Brain Structure and Function

, Volume 223, Issue 4, pp 1747–1778 | Cite as

Efferents of anterior cingulate areas 24a and 24b and midcingulate areas 24aʹ and 24bʹ in the mouse

  • Clémentine Fillinger
  • Ipek Yalcin
  • Michel Barrot
  • Pierre Veinante
Original Article

Abstract

The anterior cingulate cortex (ACC), constituted by areas 25, 32, 24a and 24b in rodents, plays a major role in cognition, emotion and pain. In a previous study, we described the afferents of areas 24a and 24b and those of areas 24aʹ and 24bʹ of midcingulate cortex (MCC) in mice and highlighted some density differences among cingulate inputs (Fillinger et al., Brain Struct Funct 222:1509–1532, 2017). To complete this connectome, we analyzed here the efferents of ACC and MCC by injecting anterograde tracers in areas 24a/24b of ACC and 24aʹ/24bʹ of MCC. Our results reveal a common projections pattern from both ACC and MCC, targeting the cortical mantle (intracingulate, retrosplenial and parietal associative cortex), the non-cortical basal forebrain, (dorsal striatum, septum, claustrum, basolateral amygdala), the hypothalamus (anterior, lateral, posterior), the thalamus (anterior, laterodorsal, ventral, mediodorsal, midline and intralaminar nuclei), the brainstem (periaqueductal gray, superior colliculus, pontomesencephalic reticular formation, pontine nuclei, tegmental nuclei) and the spinal cord. In addition to an overall denser ACC projection pattern compared to MCC, our analysis revealed clear differences in the density and topography of efferents between ACC and MCC, as well as between dorsal (24b/24bʹ) and ventral (24a/24aʹ) areas, suggesting a common functionality of these two cingulate regions supplemented by specific roles of each area. These results provide a detailed analysis of the efferents of the mouse areas 24a/24b and 24aʹ/24bʹ and achieve the description of the cingulate connectome, which bring the anatomical basis necessary to address the roles of ACC and MCC in mice.

