Brain Structure and Function

, Volume 223, Issue 3, pp 1191–1216 | Cite as

Nuclear organization of the African elephant (Loxodonta africana) amygdaloid complex: an unusual mammalian amygdala

  • Aude’Marie Limacher-Burrell
  • Adhil Bhagwandin
  • Busisiwe C. Maseko
  • Paul R. Manger
Original Article

Abstract

Here we describe the nuclear organization of the African elephant amygdaloid complex using Nissl, myelin, and a range of immunohistochemical stains. The African elephant is thought to exhibit many affect-laden and social-empathic behaviours; however, to date the amygdaloid complex, which is the generator of emotional states of the brain is yet to be fully explored in the elephants. For the most part, the amygdaloid complex of the African elephant is similar to that observed in other mammals in terms of the presence of nuclei and their topological relationships; however, we did observe several specific differences in amygdaloid organization. The elephant amygdala has undergone rotation in both the coronal and sagittal planes, seemingly associated with the expansion of the temporal lobe. Numerous scalloped cell clusters, termed glomeruli, forming the intermediate nuclei of the basal, accessory basal and central nuclear groups, were occupied by structures immunopositive to doublecortin. The nuclei typically associated with the accessory olfactory system (posterior cortical nucleus and medial nuclear complex) were absent from the elephant amygdala. The anterior cortical nucleus is very large and appears to be comprised of two subdivisions. The lateral nuclear complex is expanded and has two novel subdivisions. The amygdalohippocampal area appears relatively enlarged. The numerous shared and derived characters make the elephant amygdaloid complex very unusual and unique amongst mammals, but the derived characters appear to relate to observed elephant affect-laden behaviours.

Keywords

Amygdala Afrotheria Social-empathic behaviour Emotion Mammalia Cognition 

Abbreviations

ABi

Accessory basal nucleus, intermediate division

ABmc

Accessory basal nucleus, magnocellular division

ABpc

Accessory basal nucleus, parvocellular division

ABs

Accessory basal nucleus, shell

AHiA

Amygdalohippocampal area

Bmc

Basal nucleus, magnocellular division

Bi

Basal nucleus, intermediate division

Bpc

Basal nucleus, parvocellular division

CA1

Cornu ammonis region 1 of hippocampus

CA3

Cornu ammonis region 3 of hippocampus

CeC

Central amygdaloid nucleus, capsular division

CeI

Central amygdaloid nucleus, intermediate division

CeL

Central amygdaloid nucleus, lateral division

CeM

Central amygdaloid nucleus, medial division

CoAd

Anterior cortical amygdaloid nucleus, dorsal division

CoAv

Anterior cortical amygdaloid nucleus, ventral division

DG

Dentate gyrus of hippocampus

f

Fornix

I

Intercalated island of the amygdala

ic

Internal capsule

IMG

Amygdaloid intramedullary gray matter

LAdl

Lateral amygdaloid nucleus, dorsolateral part

LAm

Lateral amygdaloid nucleus, medial part

LAvl

Lateral amygdaloid nucleus, ventrolateral part

LV

Lateral ventricle

P

Putamen

PACl

Periamygdaloid cortex, lateral division

PACm

Periamygdaloid cortex, medial division

PIR

Piriform cortex

Sub

Subiculum

Notes

Acknowledgements

This work was supported by funding from the South African National Research Foundation (BCM and PRM). We thank the relevant wildlife authorities for permission to collect the material used.

Compliance with ethical standards

Conflict of interest

All authors declare no conflict of interest.

Ethical statement

The brains of two African elephants (Loxodonta africana) were used for the purpose of this study. The specimens were obtained in Zimbabwe under the permission of the Zimbabwe Parks and Wildlife Management Authority as well as the Malilangwe Nature Conservation Trust (specimen preparation, treatment and storage described in Manger et al. 2009). The animals were treated and used according to the guidelines of the University of the Witwatersrand Animal Ethics Committee (Clearance number: 2008/36/1).

