Development of inhibitory synaptic inputs on layer 2/3 pyramidal neurons in the rat medial prefrontal cortex
- 324 Downloads
Abstract
Inhibitory control of pyramidal neurons plays a major role in governing the excitability in the brain. While spatial mapping of inhibitory inputs onto pyramidal neurons would provide important structural data on neuronal signaling, studying their distribution at the single cell level is difficult due to the lack of easily identifiable anatomical proxies. Here, we describe an approach where in utero electroporation of a plasmid encoding for fluorescently tagged gephyrin into the precursors of pyramidal cells along with ionotophoretic injection of Lucifer Yellow can reliably and specifically detect GABAergic synapses on the dendritic arbour of single pyramidal neurons. Using this technique and focusing on the basal dendritic arbour of layer 2/3 pyramidal cells of the medial prefrontal cortex, we demonstrate an intense development of GABAergic inputs onto these cells between postnatal days 10 and 20. While the spatial distribution of gephyrin clusters was not affected by the distance from the cell body at postnatal day 10, we found that distal dendritic segments appeared to have a higher gephyrin density at later developmental stages. We also show a transient increase around postnatal day 20 in the percentage of spines that are carrying a gephyrin cluster, indicative of innervation by a GABAergic terminal. Since the precise spatial arrangement of synaptic inputs is an important determinant of neuronal responses, we believe that the method described in this work may allow a better understanding of how inhibition settles together with excitation, and serve as basics for further modelling studies focusing on the geometry of dendritic inhibition during development.
Keywords
Development Cerebral cortex GABA Gephyrin SynaptogenesisNotes
Acknowledgements
We thank Michèle Brunet for excellent technical assistance, Kai Kaila, Jean-Marc Fritschy and Jozsef Kiss for instructive comments on the manuscript. This study was funded by the Swiss National Science Foundation, Berne, Switzerland, Grant 31003A-130625 (to LV).
Author contributions
MAV, MDR, MK, ST, JMF, and LV designed the experiments. MAV, MDR, CML, HF and LV performed and analyzed the experiments. MAV, MDR and LV wrote the manuscript with input from the co-authors.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
Supplementary material
References
- Beaulieu C, Kisvarday Z, Somogyi P, Cynader M, Cowey A (1992) Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). Cereb Cortex 2:295–309CrossRefPubMedGoogle Scholar
- Briner A, Nikonenko I, De Roo M, Dayer A, Muller D, Vutskits L (2011) Developmental stage-dependent persistent impact of propofol anesthesia on dendritic spines in the rat medial prefrontal cortex. Anesthesiology 115:282–293CrossRefPubMedGoogle Scholar
- Brockmann MD, Pöschel B, Cichon N, Hanganu-Opatz IL (2011) Coupled oscillations mediate directed interactions between prefrontal cortex and hippocampus of the neonatal rat. Neuron 71:332–347CrossRefPubMedGoogle Scholar
- Chen JL, Villa KL, Cha JW, So PT, Kubota Y, Nedivi E (2012) Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex. Neuron 74:361–373CrossRefPubMedPubMedCentralGoogle Scholar
- Chiu CQ, Lur G, Morse TM, Carnevale NT, Ellis-Davies GC, Higley MJ (2013) Compartmentalization of GABAergic inhibition by dendritic spines. Science 340:759–762CrossRefPubMedPubMedCentralGoogle Scholar
- Dammerman RS, Flint AC, Noctor S, Kriegstein AR (2000) An excitatory GABAergic plexus in developing neocortical layer 1. J Neurophysiol 84:428–434CrossRefPubMedGoogle Scholar
- De Felipe J, Marco P, Fairen A, Jones EG (1997) Inhibitory synaptogenesis in mouse somatosensory cortex. Cereb Cortex 7:619–634CrossRefPubMedGoogle Scholar
- Fiumelli H, Briner A, Puskarjov M, Blaesse P, Belem BJ, Dayer AG, Kaila K, Martin JL, Vutskits L (2013) An ion transport-independent role for the cation-chloride cotransporter KCC2 in dendritic spinogenesis in vivo. Cereb Cortex 23:378–388CrossRefPubMedGoogle Scholar
- Flores CE, Nikonenko I, Mendez P, Fritschy JM, Tyagarajan SK, Muller D (2015) Activity-dependent inhibitory synapse remodeling through gephyrin phosphorylation. Proc Natl Acad Sci USA 112:E65–E72CrossRefPubMedGoogle Scholar
- Gidon A, Segev I (2012) Principles governing the operation of synaptic inhibition in dendrites. Neuron 75:330–341CrossRefPubMedGoogle Scholar
- Gonzalez-Burgos G, Hashimoto T, Lewis DA (2010) Alterations of cortical GABA neurons and network oscillations in schizophrenia. Curr Psychiatry Rep 12:335–344CrossRefPubMedPubMedCentralGoogle Scholar
- Gulyás AI, Megías M, Emri Z, Freund TF (1999) Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J Neurosci 19:10082–10097PubMedGoogle Scholar
- Hao J, Wang XD, Dan Y, Poo MM, Zhang XH (2009) An arithmetic rule for spatial summation of excitatory and inhibitory inputs in pyramidal neurons. Proc Natl Acad Sci USA 106:21906–21911CrossRefPubMedPubMedCentralGoogle Scholar
- Jasinska M, Siucinska E, Cybulska-Klosowicz A, Pyza E, Furness DN, Kossut M, Glazewski S (2010) Rapid, learning-induced inhibitory synaptogenesis in murine barrel field. J Neurosci 30:1176–1184CrossRefPubMedPubMedCentralGoogle Scholar
- Jones EG, Powell TP (1969) Morphological variations in the dendritic spines of the neocortex. J Cell Sci 5:509–529PubMedGoogle Scholar
- Kaila K, Price TJ, Payne JA, Puskarjov M, Voipio J (2014) Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci 15:637–654CrossRefPubMedPubMedCentralGoogle Scholar
- Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53–57CrossRefPubMedPubMedCentralGoogle Scholar
- Kubota Y, Hatada S, Kondo S, Karube F, Kawaguchi Y (2007) Neocortical inhibitory terminals innervate dendritic spines targeted by thalamocortical afferents. J Neurosci 27:1139–1150CrossRefPubMedGoogle Scholar
- Kubota Y, Karube F, Nomura M, Kawaguchi Y (2016) The diversity of cortical inhibitory synapses. Front Neural Circuits 10:27CrossRefPubMedPubMedCentralGoogle Scholar
- Lardi-Studler B, Smolinsky B, Petitjean CM, Koenig F, Sidler C, Meier JC, Fritschy JM, Schwarz G (2007) Vertebrate-specific sequences in the gephyrin E-domain regulate cytosolic aggregation and postsynaptic clustering. J Cell Sci 120:1371–1382CrossRefPubMedGoogle Scholar
- Maas C, Tagnaouti N, Loebrich S, Behrend B, Lappe-Siefke C, Kneussel M (2006) Neuronal cotransport of glycine receptor and the scaffold protein gephyrin. J Cell Biol 172:441–451CrossRefPubMedPubMedCentralGoogle Scholar
- McGlashan TH, Hoffman RE (2000) Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch Gen Psychiatry 57:637–648CrossRefPubMedGoogle Scholar
- Megías M, Emri Z, Freund TF, Gulyás AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102:527–540CrossRefPubMedGoogle Scholar
- Micheva KD, Beaulieu C (1996) Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry. J Comp Neurol 373:340–354CrossRefPubMedGoogle Scholar
- Müller C, Beck H, Coulter D, Remy S (2012) Inhibitory control of linear and supralinear dendritic excitation in CA1 pyramidal neurons. Neuron 75:851–864CrossRefPubMedGoogle Scholar
- Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San DiegoGoogle Scholar
- Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14:285–293CrossRefPubMedPubMedCentralGoogle Scholar
- Puskarjov M, Fiumelli H, Briner A, Bodogan T, Demeter K, Lacoh CM, Mavrovic M, Blaesse P, Kaila K, Vutskits L (2017) K–Cl cotransporter 2-mediated Cl− extrusion determines developmental stage-dependent impact of propofol anesthesia on dendritic spines. Anesthesiology 126:855–867CrossRefPubMedGoogle Scholar
- Rieubland S, Roth A, Häusser M (2012) Dendritic ventriloquism: inhibitory synapses throw their voices. Neuron 75:190–193CrossRefPubMedGoogle Scholar
- Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240:237–246CrossRefPubMedGoogle Scholar
- Shepherd G, Grillner S (2010) Handbook of brain microcircuits. Oxford University Press, New YorkCrossRefGoogle Scholar
- Sholl DA (1953) Dendritic organization in the neurons of the visual andmotor cortices of the cat. J Anat 87:387–406PubMedPubMedCentralGoogle Scholar
- Specht CG, Izeddin I, Rodriguez PC, El Beheiry M, Rostaing P, Darzacq X, Dahan M, Triller A (2013) Quantitative nanoscopy of inhibitory synapses: counting gephyrin molecules and receptor binding sites. Neuron 79:308–321CrossRefPubMedGoogle Scholar
- Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221CrossRefPubMedGoogle Scholar
- Studer R, von Boehmer L, Haenggi T, Schweizer C, Benke D, Rudolph U, Fritschy JM (2006) Alteration of GABAergic synapses and gephyrin clusters in the thalamic reticular nucleus of GABAA receptor alpha3 subunit-null mice. Eur J Neurosci 24:1307–1315CrossRefPubMedGoogle Scholar
- Takesian AE, Hensch TK (2013) Balancing plasticity/stability across brain development. Prog Brain Res 207:3–34CrossRefPubMedGoogle Scholar
- Tsujimoto S (2008) The prefrontal cortex: functional neural development during early childhood. Neuroscientist 14:345–358CrossRefPubMedGoogle Scholar
- Tyagarajan SK, Fritschy JM (2014) Gephyrin: a master regulator of neuronal function. Nat Rev Neurosci 15:141–156CrossRefPubMedGoogle Scholar
- Tyagarajan SK, Ghosh H, Harvey K, Fritschy JM (2011a) Collybistin splice variants differentially interact with gephyrin and Cdc42 to regulate gephyrin clustering at GABAergic synapses. J Cell Sci 124:2786–2796CrossRefPubMedPubMedCentralGoogle Scholar
- Tyagarajan SK, Ghosh H, Yevenes GE, Nikonenko I, Ebeling C, Schwerdel C, Sidler C, Zeilhofer HU, Gerrits B, Muller D, Fritschy JM (2011b) Regulation of GABAergic synapse formation and plasticity by GSK3beta-dependent phosphorylation of gephyrin. Proc Natl Acad Sci USA 108:379–384CrossRefPubMedGoogle Scholar
- Uylings HB, Groenewegen HJ, Kolb B (2003) Do rats have a prefrontal cortex? Behav Brain Res 146:3–17CrossRefPubMedGoogle Scholar
- van Versendaal D, Rajendran R, Saiepour MH, Klooster J, Smit-Rigter L, Sommeijer JP, De Zeeuw CI, Hofer SB, Heimel JA, Levelt CN (2012) Elimination of inhibitory synapses is a major component of adult ocular dominance plasticity. Neuron 74:374–383CrossRefPubMedGoogle Scholar
- Villa KL, Berry KP, Subramanian J, Cha JW, Oh WC, Kwon HB, Kubota Y, So PT, Nedivi E (2016) Inhibitory synapses are repeatedly assembled and removed at persistent sites. Vivo Neuron 89:756–769CrossRefPubMedGoogle Scholar
- Yang JM, Zhang J, Yu YQ, Duan S, Li XM (2014) Postnatal development of 2 microcircuits involving fast-spiking interneurons in the mouse prefrontal cortex. Cereb Cortex 24:98–109CrossRefPubMedGoogle Scholar