Keywords

Rodent’s cingulate cortex Prefrontal cortex Tract-tracing Connectome 

Abbreviations

3

3rd ventricle

4

4th ventricle

7n

Facial nerve

aca

Anterior commissure, anterior part

AcbC

Accumbens N, core region

AcbSh

Accumbens N, shell region

ACC

Anterior cingulate cortex

AD

Anterodorsal thalamic N

AHC

Anterior hypothalamic area, central part

AHP

Anterior hypothalamic area, posterior part

AI

Agranular insular cortex

AM

Anteromedial thalamic N

AOM

Anterior olfactory N, medial part

AOP

Anterior olfactory N, posterior part

APT

Anterior pretectal N

aq

Aqueduct

Au

Primary auditory cortex

AV

Anteroventral thalamic N

Bar

Barrington’s N

BLA

Basolateral amygdaloid N, anterior part

CA1

Field CA1 of the hippocampus

cc

Corpus callosum

cg

Cingulum

CG

Central gray

Cl

Claustrum

CL

Centrolateral thalamic N

CM

Central medial thalamic N

cp

Cerebral peduncle

CPu

Caudate putamen

dhc

Dorsal hippocampal commissure

DLG

Dorsal lateral geniculate N

DpG

Deep gray layer of the superior colliculus

DpWh

Deep white layer of the superior colliculus

DR

Dorsal raphe nucleus

DS

Dorsal subiculum

DTT

Dorsal tenia tecta

ec

External capsule

Ect

Ectorhinal cortex

eml

External medullary lamina

Ent

Enthorinal cortex

f

Fornix

fmi

Forceps minor of the corpus callosum

fmj

Forceps major of the corpus callosum

fr

Fasciculus retroflexus

GiA

Gigantocellular reticular N, alpha part

GiV

Gigantocellular reticular N, ventral part

GP

Globus pallidus

HDB

Diagonal band of Broca, horizontal limb

IAD

Interanterodorsal thalamic N

IAM

Interanteromedial thalamic N

ic

Internal capsule

IMD

Intermediodorsal thalamic N

InG

Intermediate gray layer of the superior colliculus

InWh

Intermediate white layer of the superior colliculus

IP

Interpedoncular N

LAcbSh

Lateral accumbens, shell region

LC

Locus coeruleus

LD

Laterodorsal thalamic N

LDDM

LD, dorsomedial part

LDTg

Laterodorsal tegmental N

LDVL

LD, ventrolateral part

LH

Lateral hypothalamic area

LHb

Lateral habenula

LO

Lateral orbital cortex

LP

Lateral posterior thalamic N

LPLR

Lateral posterior thalamic N, laterorostral part

LPMR

Lateral posterior thalamic N, mediorostral part

LPO

Lateral preoptic area

LSI

Lateral septal N, intermediate part

LV

Lateral ventricle

M2

Secondary motor cortex

MB

Mammillary bodies

MCC

Midcingulate cortex

MD

Mediodorsal thalamic N

MDC

Mediodorsal thalamic N, central part

MDL

Mediodorsal thalamic N, lateral part

MDM

Mediodorsal thalamic N, medial part

me5

Mesencephalic trigeminal tract

MHb

Medial habenular N

MnR

Median raphe N

MO

Medial orbital cortex

MPT

Medial pretectal N

mRt

Mesencephalic reticular formation

MS

Medial septal N

mt

Mamillotegmental tract

N

Nucleus

Op

Optic nerve layer of the superior colliculus

opt

Optic tract

PaF

Parafascicular thalamic N

PAG

Periaqueductal gray

PAGdl

Periaqueductal gray, dorsolateral part

PAGdm

Periaqueductal gray, dorsomedial part

PAGl

Periaqueductal gray, lateral part

PAGvl

Periaqueductal gray, ventrolateral part

PAGr

Periaqueductal gray, rostral part

PC

Paracentral thalamic N

PH

Posterior hypothalamic N

pm

Principal mammillary tract

PMnR

Paramedian raphe N

Pn

Pontine N

PnC

Pontine reticular N, caudal part

PnO

Pontine reticular N, oral part

Po

Posterior thalamic N group

Post

Postsubiculum

PrCnF

Precuneiform area

PrG

Pregeniculate N of the prethalamus

PR

Prerubral field

PRh

Perirhinal cortex

PT

Paratenial thalamic N

PtA

Parietal associative cortex

PTg

Pedunculotegmental N

PV

Paraventricular thalamic N

PVH

Hypothalamic paraventricular N

py

Pyramidal tract

Re

Reuniens thalamic N

Rh

Rhomboid thalamic N

RIP

Raphe interpositus N

RM

Retromamillary N

RMg

Raphe magnus N

RPa

Raphe pallidus N

RSC

Retrosplenial cortex

Rt

Reticular N

RVM

Ventromedial medulla region

S1

Primary somatosensory cortex

SC

Superior colliculus

scp

Superior cerebellar peduncle

sm

Stria medullaris

SNc

Substantia nigra, pars compacta

SNr

Substantia nigra, pars reticulata

st

Stria terminalis

STh

Subthalamic N

Sub

Submedius N

SuG

Superficial gray layer of the superior colliculus

TeA

Temporal association cortex

ts

Tectospinal tract

Tu

Olfactory tubercle

V1

Primary visual cortex

V2L

Secondary visual cortex, lateral area

V2M

Secondary visual cortex, medial area

V2ML

Secondary visual cortex, mediolateral area

V2MM

Secondary visual cortex, mediomedial area

VA

Ventral anterior thalamic N

VDB

Diagonal band of Broca, vertical limb

VL

Ventrolateral thalamic N

VM

Ventromedial thalamic N

VO

Ventral orbital cortex

VP

Ventral pallidum

VPL

Ventral posterolateral thalamic N

VPM

Ventral posteromedial thalamic N

VTA

Ventral tegmental area

VTg

Ventral tegmental N

ZI

Zona incerta

ZID

ZI, dorsal part

ZIR

ZI, rostral part

ZIV

ZI, ventral part

Notes

Acknowledgements

We thank the Chronobiotron (UMS3415) for animal housing and animal care. This work was supported by the Centre National de la Recherche Scientifique (contract UPR3212), the University of Strasbourg and by a NARSAD Young Investigator Grant from the Brain and Behavior Research Foundation.