References

  1. Bagley KR, Goodwin TE, Rasmussen LEL, Schulte BA (2006) Male African elephant, Loxodonta africana, can distinguish oestrus status via urinary signals. Anim Behav 71:1439–1445.  https://doi.org/10.1016/j.anbehav.2006.01.003 CrossRefGoogle Scholar
  2. Barger N, Stefanacci L, Semendeferi K (2007) A comparative volumetric analysis of the amygdaloid complex and basolateral division in the human and ape brain. Am J Phys Anthropol 134:392–403.  https://doi.org/10.1002/ajpa.20684 CrossRefPubMedGoogle Scholar
  3. Barger N, Stefanacci L, Schumann CM, Sherwood CC, Annese J, Allman JM, Buckwalter JA, Hof PR, Semendeferi K (2012) Neuronal populations in the basolateral nuclei of the amygdala are differentially increased in humans compared to apes: a stereological study. J Comp Neurol 520:3035–3054.  https://doi.org/10.1002/cne.23118 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bates LA, Sayialel KN, Njiraini NW, Moss CJ, Poole JH (2007) Elephants classify human ethic groups by odor and garment color. Curr Biol 17:1938–1942.  https://doi.org/10.1016/j.cub.2007.09.060 CrossRefPubMedGoogle Scholar
  5. Bergan JF, Ben-Shaul Y, Dulac C (2014) Sex-specific processing of social cues in the medial amygdala. eLIFE 3:e02743.  https://doi.org/10.7554/eLife.02743.001
  6. Bonfanti L, Peretto P (2011) Adult neurogenesis in mammals—a theme with many variations. Eur J Neurosci 34:930–950.  https://doi.org/10.1111/j.1460-9568.2011.07832.x CrossRefPubMedGoogle Scholar
  7. Bouley DM, Alarcon CN, Hildebrandt T, O’Connell-Rodwell CE (2007) The distribution, density and three-dimensional histomorphology of Pacinian corpuscles in the foot of the Asian elephant (Elephas maximus) and their potential role in seismic communication. J Anat 211:426–435.  https://doi.org/10.1111/j.1469-7589.2007.00792.x Google Scholar
  8. Doty RL, Brugger WE, Jurs PC, Orndorff MA, Snyder PJ, Lowry LD (1978) Intranasal trigeminal stimulation from odorous volatiles: pyschometric responses from anosmic and normal humans. Physiol Behav 20:175–187.  https://doi.org/10.1016/0031-9384(78)90070-7 CrossRefPubMedGoogle Scholar
  9. Fudge JL, Decampo DM, Becoats KT (2012) Revisiting the hippocampal-amygdala pathway in primates: association with immature-appearing neurons. Neuroscience 212:104–119.  https://doi.org/10.1016/j.neuroscience.2012.03.040 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gallyas F (1979) Silver staining of myelin by means of physical development. Neurol Res 1:203–209.  https://doi.org/10.1080/01616412.1979.11739553 CrossRefPubMedGoogle Scholar
  11. Gobbel L, Fischer MS, Smith TD, Wible JR, Bhatnagar KP (2004) The vomeronasal organ and associated structures of the fetal African elephant, Loxodonta africana (Proboscidea, Elephantidae). Acta Zool 85:41–52.  https://doi.org/10.1111/j.0001-7272.2004.00156.x CrossRefGoogle Scholar
  12. Gould E (2007) How widespread is adult neurogenesis in mammals? Nature Rev Neurosci 8:481–487.  https://doi.org/10.1038/nrn2147 CrossRefGoogle Scholar
  13. Greenwood DR, Comeskey D, Hunt MB, Rasmussen EL (2005) Chemical communication: chirality in elephant pheromones. Nature 438:1097–1098.  https://doi.org/10.1038/4381097a CrossRefPubMedGoogle Scholar
  14. Gross CG (1994) How inferior temporal cortex became a visual area. Cereb Cortex 4:455–469.  https://doi.org/10.1093/cercor/4.5.455 CrossRefPubMedGoogle Scholar
  15. Hakeem AY, Hof PR, Sherwood CC, Switzer RC, Rasmussen LE, Allman JM (2005) Brain of the African elephant (Loxodonta africana): neuroanatomy from magnetic resonance images. Anat Rec 287A:1117–1127.  https://doi.org/10.1002/ar.a.20255 CrossRefGoogle Scholar
  16. Hart BL, Hart LA, Pinter-Wollman N (2008) Large brains and cognition: where do elephant fit in? Neurosci Biobehav Rev 32:86–98.  https://doi.org/10.1016/j.neubiorev.2007.05.012 CrossRefPubMedGoogle Scholar
