Advertisement

Brain Structure and Function

, Volume 223, Issue 2, pp 701–712 | Cite as

How interindividual differences in brain anatomy shape reading accuracy

  • Arnaud Cachia
  • Margot Roell
  • Jean-François Mangin
  • Zhong Yi Sun
  • Antoinette Jobert
  • Lucia Braga
  • Olivier Houde
  • Stanislas Dehaene
  • Grégoire Borst
Original Article

Abstract

The capacity to read develops throughout intensive academic learning and training. Several studies have investigated the impact of reading on the brain, and particularly how the anatomy of the brain changes with reading acquisition. In the present study, we investigated the converse issue, namely whether and how reading acquisition is constrained by the anatomy of the brain. Using multimodal MRI, we found that (a) the pattern (continuous or interrupted sulcus) of the posterior part of the left lateral occipito-temporal sulcus (OTS) hosting the visual word form area (VWFA) predicts reading skills in adults; that (b) this effect is modulated by the age of reading acquisition; and that (c) the length of the OTS sulcal interruption is associated with reading skills. Because the sulcal pattern is determined in utero, our findings suggest that individual difference in reading skills can be traced back to early stages of brain development in addition to the well-established socioeconomic and educational factors.

Keywords

Reading VWFA MRI Neurodevelopment SES 

Notes

Acknowledgements

We thank S. F. Pegado, P. Ventura, G. Nunes Filho, G. Dehaene-Lambertz, R. Kolinsky, J. Morais, and L. Cohen for participant recruitment.

Author contributions

AC, GB, SD, and OH designed the study. AJ, LB, and SD provided MRI and cognitive data. MR, AC, GB, AJ, J-FM, and ZYS analyzed the data. AC, GB, SD, OH, J-FM, and MR interpreted the results and wrote the manuscript.