Compliance with ethical standards

Ethical standards

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

No human subject were used in this study.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aggleton JP, Nelson AJ (2015) Why do lesions in the rodent anterior thalamic nuclei cause such severe spatial deficits? Neurosci Biobehav Rev 54:131–144PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aggleton JP, Neave N, Nagle S, Sahgal A (1995) A comparison of the effects of medial prefrontal, cingulate cortex, and cingulum bundle lesions on tests of spatial memory: evidence of a double dissociation between frontal and cingulum bundle contributions. J Neurosci 15:7270–7281PubMedCrossRefGoogle Scholar
  3. Aggleton JP, Hunt PR, Nagle S, Neave N (1996) The effects of selective lesions within the anterior thalamic nuclei on spatial memory in the rat. Behav Brain Res 81:189–198PubMedCrossRefGoogle Scholar
  4. Aggleton JP, O’Mara SM, Vann SD, Wright NF, Tsanov M, Erichsen JT (2010) Hippocampal-anterior thalamic pathways for memory: uncovering a network of direct and indirect actions. Eur J Neurosci 31:2292–2307PubMedPubMedCentralCrossRefGoogle Scholar
  5. Amano T, Unal CT, Pare D (2010) Synaptic correlates of fear extinction in the amygdala. Nat Neurosci 13:489–494PubMedPubMedCentralCrossRefGoogle Scholar
  6. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9:463–484PubMedCrossRefGoogle Scholar
  7. Atlan G, Terem A, Peretz-Rivlin N, Groysman M, Citri A (2017) Mapping synaptic cortico-claustral connectivity in the mouse. J Comp Neurol 525:1381–1402PubMedCrossRefGoogle Scholar
  8. Bandler R, Keay KA (1996) Columnar organization in the midbrain periaqueductal gray and the integration of emotional expression. Prog Brain Res 107:285–300PubMedCrossRefGoogle Scholar
  9. Bandler R, Shipley MT (1994) Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci 17:379–389PubMedCrossRefGoogle Scholar
  10. Bandler R, Price JL, Keay KA (2000) Brain mediation of active and passive emotional coping. Prog Brain Res 122:333–349PubMedCrossRefGoogle Scholar
  11. Barthas F, Kwan AC (2017) Secondary motor cortex: where ‘sensory’ meets ‘motor’ in the rodent frontal cortex. Trends Neurosci 40:181–193PubMedCrossRefGoogle Scholar
  12. Barthas F, Sellmeijer J, Hugel S, Waltisperger E, Barrot M, Yalcin I (2015) The anterior cingulate cortex is a critical hub for pain-induced depression. Biol Psychiatry 77:236–245PubMedCrossRefGoogle Scholar
  13. Behzadi G, Kalen P, Parvopassu F, Wiklund L (1990) Afferents to the median raphe nucleus of the rat: retrograde cholera toxin and wheat germ conjugated horseradish peroxidase tracing, and selective d-[3H]aspartate labelling of possible excitatory amino acid inputs. Neuroscience 37:77–100PubMedCrossRefGoogle Scholar
  14. Bissonette GB, Powell EM, Roesch MR (2013) Neural structures underlying set-shifting: roles of medial prefrontal cortex and anterior cingulate cortex. Behav Brain Res 250:91–101PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bota M, Sporns O, Swanson LW (2015) Architecture of the cerebral cortical association connectome underlying cognition. Proc Natl Acad Sci USA 112:E2093–E2101PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brecht M, Krauss A, Muhammad S, Sinai-Esfahani L, Bellanca S, Margrie TW (2004) Organization of rat vibrissa motor cortex and adjacent areas according to cytoarchitectonics, microstimulation, and intracellular stimulation of identified cells. J Comp Neurol 479:360–373PubMedCrossRefGoogle Scholar
  17. Brog JS, Salyapongse A, Deutch AY, Zahm DS (1993) The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338:255–278PubMedCrossRefGoogle Scholar
  18. Bush G (2009) Dorsal anterior midcingulate cortex: roles in normal cognition and disruption in attention-deficit/hyperactivity disorder. In: Vogt BA (ed) Neurobiology of cingulate cortex and disease. Oxford University Press, New York, pp 245–274Google Scholar
  19. Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4:215–222PubMedCrossRefGoogle Scholar
  20. Bush G, Vogt BA, Holmes J, Dale AM, Greve D, Jenike MA, Rosen BR (2002) Dorsal anterior cingulate cortex: a role in reward-based decision making. Proc Natl Acad Sci USA 99:523–528PubMedCrossRefGoogle Scholar
  21. Canteras NS, Shammah-Lagnado SJ, Silva BA, Ricardo JA (1990) Afferent connections of the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat. Brain Res 513:43–59PubMedCrossRefGoogle Scholar
  22. Carlson JM, Beacher F, Reinke KS, Habib R, Harmon-Jones E, Mujica-Parodi LR, Hajcak G (2012) Nonconscious attention bias to threat is correlated with anterior cingulate cortex gray matter volume: a voxel-based morphometry result and replication. Neuroimage 59:1713–1718PubMedCrossRefGoogle Scholar
  23. Carmichael ST, Price JL (1995) Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363:615–641PubMedCrossRefGoogle Scholar
  24. Carmichael ST, Price JL (1996) Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol 371:179–207PubMedCrossRefGoogle Scholar
  25. Carrive P (1993) The periaqueductal gray and defensive behavior: functional representation and neuronal organization. Behav Brain Res 58:27–47PubMedCrossRefGoogle Scholar
  26. Cassell MD, Wright DJ (1986) Topography of projections from the medial prefrontal cortex to the amygdala in the rat. Brain Res Bull 17:321–333PubMedCrossRefGoogle Scholar
  27. Chen S, Su HS (1990) Afferent connections of the thalamic paraventricular and parataenial nuclei in the rat—a retrograde tracing study with iontophoretic application of Fluoro-Gold. Brain Res 522:1–6PubMedCrossRefGoogle Scholar