  17. Herculano-Houzel S, Avelino de Sousa K, Neves K, Porfirio J, Messeder D, Mattos Feijo L, Maldonado J, Manger PR (2014) The elephant brain in numbers. Front Neuroanat 8:46.  https://doi.org/10.3389/fnana.2014.00046 PubMedPubMedCentralGoogle Scholar
  18. Johnson EW, Rasmussen L (2002) Morphological characteristics of the vomeronasal organ of the newborn Asian elephant (Elephant maximus). Anat Rec 267:252–259.  https://doi.org/10.1002/ar.10112 CrossRefPubMedGoogle Scholar
  19. Lauer EW (1982) Telencephalon of ungulates, Chap 13. In: Crosby EC, Schnitzlein HN (eds) Comparative correlative neuroanatomy of the vertebrate telencephalon. MacMillan Publishing Co. Inc., New York, pp 501–524Google Scholar
  20. LeDoux JE (2000) Emotion circuits in the brain. Ann Rev Neurosci 23:155–184.  https://doi.org/10.1146/annurev.neuro.23.1.155 CrossRefPubMedGoogle Scholar
  21. Lee PC, Moss CJ (1999) The social context for learning and behavioural development among wild African elephants. In: Box HO, Gibson HR (eds) Mammalian social learning. Cambridge University Press, Cambridge UK, pp 102–125Google Scholar
  22. Limacher-Burrell AM, Bhagwandin A, Gravett N, Maseko BC, Manger PR (2016) Nuclear organization of the rock hyrax (Procavia capensis) amygdaloid complex. Brain Struct Funct 221:3171–3191.  https://doi.org/10.1007/s00429-015-1094-8 CrossRefPubMedGoogle Scholar
  23. Manger PR, Pillay P, Maseko BC, Bhagwandin A, Gravett N, Moon DJ, Jillani NE, Hemingway J (2009) Acquisition of the brain of the African elephant (Loxodonta africana): perfusion-fixation and dissection. J Neurosci Meth 179:16–21.  https://doi.org/10.1016/j/neumeth.2009.01.001 CrossRefGoogle Scholar
  24. Maseko BC, Patzke N, Fuxe K, Manger PR (2013) Architectural organization of the African elephant diencephalon and brainstem. Brain Behav Evol 82:83–128.  https://doi.org/10.1159/000352004 CrossRefPubMedGoogle Scholar
  25. McComb K, Moss C, Durant SM, Baker L, Sayialel S (2001) Matriarchs are repositories of social knowledge in African elephants. Science 292:491–494.  https://doi.org/10.1126/science.1057895 CrossRefPubMedGoogle Scholar
  26. McComb K, Shannon G, Sayialel KN, Moss C (2014) Elephants can determine ethnicity, gender, and age from acoustic cues in human voices. Proc Natl Acad Sci USA 111:5433–5438.  https://doi.org/10.1073/pnas.1321543111 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Migaud M, Batailler M, Segura S, Duittoz A, Franceschini I, Pillon D (2010) Emerging new sites for adult neurogenesis in the mammalian brain: a comparative study between the hypothalamus and the classical neurogenic zones. Eur J Neurosci 32:2042–2052.  https://doi.org/10.1111/j.1460-9568.2010.07521.x CrossRefPubMedGoogle Scholar
  28. Ngwenya A, Patkze N, Ihunwo AO, Manger PR (2011) Organisation and chemical neuroanatomy of the African elephant (Loxodonta africana) olfactory bulb. Brain Struct Funct 216:403–416.  https://doi.org/10.1007/s00429-01100316-y CrossRefPubMedGoogle Scholar
  29. Niimura Y, Matsui A, Touhara K (2014) Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Genome Res 24:1485–1496.  https://doi.org/10.1101/gr.169532.113 CrossRefPubMedPubMedCentralGoogle Scholar
  30. O’Connell-Rodwell CE (2007) Keeping an “ear” to the ground: seismic communication in elephants. Physiology 22:287–294.  https://doi.org/10.1152/physiol.00008.2007 CrossRefPubMedGoogle Scholar
  31. O’Connell-Rodwell CE, Wood JD, Rodwell TC, Puria S, Partan SR, Keefe R, Shriver D, Arnason BT, Hart LA (2006) Wild elephants (Loxodonta africana) breeding herds respond to artificially transmitted seismic stimuli. Behav Ecol Sociobiol 59:842–850.  https://doi.org/10.1007/s00265-005-0136-2 CrossRefGoogle Scholar
