Advertisement

Brain Structure and Function

, Volume 223, Issue 2, pp 1017–1024 | Cite as

Connexin 30 is expressed in a subtype of mouse brain pericytes

  • Noémie Mazaré
  • Alice Gilbert
  • Anne-Cécile Boulay
  • Nathalie Rouach
  • Martine Cohen-SalmonEmail author
Short Communication
  • 445 Downloads

Abstract

Pericytes are mural cells of blood microvessels which play a crucial role at the neurovascular interface of the central nervous system. They are involved in the regulation of blood–brain barrier integrity, angiogenesis, clearance of toxic metabolites, capillary hemodynamic responses, and neuroinflammation, and they demonstrate stem cell activity. Morphological and molecular studies to characterize brain pericytes recently pointed out some heterogeneity in pericyte population. Nevertheless, a clear definition of pericyte subtypes is still lacking. Here, we demonstrate that a fraction of brain pericytes express Connexin 30 (Cx30), a gap junction protein, which, in the brain parenchyma, was thought to be exclusively found in astrocytes. Cx30 could thus be a candidate protein in the composition of the gap junction channels already described between endothelial cells and pericytes. It could also form hemichannels or acts in a channel-independent manner to regulate pericyte morphology, as already observed in astrocytes. Altogether, our results suggest that Cx30 defines a novel brain pericyte subtype.

Keywords

Pericyte Brain vessel Neurovascular unit Connexin 30 Gap junction 

Notes

Acknowledgements

We are grateful to Annette Koulakoff for providing us with Cx30−/− mice. We thank Glenn Dallerac, Julien Moulard, Pascal Ezan, and Philippe Mailly for technical help.

Author contributions

NM, AG, ACB, and NR performed experiments; MCS designed the study and wrote the article.

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.

References

  1. Allsopp G, Gamble HJ (1979) An electron microscopic study of the pericytes of the developing capillaries in human fetal brain and muscle. J Anat 128(Pt 1):155–168PubMedPubMedCentralGoogle Scholar
  2. Anselmi F, Hernandez VH, Crispino G, Seydel A, Ortolano S, Roper SD, Kessaris N, Richardson W, Rickheit G, Filippov MA, Monyer H, Mammano F (2008) ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc Natl Acad Sci USA 105(48):18770–18775.  https://doi.org/10.1073/pnas.0800793105 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood–brain barrier. Nature 468(7323):557–561.  https://doi.org/10.1038/nature09522 CrossRefPubMedGoogle Scholar
  4. Attwell D, Mishra A, Hall CN, O’Farrell FM, Dalkara T (2016) What is a pericyte? J Cereb Blood Flow Metab 36(2):451–455.  https://doi.org/10.1177/0271678X15610340 CrossRefPubMedGoogle Scholar
  5. Bondjers C, He L, Takemoto M, Norlin J, Asker N, Hellstrom M, Lindahl P, Betsholtz C (2006) Microarray analysis of blood microvessels from PDGF-B and PDGF-Rbeta mutant mice identifies novel markers for brain pericytes. FASEB J 20(10):1703–1705.  https://doi.org/10.1096/fj.05-4944fje CrossRefPubMedGoogle Scholar
  6. Boulay AC, Saubamea B, Cisternino S, Mignon V, Mazeraud A, Jourdren L, Blugeon C, Cohen-Salmon M (2015a) The Sarcoglycan complex is expressed in the cerebrovascular system and is specifically regulated by astroglial Cx30 channels. Front Cell Neurosci 9:9.  https://doi.org/10.3389/fncel.2015.00009 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Boulay AC, Saubamea B, Decleves X, Cohen-Salmon M (2015b) Purification of mouse brain vessels. J Vis Exp.  https://doi.org/10.3791/53208 PubMedPubMedCentralGoogle Scholar
  8. Boulay AC, Saubaméa B, Adam N, Chasseigneaux S, Mazaré N, Gilbert A, Bahin M, Bastianelli L, Blugeon C, Perrin S, Pouch J, Ducos B, Le Crom S, Génovésio A, Chretien F, Declèves X, Laplanche JL, Cohen-Salmon M (2017) Translation in astrocyte distal processes sets molecular heterogeneity at the gliovascular interface. Cell Discov 3:17005.  https://doi.org/10.1038/celldisc.2017.5 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cuevas P, Gutierrez-Diaz JA, Reimers D, Dujovny M, Diaz FG, Ausman JI (1984) Pericyte endothelial gap junctions in human cerebral capillaries. Anat Embryol (Berl) 170(2):155–159CrossRefGoogle Scholar
  10. Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468(7323):562–566.  https://doi.org/10.1038/nature09513 CrossRefPubMedPubMedCentralGoogle Scholar
  11. De Bock M, Vandenbroucke RE, Decrock E, Culot M, Cecchelli R, Leybaert L (2014) A new angle on blood–CNS interfaces: a role for connexins? FEBS Lett 588(8):1259–1270.  https://doi.org/10.1016/j.febslet.2014.02.060 CrossRefPubMedGoogle Scholar
  12. Dore-Duffy P (2008) Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des 14(16):1581–1593CrossRefPubMedGoogle Scholar
  13. Evans WH (2015) Cell communication across gap junctions: a historical perspective and current developments. Biochem Soc Trans 43(3):450–459.  https://doi.org/10.1042/BST20150056 CrossRefPubMedGoogle Scholar
  14. Ezan P, Andre P, Cisternino S, Saubamea B, Boulay AC, Doutremer S, Thomas MA, Quenech’du N, Giaume C, Cohen-Salmon M (2012) Deletion of astroglial connexins weakens the blood–brain barrier. J Cereb Blood Flow Metab 32(8):1457–1467.  https://doi.org/10.1038/jcbfm.2012.45 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fujimoto K (1995) Pericyte-endothelial gap junctions in developing rat cerebral capillaries: a fine structural study. Anat Rec 242(4):562–565.  https://doi.org/10.1002/ar.1092420412 CrossRefPubMedGoogle Scholar
  16. Giaume C, Leybaert L, Naus CC, Saez JC (2013) Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles. Front Pharmacol 4:88.  https://doi.org/10.3389/fphar.2013.00088 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O’Farrell FM, Buchan AM, Lauritzen M, Attwell D (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508(7494):55–60.  https://doi.org/10.1038/nature13165 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hartmann DA, Underly RG, Grant RI, Watson AN, Lindner V, Shih AY (2015) Pericyte structure and distribution in the cerebral cortex revealed by high-resolution imaging of transgenic mice. Neurophotonics 2(4):041402.  https://doi.org/10.1117/1.NPh.2.4.041402 CrossRefPubMedPubMedCentralGoogle Scholar
  19. He L, Vanlandewijck M, Raschperger E, Andaloussi Mae M, Jung B, Lebouvier T, Ando K, Hofmann J, Keller A, Betsholtz C (2016) Analysis of the brain mural cell transcriptome. Sci Rep 6:35108.  https://doi.org/10.1038/srep35108 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Li AF, Sato T, Haimovici R, Okamoto T, Roy S (2003) High glucose alters connexin 43 expression and gap junction intercellular communication activity in retinal pericytes. Investig Ophthalmol Vis Sci 44(12):5376–5382CrossRefGoogle Scholar
  21. Nakagomi T, Nakano-Doi A, Kawamura M, Matsuyama T (2015) Do vascular pericytes contribute to neurovasculogenesis in the central nervous system as multipotent vascular stem cells? Stem Cells Dev 24(15):1730–1739.  https://doi.org/10.1089/scd.2015.0039 CrossRefPubMedGoogle Scholar
  22. Pannasch U, Freche D, Dallerac G, Ghezali G, Escartin C, Ezan P, Cohen-Salmon M, Benchenane K, Abudara V, Dufour A, Lubke JH, Deglon N, Knott G, Holcman D, Rouach N (2014) Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat Neurosci 17(4):549–558.  https://doi.org/10.1038/nn.3662 CrossRefPubMedGoogle Scholar
  23. Qu C, Gardner P, Schrijver I (2009) The role of the cytoskeleton in the formation of gap junctions by Connexin 30. Exp Cell Res 315(10):1683–1692.  https://doi.org/10.1016/j.yexcr.2009.03.001 CrossRefPubMedGoogle Scholar
  24. Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322(5907):1551–1555CrossRefPubMedGoogle Scholar
  25. Sagare AP, Bell RD, Zhao Z, Ma Q, Winkler EA, Ramanathan A, Zlokovic BV (2013) Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun 4:2932.  https://doi.org/10.1038/ncomms3932 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Shi X, Han W, Yamamoto H, Tang W, Lin X, Xiu R, Trune DR, Nuttall AL (2008) The cochlear pericytes. Microcirculation 15(6):515–529.  https://doi.org/10.1080/10739680802047445 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Svenningsen P, Burford JL, Peti-Peterdi J (2013) ATP releasing connexin 30 hemichannels mediate flow-induced calcium signaling in the collecting duct. Front Physiol 4:292.  https://doi.org/10.3389/fphys.2013.00292 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Sweeney MD, Ayyadurai S, Zlokovic BV (2016) Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci 19(6):771–783.  https://doi.org/10.1038/nn.4288 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Teubner B, Michel V, Pesch J, Lautermann J, Cohen-Salmon M, Sohl G, Jahnke K, Winterhager E, Herberhold C, Hardelin JP, Petit C, Willecke K (2003) Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum Mol Genet 12(1):13–21CrossRefPubMedGoogle Scholar
  30. Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A, Wu X, Vo HT, Ma XJ, Luo Y (2012) RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn 14(1):22–29.  https://doi.org/10.1016/j.jmoldx.2011.08.002 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Winkler EA, Bell RD, Zlokovic BV (2011) Central nervous system pericytes in health and disease. Nat Neurosci 14(11):1398–1405.  https://doi.org/10.1038/nn.2946 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, Jureus A, Marques S, Munguba H, He L, Betsholtz C, Rolny C, Castelo-Branco G, Hjerling-Leffler J, Linnarsson S (2015) Brain structure Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347(6226):1138–1142.  https://doi.org/10.1126/science.aaa1934 CrossRefPubMedGoogle Scholar
  33. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947.  https://doi.org/10.1523/JNEUROSCI.1860-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Zhou JZ, Jiang JX (2014) Gap junction and hemichannel-independent actions of connexins on cell and tissue functions–an update. FEBS Lett 588(8):1186–1192.  https://doi.org/10.1016/j.febslet.2014.01.001 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zhu X, Bergles DE, Nishiyama A (2008) NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135(1):145–157.  https://doi.org/10.1242/dev.004895 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de La Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050/Neuroglial Interactions in Cerebral PhysiopathologyParis Cedex 05France
  2. 2.University Pierre et Marie Curie, ED, N°158ParisFrance
  3. 3.MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research UniversityParisFrance

Personalised recommendations