  28. Cholvin T et al (2013) The ventral midline thalamus contributes to strategy shifting in a memory task requiring both prefrontal cortical and hippocampal functions. J Neurosci 33:8772–8783PubMedCrossRefGoogle Scholar
  29. Chudasama Y, Baunez C, Robbins TW (2003) Functional disconnection of the medial prefrontal cortex and subthalamic nucleus in attentional performance: evidence for corticosubthalamic interaction. J Neurosci 23:5477–5485PubMedGoogle Scholar
  30. Comoli E, Das Neves Favaro P, Vautrelle N, Leriche M, Overton PG, Redgrave P (2012) Segregated anatomical input to sub-regions of the rodent superior colliculus associated with approach and defense. Front Neuroanat 6:9PubMedPubMedCentralCrossRefGoogle Scholar
  31. Conde F, Audinat E, Maire-Lepoivre E, Crepel F (1990) Afferent connections of the medial frontal cortex of the rat. A study using retrograde transport of fluorescent dyes. I. Thalamic afferents. Brain Res Bull 24:341–354PubMedCrossRefGoogle Scholar
  32. Conte WL, Kamishina H, Corwin JV, Reep RL (2008) Topography in the projections of lateral posterior thalamus with cingulate and medial agranular cortex in relation to circuitry for directed attention and neglect. Brain Res 1240:87–95PubMedPubMedCentralCrossRefGoogle Scholar
  33. Cooper BG, Manka TF, Mizumori SJ (2001) Finding your way in the dark: the retrosplenial cortex contributes to spatial memory and navigation without visual cues. Behav Neurosci 115:1012–1028PubMedCrossRefGoogle Scholar
  34. Corcoran KA, Frick BJ, Radulovic J, Kay LM (2016) Analysis of coherent activity between retrosplenial cortex, hippocampus, thalamus, and anterior cingulate cortex during retrieval of recent and remote context fear memory. Neurobiol Learn Mem 127:93–101PubMedCrossRefGoogle Scholar
  35. Cornwall J, Phillipson OT (1988) Afferent projections to the dorsal thalamus of the rat as shown by retrograde lectin transport—I. The mediodorsal nucleus. Neuroscience 24:1035–1049PubMedCrossRefGoogle Scholar
  36. Cornwall J, Cooper JD, Phillipson OT (1990) Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat. Brain Res Bull 25:271–284PubMedCrossRefGoogle Scholar
  37. Courtin J, Bienvenu TC, Einarsson EO, Herry C (2013) Medial prefrontal cortex neuronal circuits in fear behavior. Neuroscience 240:219–242PubMedCrossRefGoogle Scholar
  38. Cowan WM, Powell TP (1956) A note on terminal degeneration in the hypothalamus. J Anat 90:188–192PubMedPubMedCentralGoogle Scholar
  39. Dean P, Redgrave P, Sahibzada N, Tsuji K (1986) Head and body movements produced by electrical stimulation of superior colliculus in rats: effects of interruption of crossed tectoreticulospinal pathway. Neuroscience 19:367–380PubMedCrossRefGoogle Scholar
  40. Delatour B, Witter MP (2002) Projections from the parahippocampal region to the prefrontal cortex in the rat: evidence of multiple pathways. Eur J Neurosci 15:1400–1407PubMedCrossRefGoogle Scholar
  41. Deng Y et al (2015) Differential organization of cortical inputs to striatal projection neurons of the matrix compartment in rats. Front Syst Neurosci 9:51PubMedPubMedCentralGoogle Scholar
  42. Domesick VB (1969) Projections from the cingulate cortex in the rat. Brain Res 12:296–320PubMedCrossRefGoogle Scholar
  43. Einarsson EO, Pors J, Nader K (2015) Systems reconsolidation reveals a selective role for the anterior cingulate cortex in generalized contextual fear memory expression. Neuropsychopharmacology 40:480–487PubMedCrossRefGoogle Scholar
  44. Eleore L, Lopez-Ramos JC, Guerra-Narbona R, Delgado-Garcia JM (2011) Role of reuniens nucleus projections to the medial prefrontal cortex and to the hippocampal pyramidal CA1 area in associative learning. PLoS One 6:e23538PubMedPubMedCentralCrossRefGoogle Scholar
  45. Fillinger C, Yalcin I, Barrot M, Veinante P (2017) Afferents to anterior cingulate areas 24a and 24b and midcingulate areas 24aʹ and 24bʹ in the mouse. Brain Struct Funct 222:1509–1532PubMedCrossRefGoogle Scholar
  46. Fisk GD, Wyss JM (1999) Associational projections of the anterior midline cortex in the rat: intracingulate and retrosplenial connections. Brain Res 825:1–13PubMedCrossRefGoogle Scholar
  47. Floyd NS, Price JL, Ferry AT, Keay KA, Bandler R (2000) Orbitomedial prefrontal cortical projections to distinct longitudinal columns of the periaqueductal gray in the rat. J Comp Neurol 422:556–578PubMedCrossRefGoogle Scholar
  48. Floyd NS, Price JL, Ferry AT, Keay KA, Bandler R (2001) Orbitomedial prefrontal cortical projections to hypothalamus in the rat. J Comp Neurol 432:307–328PubMedCrossRefGoogle Scholar
  49. Friedman A et al (2015) A corticostriatal path targeting striosomes controls decision-making under conflict. Cell 161:1320–1333PubMedPubMedCentralCrossRefGoogle Scholar
  50. Furuyashiki T, Gallagher M (2007) Neural encoding in the orbitofrontal cortex related to goal-directed behavior. Ann N Y Acad Sci 1121:193–215PubMedCrossRefGoogle Scholar
  51. Gabbott PL, Warner TA, Jays PR, Salway P, Busby SJ (2005) Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol 492:145–177PubMedCrossRefGoogle Scholar
  52. Gabbott P, Warner TA, Brown J, Salway P, Gabbott T, Busby S (2012) Amygdala afferents monosynaptically innervate corticospinal neurons in rat medial prefrontal cortex. J Comp Neurol 520:2440–2458PubMedCrossRefGoogle Scholar
  53. Geisler S, Zahm DS (2005) Afferents of the ventral tegmental area in the rat-anatomical substratum for integrative functions. J Comp Neurol 490:270–294PubMedCrossRefGoogle Scholar
  54. Goll Y, Atlan G, Citri A (2015) Attention: the claustrum. Trends Neurosci 38:486–495PubMedCrossRefGoogle Scholar
  55. Goto M, Swanson LW, Canteras NS (2001) Connections of the nucleus incertus. J Comp Neurol 438:86–122PubMedCrossRefGoogle Scholar
  56. Greatrex RM, Phillipson OT (1982) Demonstration of synaptic input from prefrontal cortex to the habenula i the rat. Brain Res 238:192–197PubMedCrossRefGoogle Scholar
  57. Groenewegen HJ, Wouterlood FG, Uylings HBM (2017) Organization of prefrontal-striatal connections. In: Handbook of basal ganglia structure and function, 2 edn. Academic Press, San Diego, pp 423–436CrossRefGoogle Scholar
  58. Hallock HL, Wang A, Shaw CL, Griffin AL (2013) Transient inactivation of the thalamic nucleus reuniens and rhomboid nucleus produces deficits of a working-memory dependent tactile-visual conditional discrimination task. Behav Neurosci 127:860–866PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hardy SG (1986) Projections to the midbrain from the medial versus lateral prefrontal cortices of the rat. Neurosci Lett 63:159–164PubMedCrossRefGoogle Scholar
  60. Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27:555–579PubMedCrossRefGoogle Scholar
  61. Heilbronner SR, Rodriguez-Romaguera J, Quirk GJ, Groenewegen HJ, Haber SN (2016) Circuit-based corticostriatal homologies between rat and primate. Biol Psychiatry 80:509–521PubMedPubMedCentralCrossRefGoogle Scholar
  62. Herkenham M (1978) The connections of the nucleus reuniens thalami: evidence for a direct thalamo-hippocampal pathway in the rat. J Comp Neurol 177:589–610PubMedCrossRefGoogle Scholar
  63. Hindley EL, Nelson AJ, Aggleton JP, Vann SD (2014) The rat retrosplenial cortex is required when visual cues are used flexibly to determine location. Behav Brain Res 263:98–107PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hoover WB, Vertes RP (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212:149–179PubMedCrossRefGoogle Scholar
  65. Hoover WB, Vertes RP (2011) Projections of the medial orbital and ventral orbital cortex in the rat. J Comp Neurol 519:3766–3801PubMedCrossRefGoogle Scholar
  66. Hoover WB, Vertes RP (2012) Collateral projections from nucleus reuniens of thalamus to hippocampus and medial prefrontal cortex in the rat: a single and double retrograde fluorescent labeling study. Brain Struct Funct 217:191–209PubMedCrossRefGoogle Scholar
  67. Hurley KM, Herbert H, Moga MM, Saper CB (1991) Efferent projections of the infralimbic cortex of the rat. J Comp Neurol 308:249–276PubMedCrossRefGoogle Scholar
  68. Ito HT, Zhang SJ, Witter MP, Moser EI, Moser MB (2015) A prefrontal-thalamo-hippocampal circuit for goal-directed spatial navigation. Nature 522:50–55PubMedCrossRefGoogle Scholar
  69. Jankowski MP, Sesack SR (2004) Prefrontal cortical projections to the rat dorsal raphe nucleus: ultrastructural features and associations with serotonin and gamma-aminobutyric acid neurons. J Comp Neurol 468:518–529PubMedCrossRefGoogle Scholar
  70. Johansen JP, Fields HL, Manning BH (2001) The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proc Natl Acad Sci USA 98:8077–8082PubMedPubMedCentralCrossRefGoogle Scholar
  71. Jones BF, Groenewegen HJ, Witter MP (2005) Intrinsic connections of the cingulate cortex in the rat suggest the existence of multiple functionally segregated networks. Neuroscience 133:193–207PubMedCrossRefGoogle Scholar
  72. Kamishina H, Conte WL, Patel SS, Tai RJ, Corwin JV, Reep RL (2009) Cortical connections of the rat lateral posterior thalamic nucleus. Brain Res 1264:39–56PubMedCrossRefGoogle Scholar
  73. Kang SJ et al (2015) Bidirectional modulation of hyperalgesia via the specific control of excitatory and inhibitory neuronal activity in the ACC. Mol Brain 8:81PubMedPubMedCentralCrossRefGoogle Scholar
  74. Keay KA, Bandler R (2015) Periaqueductal gray. In: Paxinos G (ed) The rat nervous system, 4 edn. Elsevier, San Diego, pp 207–216CrossRefGoogle Scholar
  75. Kim U, Lee T (2012) Topography of descending projections from anterior insular and medial prefrontal regions to the lateral habenula of the epithalamus in the rat. Eur J Neurosci 35:1253–1269PubMedCrossRefGoogle Scholar
  76. Kim J, Wasserman EA, Castro L, Freeman JH (2016) Anterior cingulate cortex inactivation impairs rodent visual selective attention and prospective memory. Behav Neurosci 130:75–90PubMedCrossRefGoogle Scholar
  77. Kita T, Osten P, Kita H (2014) Rat subthalamic nucleus and zona incerta share extensively overlapped representations of cortical functional territories. J Comp Neurol 522:4043–4056PubMedPubMedCentralCrossRefGoogle Scholar
  78. Knapska E et al (2012) Functional anatomy of neural circuits regulating fear and extinction. Proc Natl Acad Sci USA 109:17093–17098PubMedPubMedCentralCrossRefGoogle Scholar
  79. Koike H, Demars MP, Short JA, Nabel EM, Akbarian S, Baxter MG, Morishita H (2016) Chemogenetic inactivation of dorsal anterior cingulate cortex neurons disrupts attentional behavior in mouse. Neuropsychopharmacology 41:1014–1023PubMedCrossRefGoogle Scholar
  80. Kolb B, Pellis S, Robinson TE (2004) Plasticity and functions of the orbital frontal cortex. Brain Cogn 55:104–115PubMedCrossRefGoogle Scholar
  81. Kolmac CI, Power BD, Mitrofanis J (1998) Patterns of connections between zona incerta and brainstem in rats. J Comp Neurol 396:544–555PubMedCrossRefGoogle Scholar
  82. Kolomiets BP, Deniau JM, Mailly P, Menetrey A, Glowinski J, Thierry AM (2001) Segregation and convergence of information flow through the cortico-subthalamic pathways. J Neurosci 21:5764–5772PubMedGoogle Scholar