  32. Patzke N, Kaswera C, Gilissen E, Ihunwo AO, Manger PR (2013) Adult neurogenesis in a giant otter shrew (Potamogale velox). Neuroscience 238:270–279.  https://doi.org/10.1016/j.neuroscience.2013.02.025 CrossRefPubMedGoogle Scholar
  33. Patzke N, Olaleye O, Haagensen M, Hof PR, Ihunwo AO, Manger PR (2014a) Organization and chemical neuroanatomy of the African elephant (Loxodonta africana) hippocampus. Brain Struct Funct 219:1587–1601.  https://doi.org/10.1007/s00429-013-0587-6 CrossRefPubMedGoogle Scholar
  34. Patzke N, LeRoy A, Ngubane NW, Bennett NC, Medger K, Gravett N, Kaswera-Kyamakya C, Gilissen E, Chawana R, Manger PR (2014b) The distribution of doublecortin-immunopositive cells in the brains of four Afrotherian mammals: the Hottentot golden mole (Amblysomus hottentotus), the rock hyrax (Procavia capensis), the eastern rock sengi (Elephantulus myurus) and the four-toed sengi (Petrodromus tetradactylus). Brain Behav Evol 84:227–241.  https://doi.org/10.1159/000367934 CrossRefPubMedGoogle Scholar
  35. Patzke N, Spocter MA, Karlsson KÆ, Bertelsen M, Haagensen M, Chawana R, Streicher S, Kaswera C, Gilissen E, Alagaili AN, Mohammed OB, Reep RL, Bennett NC, Siegel JM, Ihunwo AO, Manger PR (2015) In contrast to many other mammals, cetaceans have relatively small hippocampi that appear to lack adult neurogenesis. Brain Struct Funct 220:361–383.  https://doi.org/10.1007/s00429-013-0660-1 CrossRefPubMedGoogle Scholar
  36. Paxinos G, Watson C (2005) The Rat Brain in Stereotaxic Coordinates. Elsevier, Academic Press, New YorkGoogle Scholar
  37. Pitkänen A, Savander V, LeDoux JE (1997) Organization of intra-amygdaloid circuitry in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci 20:517–523.  https://doi.org/10.1016/S0166-2236(97)01125-9 CrossRefPubMedGoogle Scholar
  38. Pitkänen A, Pikkarainen M, Nurminen N, Ylinen A (2000) Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. Ann N Y Acad Sci 911:369–391.  https://doi.org/10.1111/j.1749-6632.2000.tb06738.x CrossRefPubMedGoogle Scholar
  39. Plotnik JM, de Waal FBM (2014) Asian elephants (Elephas maximus) reassure others in distress. PeerJ 2:e278.  https://doi.org/10.7717/peerj.278 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Price JL, Russchen FT, Amaral DG (1987) The limbic region. II. The amygdaloid complex. In: Bjorklund A, Hokfelt T, Swanson LW (eds) Handbook of chemical neuroanatomy, Volume 5, Integrated systems of the CNS, Part 1. Elsevier Science, Amsterdam, pp 279–381Google Scholar
  41. Ramachandran VS, Hubbard EM (2001) Synesthesia: a window into perception, thought, and language. J Conscious Studies 8:3–34Google Scholar
  42. Rasia-Filho AA, Londero RG, Achaval M (1999) Functional activities of the amygdala: an overview. J Psychiat Neuro 25:14–23Google Scholar
  43. Rasmussem LEL, Munger BL (1996) The sensori-neural specializations of the trunk tip (finger) of the Asian elephant, Elephas maximus. Anat Rec 246:127–134.  https://doi.org/10.1002/(SICI)1097-0185(199609) CrossRefGoogle Scholar
  44. Rasmussen LEL, Lazar J, Greenwood DR (2003) Olfactory adventures of elephantine pheromones. Biochem Soc Trans 31:137–141.  https://doi.org/10.1042/bst0310137 CrossRefPubMedGoogle Scholar
  45. Rasmussen LEL, Krishnamurthy V, Sukumar R (2005) Behavioural and chemical confirmation of the preovulatory pheromone, (Z)-7-dodecenyl acetate, in wild Asian elephants: its relationship to musth. Behaviour 142:351–396.  https://doi.org/10.1163/1568539053778300 CrossRefGoogle Scholar
  46. Rolls ET (1999) The brain and emotion. Oxford University Press, OxfordGoogle Scholar
  47. Romanski LM, Clugnet MC, Bordi F, LeDoux JE (1993) Somatosensory and auditory convergence in the lateral nucleus of the amygdala. Behav Neurosci 107:444–450.  https://doi.org/10.1037//0735-7044.107.3.444 CrossRefPubMedGoogle Scholar
