Brain Structure and Function

, Volume 223, Issue 5, pp 2259–2268 | Cite as

Extrasynaptic homomeric glycine receptors in neurons of the rat trigeminal mesencephalic nucleus

  • Jin Young Bae
  • Jae Sik Lee
  • Sang Jin Ko
  • Yi Sul Cho
  • Jong-Cheol Rah
  • Hee Jung Cho
  • Mae Ja Park
  • Yong Chul BaeEmail author
Original Article


The neurons in the trigeminal mesencephalic nucleus (Vmes) innervate jaw-closing muscle spindles and periodontal ligaments, and play a crucial role in the regulation of jaw movements. Recently, it was shown that many boutons that form synapses on them are immunopositive for glycine (Gly+), suggesting that these neurons receive glycinergic input. Information about the glycine receptors that mediate this input is needed to help understand the role of glycine in controlling Vmes neuron excitability. For this, we investigated the expression of glycine receptor subunit alpha 3 (GlyRα3) and gephyrin in neurons in Vmes and the trigeminal motor nucleus (Vmo), and the Gly+ boutons that contact them by light- and electron-microscopic immunocytochemistry and quantitative ultrastructural analysis. The somata of the Vmes neurons were immunostained for GlyRα3, but not gephyrin, indicating expression of homomeric GlyR. The immunostaining for GlyRα3 was localized away from the synapses in the Vmes neuron somata, in contrast to the Vmo neurons, where the staining for GlyRα3 and gephyrin were localized at the subsynaptic zones in somata and dendrites. Additionally, the ultrastructural determinants of synaptic strength, bouton volume, mitochondrial volume, and active zone area, were significantly smaller in Gly+ boutons on the Vmes neurons than in those on the Vmo neurons. These findings support the notion that the Vmes neurons receive glycinergic input via putative extrasynaptic homomeric glycine receptors, likely mediating a slow, tonic modulation of the Vmes neuron excitability.


Mesencephalic trigeminal nucleus Glycine receptor Homomeric Jaw movement Ultrastructure Immunohistochemistry 



The authors sincerely thank Dr. Juli Valtschanoff for helpful discussion and careful reading of the manuscript.


This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2017R1A5A2015391, NRF-2017R1A2B2003561).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.