  83. Krettek JE, Price JL (1977) The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171:157–191PubMedCrossRefGoogle Scholar
  84. Kuljis RO, Fernandez V (1982) On the organization of the retino-tecto-thalamo-telencephalic pathways in a Chilean rodent; the Octodon degus. Brain Res 234:189–204PubMedCrossRefGoogle Scholar
  85. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184PubMedCrossRefGoogle Scholar
  86. Leonard CM (1969) The prefrontal cortex of the rat. I. Cortical projection of the mediodorsal nucleus. II. Efferent connections. Brain Res 12:321–343PubMedCrossRefGoogle Scholar
  87. Li M, Long C, Yang L (2015) Hippocampal-prefrontal circuit and disrupted functional connectivity in psychiatric and neurodegenerative disorders. Biomed Res Int 2015:810548Google Scholar
  88. Likhtik E, Paz R (2015) Amygdala-prefrontal interactions in (mal)adaptive learning. Trends Neurosci 38:158–166PubMedPubMedCentralCrossRefGoogle Scholar
  89. Lindner K, Neubert J, Pfannmoller J, Lotze M, Hamm AO, Wendt J (2015) Fear-potentiated startle processing in humans: parallel fMRI and orbicularis EMG assessment during cue conditioning and extinction. Int J Psychophysiol 98:535–545PubMedCrossRefGoogle Scholar
  90. Livneh U, Paz R (2012) Amygdala-prefrontal synchronization underlies resistance to extinction of aversive memories. Neuron 75:133–142PubMedCrossRefGoogle Scholar
  91. Mailly P, Aliane V, Groenewegen HJ, Haber SN, Deniau JM (2013) The rat prefrontostriatal system analyzed in 3D: evidence for multiple interacting functional units. J Neurosci 33:5718–5727PubMedCrossRefGoogle Scholar
  92. Marchand JE, Hagino N (1983) Afferents to the periaqueductal gray in the rat. A horseradish peroxidase study. Neuroscience 9:95–106PubMedCrossRefGoogle Scholar
  93. Mathiasen ML, Dillingham CM, Kinnavane L, Powell AL, Aggleton JP (2017) Asymmetric cross-hemispheric connections link the rat anterior thalamic nuclei with the cortex and hippocampal formation. Neuroscience 349:128–143PubMedPubMedCentralCrossRefGoogle Scholar
  94. Mathis V, Barbelivien A, Majchrzak M, Mathis C, Cassel JC, Lecourtier L (2017) The lateral habenula as a relay of cortical information to process working memory. Cereb Cortex 27:5485–5495PubMedGoogle Scholar
  95. Mathur BN (2014) The claustrum in review. Front Syst Neurosci 8:48PubMedPubMedCentralCrossRefGoogle Scholar
  96. Matyas F, Lee J, Shin HS, Acsady L (2014) The fear circuit of the mouse forebrain: connections between the mediodorsal thalamus, frontal cortices and basolateral amygdala. Eur J Neurosci 39:1810–1823PubMedCrossRefGoogle Scholar
  97. May PJ (2006) The mammalian superior colliculus: laminar structure and connections. Prog Brain Res 151:321–378PubMedCrossRefGoogle Scholar
  98. McKenna JT, Vertes RP (2004) Afferent projections to nucleus reuniens of the thalamus. J Comp Neurol 480:115–142PubMedCrossRefGoogle Scholar
  99. Mitrofanis J, Mikuletic L (1999) Organisation of the cortical projection to the zona incerta of the thalamus. J Comp Neurol 412:173–185PubMedCrossRefGoogle Scholar
  100. Newman LA, Creer DJ, McGaughy JA (2015) Cognitive control and the anterior cingulate cortex: how conflicting stimuli affect attentional control in the rat. J Physiol Paris 109:95–103PubMedCrossRefGoogle Scholar
  101. Nicolelis MA, Chapin JK, Lin RC (1992) Somatotopic maps within the zona incerta relay parallel GABAergic somatosensory pathways to the neocortex, superior colliculus, and brainstem. Brain Res 577:134–141PubMedCrossRefGoogle Scholar
  102. Oh SW et al (2014) A mesoscale connectome of the mouse brain. Nature 508:207–214PubMedPubMedCentralCrossRefGoogle Scholar
  103. Olucha-Bordonau FE, Fortes-Marco L, Otero-Garcia M, Lanuza E, Martinez-Garcia F (2015) Amygdala:strcture and function. In: Paxinos G (ed) The rat nervous system, 4 edn. Academic, CA, San Diego, pp 441–490CrossRefGoogle Scholar
  104. Ongur D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10:206–219PubMedCrossRefGoogle Scholar
  105. Ongur D, An X, Price JL (1998) Prefrontal cortical projections to the hypothalamus in macaque monkeys. J Comp Neurol 401:480–505PubMedCrossRefGoogle Scholar
  106. Ottersen OP (1982) Connections of the amygdala of the rat. IV: corticoamygdaloid and intraamygdaloid connections as studied with axonal transport of horseradish peroxidase. J Comp Neurol 205:30–48PubMedCrossRefGoogle Scholar
  107. Pastoriza LN, Morrow TJ, Casey KL (1996) Medial frontal cortex lesions selectively attenuate the hot plate response: possible nocifensive apraxia in the rat. Pain 64:11–17PubMedCrossRefGoogle Scholar
  108. Paxinos G, Franklin KBJ (2012) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates, 4 edn. Academic Press, WalthamGoogle Scholar
  109. Paxinos G, Watson C (2014) Paxinos and Watson’s the rat brain in stereotaxic coordinates. Academic Press, WalthamGoogle Scholar
  110. Peyron C, Petit JM, Rampon C, Jouvet M, Luppi PH (1998) Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience 82:443–468PubMedCrossRefGoogle Scholar
  111. Price JL, Carmichael ST, Drevets WC (1996) Networks related to the orbital and medial prefrontal cortex; a substrate for emotional behavior? Prog Brain Res 107:523–536PubMedCrossRefGoogle Scholar
  112. Rajasethupathy P et al (2015) Projections from neocortex mediate top-down control of memory retrieval. Nature 526:653–659PubMedPubMedCentralCrossRefGoogle Scholar
  113. Ray JP, Russchen FT, Fuller TA, Price JL (1992) Sources of presumptive glutamatergic/aspartatergic afferents to the mediodorsal nucleus of the thalamus in the rat. J Comp Neurol 320:435–456PubMedCrossRefGoogle Scholar
  114. Reep RL, Goodwin GS, Corwin JV (1990) Topographic organization in the corticocortical connections of medial agranular cortex in rats. J Comp Neurol 294:262–280PubMedCrossRefGoogle Scholar
  115. Reppucci CJ, Petrovich GD (2016) Organization of connections between the amygdala, medial prefrontal cortex, and lateral hypothalamus: a single and double retrograde tracing study in rats. Brain Struct Funct 221:2937–2962PubMedCrossRefGoogle Scholar
  116. Reser DH et al (2014) Claustrum projections to prefrontal cortex in the capuchin monkey (Cebus apella). Front Syst Neurosci 8:123PubMedPubMedCentralCrossRefGoogle Scholar
  117. Risold PY, Thompson RH, Swanson LW (1997) The structural organization of connections between hypothalamus and cerebral cortex. Brain Res Brain Res Rev 24:197–254PubMedCrossRefGoogle Scholar
  118. Ryan PJ, Ma S, Olucha-Bordonau FE, Gundlach AL (2011) Nucleus incertus—an emerging modulatory role in arousal, stress and memory. Neurosci Biobehav Rev 35:1326–1341PubMedCrossRefGoogle Scholar
  119. Sahibzada N, Dean P, Redgrave P (1986) Movements resembling orientation or avoidance elicited by electrical stimulation of the superior colliculus in rats. J Neurosci 6:723–733PubMedCrossRefGoogle Scholar
  120. Savage MA, McQuade R, Thiele A (2017) Segregated fronto-cortical and midbrain connections in the mouse and their relation to approach and avoidance orienting behaviors. J Comp Neurol 525:1980–1999PubMedPubMedCentralCrossRefGoogle Scholar
  121. Schoenbaum G, Roesch MR, Stalnaker TA, Takahashi YK (2009) A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat Rev Neurosci 10:885–892PubMedPubMedCentralCrossRefGoogle Scholar
  122. Semba K, Fibiger HC (1992) Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro- and antero-grade transport and immunohistochemical study. J Comp Neurol 323:387–410PubMedCrossRefGoogle Scholar
  123. Senn V et al (2014) Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 81:428–437PubMedCrossRefGoogle Scholar
  124. Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290:213–242PubMedCrossRefGoogle Scholar
  125. Shackman AJ, Salomons TV, Slagter HA, Fox AS, Winter JJ, Davidson RJ (2011) The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat Rev Neurosci 12:154–167PubMedPubMedCentralCrossRefGoogle Scholar
  126. Shenhav A, Straccia MA, Cohen JD, Botvinick MM (2014) Anterior cingulate engagement in a foraging context reflects choice difficulty, not foraging value. Nat Neurosci 17:1249–1254PubMedPubMedCentralCrossRefGoogle Scholar
  127. Shibata H, Naito J (2005) Organization of anterior cingulate and frontal cortical projections to the anterior and laterodorsal thalamic nuclei in the rat. Brain Res 1059:93–103PubMedCrossRefGoogle Scholar
  128. Shibata H, Naito J (2008) Organization of anterior cingulate and frontal cortical projections to the retrosplenial cortex in the rat. J Comp Neurol 506:30–45PubMedCrossRefGoogle Scholar
  129. Sierra-Mercado D, Padilla-Coreano N, Quirk GJ (2011) Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology 36:529–538PubMedCrossRefGoogle Scholar
  130. Smith JB, Alloway KD (2014) Interhemispheric claustral circuits coordinate sensory and motor cortical areas that regulate exploratory behaviors. Front Syst Neurosci 8:93PubMedPubMedCentralGoogle Scholar
  131. Smythies J, Edelstein L, Ramachandran V (2012) Hypotheses relating to the function of the claustrum. Front Integr Neurosci 6:53PubMedPubMedCentralCrossRefGoogle Scholar
  132. Smythies J, Edelstein L, Ramachandran V (2014) Hypotheses relating to the function of the claustrum II: does the claustrum use frequency codes? Front Integr Neurosci 8:7PubMedPubMedCentralCrossRefGoogle Scholar
  133. Sotres-Bayon F, Sierra-Mercado D, Pardilla-Delgado E, Quirk GJ (2012) Gating of fear in prelimbic cortex by hippocampal and amygdala inputs. Neuron 76:804–812PubMedPubMedCentralCrossRefGoogle Scholar
  134. Takada M (1992) The lateroposterior thalamic nucleus and substantia nigra pars lateralis: origin of dual innervation over the visual system and basal ganglia. Neurosci Lett 139:153–156PubMedCrossRefGoogle Scholar
  135. Van Eden CG, Uylings HB (1985) Cytoarchitectonic development of the prefrontal cortex in the rat. J Comp Neurol 241:253–267PubMedCrossRefGoogle Scholar
  136. van Groen T, Wyss JM (1990) Connections of the retrosplenial granular a cortex in the rat. J Comp Neurol 300:593–606PubMedCrossRefGoogle Scholar
  137. van Groen T, Wyss JM (1992) Connections of the retrosplenial dysgranular cortex in the rat. J Comp Neurol 315:200–216PubMedCrossRefGoogle Scholar
  138. van Groen T, Kadish I, Michael Wyss J (2002a) Role of the anterodorsal and anteroventral nuclei of the thalamus in spatial memory in the rat. Behav Brain Res 132:19–28PubMedCrossRefGoogle Scholar
  139. van Groen T, Kadish I, Wyss JM (2002b) The role of the laterodorsal nucleus of the thalamus in spatial learning and memory in the rat. Behav Brain Res 136:329–337PubMedCrossRefGoogle Scholar
  140. Van der Werf YD, Witter MP, Groenewegen HJ (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Brain Res Rev 39:107–140PubMedCrossRefGoogle Scholar
  141. Vann SD, Kristina Wilton LA, Muir JL, Aggleton JP (2003) Testing the importance of the caudal retrosplenial cortex for spatial memory in rats. Behav Brain Res 140:107–118PubMedCrossRefGoogle Scholar
  142. Varela C, Kumar S, Yang JY, Wilson MA (2014) Anatomical substrates for direct interactions between hippocampus, medial prefrontal cortex, and the thalamic nucleus reuniens. Brain Struct Funct 219:911–929PubMedCrossRefGoogle Scholar
  143. Vargas LC, Marques TA, Schenberg LC (2000) Micturition and defensive behaviors are controlled by distinct neural networks within the dorsal periaqueductal gray and deep gray layer of the superior colliculus of the rat. Neurosci Lett 280:45–48PubMedCrossRefGoogle Scholar
  144. Vertes RP (2002) Analysis of projections from the medial prefrontal cortex to the thalamus in the rat, with emphasis on nucleus reuniens. J Comp Neurol 442:163–187PubMedCrossRefGoogle Scholar
  145. Vertes RP (2006) Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142:1–20PubMedCrossRefGoogle Scholar
  146. Vertes RP, Linley SB, Hoover WB (2015) Limbic circuitry of the midline thalamus. Neurosci Biobehav Rev 54:89–107PubMedPubMedCentralCrossRefGoogle Scholar
  147. Vogt BA (1993) Structural organization of cingulate cortex: areas, neurons, and somatodendritic transmitter receptors. In: Vogt BA, Gabriel M (eds) Neurobiology of cingulate cortex and limbic thalamus. Birkhaüser Boston Inc, Boston, pp 19–70CrossRefGoogle Scholar
  148. Vogt BA (2009) Regions and subregions of the cingulate cortex. In: Vogt BA (ed) Cingulate neurobiology and disease. Oxford University Press, New York, pp 3–26Google Scholar
  149. Vogt BA (2015) Cingulate cortex and pain architecture. In: Paxinos G (ed) The rat nervous system, 4 edn. Elsevier, San Diego, pp 575–596CrossRefGoogle Scholar
  150. Vogt BA (2016) Midcingulate cortex: Structure, connections, homologies, functions and diseases. J Chem Neuroanat 74:28–46PubMedCrossRefGoogle Scholar
  151. Vogt BA, Miller MW (1983) Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices. J Comp Neurol 216:192–210PubMedCrossRefGoogle Scholar
  152. Vogt BA, Paxinos G (2014) Cytoarchitecture of mouse and rat cingulate cortex with human homologies. Brain Struct Funct 219:185–192PubMedCrossRefGoogle Scholar
  153. Vogt BA, Vogt L (2003) Cytology of human dorsal midcingulate and supplementary motor cortices. J Chem Neuroanat 26:301–309PubMedCrossRefGoogle Scholar
  154. Vogt BA, Pandya DN, Rosene DL (1987) Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents. J Comp Neurol 262:256–270PubMedCrossRefGoogle Scholar
  155. Vogt BA, Nimchinsky EA, Vogt LJ, Hof PR (1995) Human cingulate cortex: surface features, flat maps, and cytoarchitecture. J Comp Neurol 359:490–506PubMedCrossRefGoogle Scholar
  156. Vogt BA, Vogt L, Farber NB (2004) Cingulate cortex and models of disease. In: Paxinos G (ed) The rat nervous system, 3 edn. Elsevier Academic Press, San Diego, pp 705–727CrossRefGoogle Scholar
  157. Vogt BA, Vogt L, Farber NB, Bush G (2005) Architecture and neurocytology of monkey cingulate gyrus. J Comp Neurol 485:218–239PubMedPubMedCentralCrossRefGoogle Scholar
  158. Voorn P, Vanderschuren LJ, Groenewegen HJ, Robbins TW, Pennartz CM (2004) Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci 27:468–474PubMedCrossRefGoogle Scholar
  159. Wang Q et al (2017) Organization of the connections between claustrum and cortex in the mouse. J Comp Neurol 525:1317–1346PubMedCrossRefGoogle Scholar
  160. White MG, Cody PA, Bubser M, Wang HD, Deutch AY, Mathur BN (2017) Cortical hierarchy governs rat claustrocortical circuit organization. J Comp Neurol 525:1347–1362PubMedCrossRefGoogle Scholar
  161. Wiesendanger R, Wiesendanger M (1982) The corticopontine system in the rat. I. Mapping of corticopontine neurons. J Comp Neurol 208:215–226PubMedCrossRefGoogle Scholar
  162. Wilber AA, Clark BJ, Demecha AJ, Mesina L, Vos JM, McNaughton BL (2014) Cortical connectivity maps reveal anatomically distinct areas in the parietal cortex of the rat. Front Neural Circuits 8:146PubMedGoogle Scholar
  163. Wright NF, Vann SD, Erichsen JT, O’Mara SM, Aggleton JP (2013) Segregation of parallel inputs to the anteromedial and anteroventral thalamic nuclei of the rat. J Comp Neurol 521:2966–2986PubMedPubMedCentralCrossRefGoogle Scholar
  164. Wyss JM, Sripanidkulchai K (1984) The topography of the mesencephalic and pontine projections from the cingulate cortex of the rat. Brain Res 293:1–15PubMedCrossRefGoogle Scholar
  165. Wyss JM, Van Groen T (1992) Connections between the retrosplenial cortex and the hippocampal formation in the rat: a review. Hippocampus 2:1–11PubMedCrossRefGoogle Scholar
  166. Yin HH, Knowlton BJ, Balleine BW (2004) Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci 19:181–189PubMedCrossRefGoogle Scholar
  167. Yin HH, Ostlund SB, Knowlton BJ, Balleine BW (2005) The role of the dorsomedial striatum in instrumental conditioning. Eur J Neurosci 22:513–523PubMedCrossRefGoogle Scholar
  168. Zeng D, Stuesse SL (1993) Topographic organization of efferent projections of medial frontal cortex. Brain Res Bull 32:195–200PubMedCrossRefGoogle Scholar
  169. Zhang S et al (2014) Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345:660–665PubMedPubMedCentralCrossRefGoogle Scholar
  170. Zhang S et al (2016) Organization of long-range inputs and outputs of frontal cortex for top-down control. Nat Neurosci 19:1733–1742PubMedPubMedCentralCrossRefGoogle Scholar
  171. Zilles K, Wree A (1995) Cortex: areal and laminar structure vol 2th edition. Academic, San DiegoGoogle Scholar
  172. Zingg B et al (2014) Neural networks of the mouse neocortex. Cell 156:1096–1111PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institut des Neurosciences Cellulaires et IntégrativesCentre National de la Recherche Scientifique, CNRS UPR3212StrasbourgFrance
  2. 2.Université de StrasbourgStrasbourgFrance

Personalised recommendations