  48. Sah P, Faber ESL, Lopez de Armentia M, Power J (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev 83:803–834.  https://doi.org/10.1152/physrev.00002.2003 CrossRefPubMedGoogle Scholar
  49. Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472:466–470.  https://doi.org/10.1038/nature09817 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Saul ML, Helmreich DL, Rehman S, Fudge JL (2014) Proliferating cells in the adolescent rat amygdala: characterization and response to stress. Neuroscience 311:105–117.  https://doi.org/10.1016/j.neuroscience.2015.10.003 CrossRefGoogle Scholar
  51. Saul ML, Helmreich DL, Callahan LM, Fudge JL (2015) Differences in amygdala cell proliferation between adolescent and young adult rats. Dev Psychobiol 56:517–528.  https://doi.org/10.1002/dev.21115 CrossRefGoogle Scholar
  52. Shapiro LA, Ng KL, Kinyamu R, Whitaker-Azmitia P, Geisert EE, Blurton-Jones M, Zhou QY, Ribak CE (2007) Origin, migration and fate of newly generated neurons in the adult rodent piriform cortex. Brain Struct Funct 212:133–148.  https://doi.org/10.1007/s00429-007-0151-3 CrossRefPubMedGoogle Scholar
  53. Shoshani J, Kupsky WJ, Marchant GH (2006) Elephant brain part I: gross morphology, functions, comparative anatomy, and evolution. Brain Res Bull 70:124–157.  https://doi.org/10.1016/j.brainresbull.2006.03.016 CrossRefPubMedGoogle Scholar
  54. Silver WH, Finger TE (1991) The trigeminal system. In: Snow JB, Getchell TV, Bartoskuk LM, Doty RL (eds) Smell and taste in health and disease. Raven Press, New York, pp 97–108Google Scholar
  55. Soltis J, Blowers TE, Savage A (2011) Measuring positive and negative affect in the voiced sounds of African elephants (Loxodonta africana). J Acoust Soc Am 129:1059–1066.  https://doi.org/10.1121/1.3531798 CrossRefPubMedGoogle Scholar
  56. Soltis J, King LE, Douglas-Hamilton I, Vollrath F, Savage A (2014) African elephant alarm calls distinguish between threats from humans and bees. PLoS One 9:e89403.  https://doi.org/10.1371/journal.pone.0089403 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Stevenson RJ, Attuquayefio T (2013) Human olfactory consciousness and cognition: its unusual features may not result from unusual functions but from limited neocortical processing resources. Front Psychol 4:819.  https://doi.org/10.3389/fpsyg.2013.00819 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Suárez R, Fernández-Aburto P, Manger PR, Mpodozis J (2011) Deterioration of the Gαo vomeronasal pathway in sexually dimorphic mammals. PLoS One 6:e26436.  https://doi.org/10.1371/journal.pone.0026436 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Treves A, Tashiro A, Witter MP, Moser EI (2008) What is the mammalian dentate gyrus good for? Neuroscience 154:1155–1172.  https://doi.org/10.1016/j.neuroscience.2008.04.073 CrossRefPubMedGoogle Scholar
  60. Turney P, Whitley D, Anderson RW (1996) Evolution, learning and instinct: 100 years of the Baldwin effect. Evol Computation 4:iv–viii.  https://doi.org/10.1162/evco.1996.4.3.iv CrossRefGoogle Scholar
  61. Vidya TNC, Sukumar R (2005) Social and reproductive behaviour in elephant. Curr Sci 89:1200–1207Google Scholar
  62. Zhang XM, Cai Y, Chu Y, Chen EY, Feng JC, Luo XG, Xiong K, Struble RG, Clough RW, Patrylo PR, Kordower JH, Yan XX (2009) Doublecortin-expressing cells persist in the associative cerebral cortex and amygdala in aged nonhuman primates. Front Neuroanat 3:17.  https://doi.org/10.3389/neuro.05.017.2009 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Aude’Marie Limacher-Burrell
    • 1
  • Adhil Bhagwandin
    • 1
  • Busisiwe C. Maseko
    • 1
  • Paul R. Manger
    • 1
  1. 1.School of Anatomical SciencesUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations