and expression processing. Neuropsychologia 49:3188–3200PubMedCrossRefGoogle Scholar
  34. Freud E, Ganel T, Shelef I, Hammer MD, Avidan G, Behrmann M (2017) Three-dimensional representations of objects in dorsal cortex are dissociable from those in ventral cortex. Cereb Cortex 27:422–434PubMedCrossRefGoogle Scholar
  35. Friston KJ, Price CJ, Fletcher P, Moore C, Frackowiak RS, Dolan RJ (1996) The trouble with cognitive subtraction. NeuroImage 4:97–104PubMedCrossRefGoogle Scholar
  36. Frost MA, Goebel R (2012) Measuring structural–functional correspondence: spatial variability of specialised brain regions after macro-anatomical alignment. NeuroImage 59:1369–1381PubMedCrossRefGoogle Scholar
  37. Gauthier I, Tarr MJ, Moylan J, Skudlarski P, Gore JC, Anderson AW (2000) The fusiform “face area” is part of a network that processes faces at the individual level. J Cogn Neurosci 12:495–504PubMedCrossRefGoogle Scholar
  38. Gentile F, Rossion B (2014) Temporal frequency tuning of cortical face-sensitive areas for individual face perception. NeuroImage 90:256–265PubMedCrossRefGoogle Scholar
  39. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, … Van Essen DC (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171–178PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gobbini MI, Haxby JV (2006) Neural response to the visual familiarity of faces. Brain Res Bull 71:76–82PubMedCrossRefGoogle Scholar
  41. Golarai G, Ghahremani DG, Whitfield-Gabrieli S, Reiss A, Eberhardt JL, Gabrieli JDE, Grill-Spector K (2007) Differential development of high-level visual cortex correlates with category-specific recognition memory. Nat Neurosci 10:512–522PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gomez J, Barnett MA, Natu V, Mezer A, Palomero-Gallagher N, Weiner KS, Grill-Spector K et al (2017) Microstructural proliferation in human cortex is coupled with the development of face processing. Science 355:68–71PubMedPubMedCentralCrossRefGoogle Scholar
  43. Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73:862–885PubMedCrossRefGoogle Scholar
  44. Grill-Spector K, Weiner KS (2014) The functional architecture of the ventral temporal cortex and its role in categorization. Nat Rev Neurosci 15:536–548PubMedPubMedCentralCrossRefGoogle Scholar
  45. Grill-Spector K, Weiner KS, Kay K, Gomez J (2017) The functional neuroanatomy of human face perception. Annu Rev Vis Sci 3:167–196PubMedCrossRefGoogle Scholar
  46. Handwerker DA, Ollinger JM, D’Esposito M (2004) Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. NeuroImage 21:1639–1651PubMedCrossRefGoogle Scholar
  47. Haxby JV, Hoffman EA, Gobbini MI (2000) The distributed human neural system for face perception. Trends Cogn Sci 4:223–233PubMedCrossRefGoogle Scholar
  48. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–2430PubMedCrossRefGoogle Scholar
  49. Huth AG, Nishimoto S, Vu AT, Gallant JL (2012) A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron 76:1210–1224PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ishai A, Schmidt CF, Boesiger P (2005) Face perception is mediated by a distributed cortical network. Brain Res Bull 67:87–93PubMedCrossRefGoogle Scholar
  51. Jokisch D, Jensen O (2007) Modulation of gamma and alpha activity during a working memory task engaging the dorsal or ventral stream. J Neurosci 27:3244–3251PubMedCrossRefGoogle Scholar
  52. Jonas J, Rossion B, Brissart H, Frismand S, Jacques C, Hossu G, Maillard L et al (2015) Beyond the core face-processing network: intracerebral stimulation of a face-selective area in the right anterior fusiform gyrus elicits transient prosopagnosia. Cortex 72:140–155PubMedCrossRefGoogle Scholar