  1. Aguayo LG, van Zundert B, Tapia JC, Carrasco MA, Alvarez FJ (2004) Changes on the properties of glycine receptors during neuronal development. Brain Res Brain Res Rev 47:33–45CrossRefPubMedGoogle Scholar
  2. Atwood HL, Marin L (1983) Ultrastructure of synapses with different transmitter-releasing characteristics on motor axon terminals of a crab, Hyas areneas. Cell Tissue Res 231:103–115CrossRefPubMedGoogle Scholar
  3. Bae YC, Choi BJ, Lee MG, Lee HJ, Park KP, Zhang LF, Honma S, Fukami H, Yoshida A, Ottersen OP, Shigenaga Y (2002) Quantitative ultrastructural analysis of glycine- and gamma-aminobutyric acid-immunoreactive terminals on trigeminal alpha- and gamma-motoneuron somata in the rat. J Comp Neurol 442:308–319CrossRefPubMedGoogle Scholar
  4. Bae YC, Paik SK, Park KP, Ma SK, Jin JG, Ahn DK, Kim SK, Moritani M, Yoshida A (2004) Quantitative analysis of tooth pulp afferent terminals in the rat brain stem. Neuroreport 15:2485–2489CrossRefPubMedGoogle Scholar
  5. Bae JY, Mah W, Rah JC, Park SK, Bae YC (2016) Expression of glycine receptor alpha 3 in the rat trigeminal neurons and central boutons in the brainstem. Brain Struct Funct 221:4601–4613CrossRefPubMedGoogle Scholar
  6. Becker CM, Hoch W, Betz H (1988) Glycine receptor heterogeneity in rat spinal cord during postnatal development. EMBO J 7:3717–3726PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3:728–739CrossRefPubMedGoogle Scholar
  8. Copray JC, Liem RS, Ter Horst GJ, van Willigen JD (1990) Dopaminergic afferents to the mesencephalic trigeminal nucleus of the rat: a light and electron microscope immunocytochemistry study. Brain Res 514:343–348CrossRefPubMedGoogle Scholar
  9. Deleuze C, Alonso G, Lefevre IA, Duvoid-Guillou A, Hussy N (2005a) Extrasynaptic localization of glycine receptors in the rat supraoptic nucleus: further evidence for their involvement in glia-to-neuron communication. Neuroscience 133:175–183CrossRefPubMedGoogle Scholar
  10. Deleuze C, Runquist M, Orcel H, Rabié A, Dayanithi G, Alonso G, Hussy N (2005b) Structural difference between heteromeric somatic and homomeric axonal glycine receptors in the hypothalamo-neurohypophysial system. Neuroscience 135:475–483CrossRefPubMedGoogle Scholar
  11. Fekete CD, Chiou T-T, Miralles CP, Harris RS, Fiondella CG, Loturco JJ, De Blas AL (2015) In vivo clonal overexpression of neuroligin 3 and neuroligin 2 in neurons of the rat cerebral cortex: differential effects on GABAergic synapses and neuronal migration. J Comp Neurol 523:1359–1378CrossRefPubMedPubMedCentralGoogle Scholar
  12. Feng G, Tintrup H, Kirsch J, Nichol MC, Kuhse J, Betz H, Sanes JR (1998) Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science 282:1321–1324CrossRefPubMedGoogle Scholar
  13. Flint AC, Liu X, Kriegstein AR (1998) Nonsynaptic glycine receptor activation during early neocortical development. Neuron 20:43–53CrossRefPubMedGoogle Scholar
  14. Fritschy JM, Harvey RJ, Schwarz G (2008) Gephyrin: where do we stand, where do we go? Trends Neurosci 31:257–264CrossRefPubMedGoogle Scholar
  15. Han Y, Zhang J, Slaughter MM (1997) Partition of transient and sustained inhibitory glycinergic input to retinal ganglion cells. J Neurosci 17:3392–3400CrossRefPubMedGoogle Scholar
  16. Harsing LG Jr, Matyus P (2013) Mechanisms of glycine release, which build up synaptic and extrasynaptic glycine levels: the role of synaptic and non-synaptic glycine transporters. Brain Res Bull 93:110–119CrossRefPubMedGoogle Scholar
  17. Hruskova B, Trojanova J, Kulik A, Kralikova M, Pysanenko K, Bures Z, Syka J, Trussell LO, Turecek R (2012) Differential distribution of glycine receptor subtypes at the rat calyx of held synapse. J Neurosci 32:17012–17024CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hussy N, Brès V, Rochette M, Duvoid A, Alonso G, Dayanithi G, Moos FC (2001) Osmoregulation of vasopressin secretion via activation of neurohypophysial nerve terminals glycine receptors by glial taurine. J Neurosci 21:7110–7116CrossRefPubMedGoogle Scholar
  19. Iida C, Oka A, Moritani M, Kato T, Haque T, Sato F, Nakamura M, Uchino K, Seki S, Bae YC, Takada K, Yoshida A (2010) Corticofugal direct projections to primary afferent neurons in the trigeminal mesencephalic nucleus of rats. Neuroscience 169:1739–1757CrossRefPubMedGoogle Scholar
  20. Ishii H, Kang Y (2002) Molecular basis underlying GABA(A) responses in rat mesencephalic trigeminal neurons. Neuroreport 13:2265–2269CrossRefPubMedGoogle Scholar
  21. Javdani F, Holló K, Hegedűs K, Kis G, Hegyi Z, Dócs K, Kasugai Y, Fukazawa Y, Shigemoto R, Antal M (2015) Differential expression patterns of K(+) /Cl(−) cotransporter 2 in neurons within the superficial spinal dorsal horn of rats. J Comp Neurol 523:1967–1983CrossRefPubMedGoogle Scholar
  22. Kirsch J (2006) Glycinergic transmission. Cell Tissue Res 326:535–540CrossRefPubMedGoogle Scholar
  23. Kirsch J, Betz H (1998) Glycine-receptor activation is required for receptor clustering in spinal neurons. Nature 392:717–720CrossRefPubMedGoogle Scholar
  24. Kopach O, Voitenko N (2013) Extrasynaptic AMPA receptors in the dorsal horn: evidence and functional significance. Brain Res Bull 93:47–56CrossRefPubMedGoogle Scholar
  25. Kubota H, Alle H, Betz H, Geiger JRP (2010) Presynaptic glycine receptors on hippocampal mossy fibers. Biochem Biophys Res Commun 393:587–591CrossRefPubMedGoogle Scholar
  26. Laube B, Maksay G, Schemm R, Betz H (2002) Modulation of glycine receptor function: a novel approach for therapeutic intervention at inhibitory synapses? Trends Pharmacol Sci 23:519–527CrossRefPubMedGoogle Scholar
  27. Lazarov NE (2007) Neurobiology of orofacial proprioception. Brain Res Rev 56:362–383CrossRefPubMedGoogle Scholar
  28. Lazarov NE, Chouchkov CN (1995) Immunocytochemical localization of tyrosine hydroxylase and gamma-aminobutyric acid in the mesencephalic trigeminal nucleus of the cat: a light and electron microscopic study. Anat Rec 242:123–131CrossRefPubMedGoogle Scholar
  29. Lazarov NE, Usunoff KG, Schmitt O, Itzev DE, Rolfs A, Wree A (2011) Amygdalotrigeminal projection in the rat: an anterograde tracing study. Ann Anat 193:118–126CrossRefPubMedGoogle Scholar
  30. Legendre P (2001) The glycinergic inhibitory synapse. Cell Mol Life Sci 58:760–793CrossRefPubMedGoogle Scholar
  31. Lévi S, Vannier C, Triller A (1998) Strychnine-sensitive stabilization of postsynaptic glycine receptor clusters. J Cell Sci 111:335–345PubMedGoogle Scholar
  32. Lynch JW (2004) Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 84:1051–1095CrossRefPubMedGoogle Scholar
  33. Lynch JW (2009) Native glycine receptor subtypes and their physiological roles. Neuropharmacology 56:303–309CrossRefPubMedGoogle Scholar
  34. Maguire EP, Mitchell EA, Greig SJ, Corteen N, Balfour DJ, Swinny JD, Lambert JJ, Belelli D (2014) Extrasynaptic glycine receptors of rodent dorsal raphe serotonergic neurons: a sensitive target for ethanol. Neuropsychopharmacology 39:1232–1244CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mangin JM, Baloul M, Prado De Carvalho L, Rogister B, Rigo JM, Legendre P (2003) Kinetic properties of the alpha2 homo-oligomeric glycine receptor impairs a proper synaptic functioning. J Physiol 553:369–386CrossRefPubMedPubMedCentralGoogle Scholar
  36. Matsubara A, Laake JH, Davanger S, Usami S, Ottersen OP (1996) Organization of AMPA receptor subunits at a glutamate synapse: a quantitative immunogold analysis of hair cell synapses in the rat organ of corti. J Neurosci 16:4457–4467CrossRefPubMedGoogle Scholar
  37. Minkels RF, Jüch PJ, Ter Horst GJ, Van Willigen JD (1991) Projections of the parvocellular reticular formation to the contralateral mesencephalic trigeminal nucleus in the rat. Brain Res 547:13–21CrossRefPubMedGoogle Scholar
  38. Mitchell EA, Gentet LJ, Dempster J, Belelli D (2007) GABAA and glycine receptor-mediated transmission in rat lamina II neurones: relevance to the analgesic actions of neuroactive steroids. J Physiol 583:1021–1040CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mørkve SH, Hartveit E (2009) Properties of glycine receptors underlying synaptic currents in presynaptic axon terminals of rod bipolar cells in the rat retina. J Physiol 587:3813–3830CrossRefPubMedPubMedCentralGoogle Scholar
  40. Muller E, Le-Corronc H, Legendre P (2008) Extrasynaptic and postsynaptic receptors in glycinergic and GABAergic neurotransmission: a division of labor? Front Mol Neurosci 1:3CrossRefPubMedPubMedCentralGoogle Scholar
  41. Nagy JI, Buss M, Daddona PE (1986) On the innervation of trigeminal mesencephalic primary afferent neurons by adenosine deaminase-containing projections from the hypothalamus in the rat. Neuroscience 17:141–156CrossRefPubMedGoogle Scholar
  42. Ohara H, Tachibana Y, Fujio T, Takeda-Ikeda R, Sato F, Oka A, Kato T, Ikenoue E, Yamashiro T, Yoshida A (2016) Direct projection from the lateral habenula to the trigeminal mesencephalic nucleus in rats. Brain Res 1630:183–197CrossRefPubMedGoogle Scholar
  43. Ottersen OP, Storm-Mathisen J, Madsen S, Skumlien S, Strømhaug J (1986) Evaluation of the immunocytochemical method for amino acids. Med Biol 64:147–158PubMedGoogle Scholar
  44. Paik SK, Oh SJ, Son YJ, Ma SK, Ahn CH, Kim SK, Chang Z, Moritani M, Yoshida A, Bae YC (2005) Neural mechanisms controlling jaw-jerk reflex in the cat. Neuroreport 16:1565–1568CrossRefPubMedGoogle Scholar
  45. Paik SK, Bae JY, Park SE, Moritani M, Yoshida A, Yeo EJ, Choi KS, Ahn DK, Moon C, Shigenaga Y, Bae YC (2007) Developmental changes in distribution of gamma-aminobutyric acid- and glycine-immunoreactive boutons on rat trigeminal motoneurons. I. Jaw-closing motoneurons. J Comp Neurol 503:779–789CrossRefPubMedGoogle Scholar
  46. Paik SK, Kwak MK, Bae JY, Yi HW, Yoshida A, Ahn DK, Bae YC (2012) γ-Aminobutyric acid-, glycine-, and glutamate-immunopositive boutons on mesencephalic trigeminal neurons that innervate jaw-closing muscle spindles in the rat: ultrastructure and development. J Comp Neurol 520:3414–3427CrossRefPubMedGoogle Scholar
  47. Pedroarena CM, Pose IE, Yamuy J, Chase MH, Morales FR (1999) Oscillatory membrane potential activity in the soma of a primary afferent neuron. J Neurophysiol 82:1465–1476CrossRefPubMedGoogle Scholar
  48. Price TJ, Hargreaves KM, Cervero F (2006) Protein expression and mRNA cellular distribution of the NKCC1 cotransporter in the dorsal root and trigeminal ganglia of the rat. Brain Res 1112:146–158CrossRefPubMedPubMedCentralGoogle Scholar
  49. Propst JW, Ko CP (1987) Correlations between active zone ultrastructure and synaptic function studied with freeze-fracture of physiologically identified neuromuscular junctions. J Neurosci 7:3654–3664CrossRefPubMedGoogle Scholar
  50. Shigenaga Y, Yoshida A, Mitsuhiro Y, Doe K, Suemune S (1988) Morphology of single mesencephalic trigeminal neurons innervating periodontal ligament of the cat. Brain Res 448:331–338CrossRefPubMedGoogle Scholar
  51. Storm-Mathisen J, Leknes AK, Bore AT, Vaaland JL, Edminson P, Haug F-MŠ, Ottersen OP (1983) First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301:517–520CrossRefPubMedGoogle Scholar
  52. Sung KW, Kirby M, McDonald MP, Lovinger DM, Delpire E (2000) Abnormal GABAA receptor-mediated currents in dorsal root ganglion neurons isolated from Na–K–2Cl cotransporter null mice. J Neurosci 20:7531–7538CrossRefPubMedGoogle Scholar
  53. Székely G, Matesz C (1982) The accessory motor nuclei of the trigeminal, facial, and abducens nerves in the rat. J Comp Neurol 210:258–264CrossRefPubMedGoogle Scholar
  54. Szentagothai J (1948) Anatomical considerations on monosynaptic reflex arcs. J Neurophysiol 11:445–454CrossRefPubMedGoogle Scholar
  55. Takahashi T, Shirasu M, Shirasu M, Kubo KY, Onozuka M, Sato S, Itoh K, Nakamura H (2010) The locus coeruleus projects to the mesencephalic trigeminal nucleus in rats. Neurosci Res 68:103–106CrossRefPubMedGoogle Scholar
  56. Takumi Y, Ramírez-León V, Laake P, Rinvik E, Ottersen OP (1999) Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat Neurosci 2:618–624CrossRefPubMedGoogle Scholar
  57. Toyoda H, Yamada J, Ueno S, Okabe A, Kato H, Sato K, Hashimoto K, Fukuda A (2005) Differential functional expression of cation-Cl- cotransporter mRNAs (KCC1, KCC2, and NKCC1) in rat trigeminal nervous system. Brain Res Mol Brain Res 133:12–18CrossRefPubMedGoogle Scholar
  58. Trojanova J, Kulik A, Janacek J, Kralikova M, Syka J, Turecek R (2014) Distribution of glycine receptors on the surface of the mature calyx of Held nerve terminal. Front Neural Circuits 8:120CrossRefPubMedPubMedCentralGoogle Scholar
  59. Turecek R, Trussell LO (2001) Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse. Nature 411:587–590CrossRefPubMedGoogle Scholar
  60. Turman JE Jr, MacDonald AS, Pawl KE, Bringas P, Chandler SH (2000) AMPA receptor subunit expression in trigeminal neurons during postnatal development. J Comp Neurol 427:109–123CrossRefPubMedGoogle Scholar
  61. Turman JE Jr, Lee OK, Chandler SH (2002) Differential NR2A and NR2B expression between trigeminal neurons during early postnatal development. Synapse 44:76–85CrossRefPubMedGoogle Scholar
  62. Verdier D, Lund JP, Kolta A (2004) Synaptic inputs to trigeminal primary afferent neurons cause firing and modulate intrinsic oscillatory activity. J Neurophysiol 92:2444–2455CrossRefPubMedGoogle Scholar
  63. Wu N, Hsiao CF, Chandler SH (2001) Membrane resonance and subthreshold membrane oscillations in mesencephalic V neurons: participants in burst generation. J Neurosci 21:3729–3739CrossRefPubMedGoogle Scholar
  64. Yabuta NH, Yasuda K, Nagase Y, Yoshida A, Fukunishi Y, Shigenaga Y (1996) Light microscopic observations of the contacts made between two spindle afferent types and alpha-motoneurons in the cat trigeminal motor nucleus. J Comp Neurol 374:436–450CrossRefPubMedGoogle Scholar
  65. Yokomizo Y, Murai Y, Tanaka E, Inokuchi H, Kusukawa J, Higashi H (2005) Excitatory GABAergic synaptic potentials in the mesencephalic trigeminal nucleus of adult rat in vitro. Neurosci Res 51:463–474CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Anatomy and Neurobiology, School of Medicine and DentistryKyungpook National UniversityDaeguSouth Korea
  2. 2.Korea Brian Research InstituteDaeguSouth Korea

Personalised recommendations