  53. Jonas J, Jacques C, Liu-Shuang J, Brissart H, Colnat-Coulbois S, Maillard L, Rossion B (2016) A face-selective ventral occipito-temporal map of the human brain with intracerebral potentials. Proc Natl Acad Sci USA 113:E4088–E4097PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kanwisher N (2017) The quest for the FFA and where it led. J Neurosci 37:1056–1061PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 7:4302–4311CrossRefGoogle Scholar
  56. Kim J-J, Crespo-Facorro B, Andreasen NC, O’Leary DS, Zhang B, Harris G, Magnotta VA (2000) An MRI-based parcellation method for the temporal lobe. NeuroImage 11:271–288PubMedCrossRefGoogle Scholar
  57. Koenig-Robert R, VanRullen R, Tsuchiya N (2015) Semantic wavelet-induced frequency-tagging (SWIFT) periodically activates category selective areas while steadily activating early visual areas. PLoS One 10:e0144858PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kovacs G (2005) Electrophysiological correlates of visual adaptation to faces and body parts in humans. Cereb Cortex 16:742–753PubMedCrossRefGoogle Scholar
  59. Kriegeskorte N, Formisano E, Sorger B, Goebel R (2007) Individual faces elicit distinct response patterns in human anterior temporal cortex. Proc Natl Acad Sci USA 104:20600–20605PubMedPubMedCentralCrossRefGoogle Scholar
  60. Krüger G, Glover GH (2001) Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 46:631–637PubMedCrossRefGoogle Scholar
  61. Lafer-sousa R, Conway BR, Kanwisher NG (2016) Color-biased regions of the ventral visual pathway lie between face- and place-selective regions in humans, as in macaques. J Neurosci 36:1682–1697PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lochy A, van Belle G, Rossion B (2015) A robust index of lexical representation in the left occipito-temporal cortex as evidenced by EEG responses to fast periodic visual stimulation. Neuropsychologia 66:18–31PubMedCrossRefGoogle Scholar
  63. Loffler G, Yourganov G, Wilkinson F, Wilson HR (2005) fMRI evidence for the neural representation of faces. Nat Neurosci 8:1386–1391PubMedCrossRefGoogle Scholar
  64. Maus B, van Breukelen GJP, Goebel R, Berger MPF (2010) Optimization of blocked designs in fMRI studies. Psychometrika 75:373–390CrossRefGoogle Scholar
  65. McCarthy G, Spicer M, Adrignolo A, Luby M, Gore JC, Allison T (1994) Brain activation associated with visual motion studied by functional magnetic resonance imaging in humans. Hum Brain Mapp 2:234–243CrossRefGoogle Scholar
  66. McCarthy G, Puce A, Gore JC, Allison T (1997) Face-specific processing in the human fusiform gyrus. J Cogn Neurosci 9:605–610PubMedCrossRefGoogle Scholar
  67. McKeefry D, Zeki S (1997) The position and topography of the human color centre as revealed by functional magnetic resonance imaging. Brain 120:2229–2242PubMedCrossRefGoogle Scholar
  68. Murphy K, Bodurka J, Bandettini PA (2007) How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration. NeuroImage 34:565–574PubMedCrossRefGoogle Scholar
  69. Nasr S, Tootell RB (2012) Role of fusiform and anterior temporal cortical areas in facial recognition. NeuroImage 63:1743–1753PubMedPubMedCentralCrossRefGoogle Scholar
  70. Nichols TE, Das S, Eickhoff SB, Evans AC, Glatard T, Hanke M …Yeo BTT (2017) Best practices in data analysis and sharing in neuroimaging using MRI. Nat Neurosci 20:299–303PubMedPubMedCentralCrossRefGoogle Scholar
  71. Norcia AM, Appelbaum LG, Ales JM, Cottereau B, Rossion B (2015) The steady-state visual evoked potential in vision research: a review. J Vis 15(6):4:1–46PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872PubMedPubMedCentralCrossRefGoogle Scholar
  73. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89:5951–5955PubMedPubMedCentralCrossRefGoogle Scholar
  74. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRefGoogle Scholar
  75. Potter MC (2012) Recognition and memory for briefly presented scenes. Front Psychol 3:1–9Google Scholar
  76. Puce A (1999) Electrophysiological studies of human face perception III: effects of top-down processing on face-specific potentials. Cereb Cortex 9:445–458PubMedCrossRefGoogle Scholar
  77. Puce A, Allison T, Gore JC, McCarthy G (1995) Face-sensitive regions in human extrastriate cortex studied by functional MRI. J Neurophysiol 74:1192–1199PubMedCrossRefGoogle Scholar
  78. Rajimehr R, Young JC, Tootell RB (2009) An anterior temporal face patch in human cortex predicted by macaque maps. Proc Natl Acad Sci USA 106:1995–2000PubMedPubMedCentralCrossRefGoogle Scholar
  79. Regan D (1989) Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New YorkGoogle Scholar
  80. Retter TL, Rossion B (2016) Uncovering the neural magnitude and spatio-temporal dynamics of natural image categorization in a fast visual stream. Neuropsychologia 91:9–28PubMedCrossRefGoogle Scholar
  81. Rice GE, Watson DM, Hartley T, Andrews TJ (2014) Low-level image properties of visual objects predict patterns of neural response across category-selective regions of the ventral visual pathway. J Neurosci 34(26):8837–8844PubMedPubMedCentralCrossRefGoogle Scholar
  82. Rossion B, Boremanse A (2011) Robust sensitivity to facial identity in the right human occipito-temporal cortex as revealed by steady-state visual-evoked potentials. J Vis 11(16):1–21Google Scholar
  83. Rossion B, Caldara R, Seghier M, Schuller AM, Lazeyras F, Mayer E (2003) A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain 126:2381–2395PubMedCrossRefGoogle Scholar
  84. Rossion B, Hanseeuw B, Dricot L (2012) Defining face perception areas in the human brain: a large-scale factorial fMRI face localizer analysis. Brain Cogn 79:138–157PubMedCrossRefGoogle Scholar
  85. Rossion B, Torfs K, Jacques C, Liu-Shuang J (2015) Fast periodic presentation of natural images reveals a robust face-selective electrophysiological response in the human brain. J Vis 15(18):1–18PubMedGoogle Scholar
  86. Rossion B, Jacques C, Jonas J (2018) Mapping face categorization in the human ventral occipito-temporal cortex with direct neural intracranial recordings. Ann N Y Acad SciGoogle Scholar
  87. Rousselet GA, Husk JS, Bennett PJ, Sekuler AB (2008) Time course and robustness of ERP object and face differences. J Vis 8(3):1–18CrossRefPubMedGoogle Scholar
  88. Sadr J, Sinha P (2004) Object recognition and random image structure evolution. Cogn Sci 28:259–287CrossRefGoogle Scholar
  89. Scherf KS, Behrmann M, Humphreys K, Luna B (2007) Visual category-selectivity for faces places and objects emerges along different developmental trajectories. Dev Sci 10:F15–F30PubMedCrossRefGoogle Scholar
  90. Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268(5212):889–893PubMedCrossRefGoogle Scholar
  91. Sergent J, Ohta S, MacDonald B (1992) Functional neuroanatomy of face and object processing. Brain 115:15–36PubMedCrossRefGoogle Scholar
  92. Simoncelli EP, Olshausen BA (2001) Natural image statistics and neural representation. Annu Rev Neurosci 24:1193–1216PubMedCrossRefGoogle Scholar
  93. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Matthews PM et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23:S208–S219PubMedCrossRefPubMedCentralGoogle Scholar
  94. Smith SM, Jenkinson M, Beckmann C, Miller K, Woolrich M (2007) Meaningful design and contrast estimability in FMRI. NeuroImage 34:127–136PubMedCrossRefGoogle Scholar
  95. Susilo T, Duchaine B (2013) Advances in developmental prosopagnosia research. Curr Opin Neurobiol 23:423–429PubMedCrossRefGoogle Scholar
  96. Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381:520–522PubMedCrossRefGoogle Scholar
  97. Tootell RB, Reppas JB, Dale AM, Look RB, Sereno MI, Malach R, Rosen BR et al (1995) Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 375:139–141PubMedCrossRefGoogle Scholar
  98. Tsao DY, Moeller S, Freiwald WA (2008) Comparing face patch systems in macaques and humans. Proc Natl Acad Sci USA 105:19514–19519PubMedPubMedCentralCrossRefGoogle Scholar
  99. Tuladhar AM, Huurne N, ter Schoffelen JM, Maris E, Oostenveld R, Jensen O (2007) Parieto-occipital sources account for the increase in alpha activity with working memory load. Hum Brain Mapp 28:785–792PubMedCrossRefGoogle Scholar
  100. VanRullen R (2006) On second glance: still no high-level pop-out effect for faces. Vis Res 46:3017–3027PubMedCrossRefGoogle Scholar
  101. Visser M, Embleton KV, Jefferies E, Parker GJ, Ralph MA (2010) The inferior, anterior temporal lobes and semantic memory clarified: novel evidence from distortion-corrected fMRI. Neuropsychologia 48:1689–1696PubMedCrossRefGoogle Scholar
  102. Von Der Heide RJ, Skipper LM, Olson IR (2013) Anterior temporal face patches: a meta-analysis and empirical study. Front Hum Neurosci 7:17. CrossRefGoogle Scholar
  103. Wandell BA (2011) The neurobiological basis of seeing words. Ann N Y Acad Sci 1224:63–80PubMedPubMedCentralCrossRefGoogle Scholar
  104. Wandell BA, Winawer J (2011) Imaging retinotopic maps in the human brain. Vision Res 51:718–737PubMedCrossRefGoogle Scholar
  105. Winawer J, Witthoft N (2015) Human V4 and ventral occipital retinotopic maps. Vis Neurosci 32:(E020)Google Scholar
  106. Wang Y-F, Liu F, Long Z-L, Duan X-J, Cui Q, Yan JH, Chen H-F (2014) Steady-state BOLD response modulates low frequency neural oscillations. Sci Rep 4(7376):1–7Google Scholar
  107. Wang Y-F, Dai G-S, Liu F, Long Z-L, Yan JH, Chen H-F (2015) Steady-state BOLD response to higher-order cognition modulates low-frequency neural oscillations. J Cogn Neurosci 27:2406–2415PubMedCrossRefGoogle Scholar
  108. Weiner KS, Grill-Spector K (2010) Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. NeuroImage 52:1559–1573PubMedPubMedCentralCrossRefGoogle Scholar
  109. Weiner KS, Jonas J, Gomez J, Maillard L, Brissart H, Hossu G, Rossion B et al (2016) The face-processing network is resilient to focal resection of human visual cortex. J Neurosci 36:8425–8440PubMedPubMedCentralCrossRefGoogle Scholar
  110. Welvaert M, Rosseel Y (2013) On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data. PLoS One 8:e77089PubMedPubMedCentralCrossRefGoogle Scholar
  111. Worsley KJ, Marrett S, Neelin P, Evans AC (1996) Searching scale space for activation in PET images. Hum Brain Mapp 4:74–90PubMedCrossRefGoogle Scholar
  112. Yang H, Susilo T, Duchaine B (2016) The anterior temporal face area contains invariant representations of face identity that can persist despite the loss of right FFA and OFA. Cereb Cortex 26:1096–1107PubMedCrossRefGoogle Scholar
  113. Zatorre RJ, Belin P, Penhune VB (2002) Structure and function of auditory cortex: music and speech. Trends Cogn Sci 6:37–46PubMedCrossRefGoogle Scholar
  114. Zhen Z, Yang Z, Huang L, Kong X, Wang X, Dang X, Huang Y, Song Y, Liu J (2015) Quantifying interindividual variability and asymmetry of face-selective regions: a probabilistic functional atlas. NeuroImage 113:13–25PubMedCrossRefGoogle Scholar
  115. Zilles K, Amunts K (2013) Individual variability is not noise. Trends Cogn Sci 17:153PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Psychological Sciences Research Institute (IPSY), Institute of Neuroscience (IoNS)University of LouvainLouvain-la-NeuveBelgium
  2. 2.Department of Cognitive Neuroscience, Maastricht Brain Imaging Center (M-BIC)Maastricht UniversityMaastrichtThe Netherlands
  3. 3.Université de Lorraine - CHRU-NancyCNRS, CRAN, Service de NeurologieNancyFrance

Personalised recommendations