References

  1. Aikens NL, Barbarin O (2008) Socioeconomic differences in reading trajectories: the contribution of family, neighborhood, and school contexts. J Educ Psychol 100(2):235CrossRefGoogle Scholar
  2. Amiez C, Petrides M (2014) Neuroimaging evidence of the anatomo-functional organization of the human cingulate motor areas. Cereb Cortex 24(3):563–578. doi: 10.1093/cercor/bhs329 CrossRefPubMedGoogle Scholar
  3. Borst G, Cachia A, Tissier C, Ahr E, Simon G, Houdé O (2016) Early cerebral constraint on reading skills of 10-years-old children. Mind Brain Educ 10(1):47–54CrossRefGoogle Scholar
  4. Bouhali F, Thiebaut de Schotten M, Pinel P, Poupon C, Mangin JF, Dehaene S, Cohen L (2014) Anatomical connections of the visual word form area. J Neurosci 34(46):15402–15414. doi: 10.1523/JNEUROSCI.4918-13.2014 CrossRefPubMedGoogle Scholar
  5. Brem S, Bach S, Kucian K, Guttorm TK, Martin E, Lyytinen H, Brandeis D, Richardson U (2010) Brain sensitivity to print emerges when children learn letter-speech sound correspondences. Proc Natl Acad Sci USA 107(17):7939–7944. doi: 10.1073/pnas.0904402107 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cachia A, Borst G, Tissier C, Fisher C, Plaze M, Gay O, Riviere D, Gogtay N, Giedd J, Mangin JF, Houde O, Raznahan A (2016) Longitudinal stability of the folding pattern of the anterior cingulate cortex during development. Dev Cogn Neurosci 19:122–127. doi: 10.1016/j.dcn.2016.02.011 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Carreiras M, Seghier ML, Baquero S, Estevez A, Lozano A, Devlin JT, Price CJ (2009) An anatomical signature for literacy. Nature 461(7266):983–986. doi: 10.1038/nature08461 CrossRefPubMedGoogle Scholar
  8. Castro-Caldas A, Nunes MV, Maestu F, Ortiz T, Simoes R, Fernandes R, de La Guia E, Garcia E, Goncalves M (2009) Learning orthography in adulthood: a magnetoencephalographic study. J Neuropsychol 3(Pt 1):17–30. doi: 10.1348/174866408X289953 CrossRefPubMedGoogle Scholar
  9. Cohen L, Dehaene S (2004) Specialization within the ventral stream: the case for the visual word form area. Neuroimage 22(1):466–476. doi: 10.1016/j.neuroimage.2003.12.049 CrossRefPubMedGoogle Scholar
  10. Dehaene S, Cohen L (2011) The unique role of the visual word form area in reading. Trends Cogn Sci 15(6):254–262. doi: 10.1016/j.tics.2011.04.003 CrossRefPubMedGoogle Scholar
  11. Dehaene S, Pegado F, Braga LW, Ventura P, Nunes Filho G, Jobert A, Dehaene-Lambertz G, Kolinsky R, Morais J, Cohen L (2010) How learning to read changes the cortical networks for vision and language. Science 330(6009):1359–1364. doi: 10.1126/science.1194140 CrossRefPubMedGoogle Scholar
  12. Dehaene S, Cohen L, Morais J, Kolinsky R (2015) Illiterate to literate: behavioural and cerebral changes induced by reading acquisition. Nat Rev Neurosci 16(4):234–244. doi: 10.1038/nrn3924 CrossRefPubMedGoogle Scholar
  13. Dehay C, Giroud P, Berland M, Killackey H, Kennedy H (1996) Contribution of thalamic input to the specification of cytoarchitectonic cortical fields in the primate: effects of bilateral enucleation in the fetal monkey on the boundaries, dimensions, and gyrification of striate and extrastriate cortex. J Comp Neurol 367(1):70–89CrossRefPubMedGoogle Scholar
  14. Dubois J, Hertz-Pannier L, Dehaene-Lambertz G, Cointepas Y, Le Bihan D (2006) Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. Neuroimage 30(4):1121–1132CrossRefPubMedGoogle Scholar
  15. Dubois J, Dehaene-Lambertz G, Perrin M, Mangin JF, Cointepas Y, Duchesnay E, Le Bihan D, Hertz-Pannier L (2008) Asynchrony of the early maturation of white matter bundles in healthy infants: quantitative landmarks revealed noninvasively by diffusion tensor imaging. Hum Brain Mapp 29(1):14–27. doi: 10.1002/hbm.20363 CrossRefPubMedGoogle Scholar
  16. Dubois J, Dehaene-Lambertz G, Kulikova S, Poupon C, Huppi PS, Hertz-Pannier L (2014) The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276:48–71. doi: 10.1016/j.neuroscience.2013.12.044 CrossRefPubMedGoogle Scholar
  17. Dubois J, Poupon C, Thirion B, Simonnet H, Kulikova S, Leroy F, Hertz-Pannier L, Dehaene-Lambertz G (2016) Exploring the early organization and maturation of linguistic pathways in the human infant brain. Cereb Cortex 26(5):2283–2298. doi: 10.1093/cercor/bhv082 CrossRefPubMedGoogle Scholar
  18. Duchesnay E, Cachia A, Roche A, Riviere D, Cointepas Y, Papadopoulos-Orfanos D, Zilbovicius M, Martinot JL, Regis J, Mangin JF (2007) Classification based on cortical folding patterns. IEEE Trans Med Imaging 26(4):553–565. doi: 10.1109/TMI.2007.892501 CrossRefPubMedGoogle Scholar
  19. Dumoulin SO, Bittar RG, Kabani NJ, Baker CL Jr, Le Goualher G, Bruce Pike G, Evans AC (2000) A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning. Cereb Cortex 10(5):454–463CrossRefPubMedGoogle Scholar
  20. Evans GW (2004) The environment of childhood poverty. Am Psychol 59(2):77CrossRefPubMedGoogle Scholar
  21. Farah MJ, Shera DM, Savage JH, Betancourt L, Giannetta JM, Brodsky NL, Malmud EK, Hurt H (2006) Childhood poverty: specific associations with neurocognitive development. Brain Res 1110(1):166–174. doi: 10.1016/j.brainres.2006.06.072 CrossRefPubMedGoogle Scholar
  22. Fischl B, Rajendran N, Busa E, Augustinack J, Hinds O, Yeo BTT, Mohlberg H, Amunts K, Zilles K (2007) Cortical folding patterns and predicting cytoarchitecture. Cereb Cortex. doi: 10.1093/cercor/bhm225 PubMedPubMedCentralGoogle Scholar
  23. Fluss J, Ziegler JC, Warszawski J, Ducot B, Richard G, Billard C (2009) Poor reading in French elementary school: the interplay of cognitive, behavioral, and socioeconomic factors. J Dev Behav Pediatr 30(3):206–216. doi: 10.1097/DBP.0b013e3181a7ed6c CrossRefPubMedGoogle Scholar
  24. Glezer LS, Riesenhuber M (2013) Individual variability in location impacts orthographic selectivity in the “visual word form area”. J Neurosci 33(27):11221–11226. doi: 10.1523/JNEUROSCI.5002-12.2013 CrossRefPubMedGoogle Scholar
  25. Gomez J, Barnett MA, Natu V, Mezer A, Palomero-Gallagher N, Weiner KS, Amunts K, Zilles K, Grill-Spector K (2017) Microstructural proliferation in human cortex is coupled with the development of face processing. Science 355(6320):68–71. doi: 10.1126/science.aag0311 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Grömping U (2015) Variable importance in regression models. Wiley Interdiscip Rev Comput Stat 7(2):137–152CrossRefGoogle Scholar
  27. Hackman DA, Farah MJ (2009) Socioeconomic status and the developing brain. Trends Cogn Sci 13(2):65–73. doi: 10.1016/j.tics.2008.11.003 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hackman DA, Farah MJ, Meaney MJ (2010) Socioeconomic status and the brain: mechanistic insights from human and animal research. Nat Rev Neurosci 11(9):651–659. doi: 10.1038/nrn2897 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hilgetag CC, Barbas H (2006) Role of mechanical factors in the morphology of the primate cerebral cortex. PLoS Comput Biol 2(3):e22CrossRefPubMedPubMedCentralGoogle Scholar
  30. Houde O, Rossi S, Lubin A, Joliot M (2010) Mapping numerical processing, reading, and executive functions in the developing brain: an fMRI meta-analysis of 52 studies including 842 children. Dev Sci 13(6):876–885. doi: 10.1111/j.1467-7687.2009.00938.x CrossRefPubMedGoogle Scholar
  31. Jednorog K, Altarelli I, Monzalvo K, Fluss J, Dubois J, Billard C, Dehaene-Lambertz G, Ramus F (2012) The influence of socioeconomic status on children’s brain structure. PLoS ONE 7(8):e42486. doi: 10.1371/journal.pone.0042486 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lee VE, Burkam DT (2002) Inequality at the starting gate: social background differences in achievement as children begin school. Economic Policy Institute, Washington, DCGoogle Scholar
  33. Leroy F, Glasel H, Dubois J, Hertz-Pannier L, Thirion B, Mangin JF, Dehaene-Lambertz G (2011) Early maturation of the linguistic dorsal pathway in human infants. J Neurosci 31(4):1500–1506. doi: 10.1523/JNEUROSCI.4141-10.2011 CrossRefPubMedGoogle Scholar
  34. Li Y, Sescousse G, Amiez C, Dreher JC (2015) Local morphology predicts functional organization of experienced value signals in the human orbitofrontal cortex. J Neurosci 35(4):1648–1658. doi: 10.1523/JNEUROSCI.3058-14.2015 CrossRefPubMedGoogle Scholar
  35. Mangin JF, Riviere D, Cachia A, Duchesnay E, Cointepas Y, Papadopoulos-Orfanos D, Scifo P, Ochiai T, Brunelle F, Regis J (2004) A framework to study the cortical folding patterns. Neuroimage 23(Suppl 1):S129–S138CrossRefPubMedGoogle Scholar
  36. Mangin JF, Jouvent E, Cachia A (2010) In-vivo measurement of cortical morphology: means and meanings. Curr Opin Neurol 23(4):359–367. doi: 10.1097/WCO.0b013e32833a0afc PubMedGoogle Scholar
  37. Martin A, Schurz M, Kronbichler M, Richlan F (2015) Reading in the brain of children and adults: a meta-analysis of 40 functional magnetic resonance imaging studies. Hum Brain Mapp 36(5):1963–1981. doi: 10.1002/hbm.22749 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mongelli V, Dehaene S, Vinckier F, Peretz I, Bartolomeo P, Cohen L (2017) Music and words in the visual cortex: the impact of musical expertise. Cortex 86:260–274. doi: 10.1016/j.cortex.2016.05.016 CrossRefPubMedGoogle Scholar
  39. Myers CA, Vandermosten M, Farris EA, Hancock R, Gimenez P, Black JM, Casto B, Drahos M, Tumber M, Hendren RL, Hulme C, Hoeft F (2014) White matter morphometric changes uniquely predict children’s reading acquisition. Psychol Sci 25(10):1870–1883. doi: 10.1177/0956797614544511 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Noble KG, McCandliss BD (2005) Reading development and impairment: behavioral, social, and neurobiological factors. J Dev Behav Pediatr 26(5):370–378CrossRefPubMedGoogle Scholar
  41. Noble KG, McCandliss BD, Farah MJ (2007) Socioeconomic gradients predict individual differences in neurocognitive abilities. Dev Sci 10(4):464–480. doi: 10.1111/j.1467-7687.2007.00600.x CrossRefPubMedGoogle Scholar
  42. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMedGoogle Scholar
  43. Ono M, Kubik S, Abarnathey CD (1990) Atlas of the cerebral sulci. Georg Thieme, New YorkGoogle Scholar
  44. Pegado F, Comerlato E, Ventura F, Jobert A, Nakamura K, Buiatti M, Ventura P, Dehaene-Lambertz G, Kolinsky R, Morais J, Braga LW, Cohen L, Dehaene S (2014) Timing the impact of literacy on visual processing. Proc Natl Acad Sci USA 111(49):E5233–E5242. doi: 10.1073/pnas.1417347111 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Plomin R, Deary IJ (2015) Genetics and intelligence differences: five special findings. Mol Psychiatry 20(1):98–108. doi: 10.1038/mp.2014.105 CrossRefPubMedGoogle Scholar
  46. Raizada RD, Kishiyama MM (2010) Effects of socioeconomic status on brain development, and how cognitive neuroscience may contribute to levelling the playing field. Front Hum Neurosci 4(3):1000Google Scholar
  47. Saygin ZM, Osher DE, Norton ES, Youssoufian DA, Beach SD, Feather J, Gaab N, Gabrieli JD, Kanwisher N (2016) Connectivity precedes function in the development of the visual word form area. Nat Neurosci 19(9):1250–1255. doi: 10.1038/nn.4354 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Simon G, Lanoe C, Poirel N, Rossi S, Lubin A, Pineau A, Houde O (2013) Dynamics of the anatomical changes that occur in the brains of schoolchildren as they learn to read. PLoS ONE 8(12):e81789. doi: 10.1371/journal.pone.0081789 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Thiebaut de Schotten M, Cohen L, Amemiya E, Braga LW, Dehaene S (2014) Learning to read improves the structure of the arcuate fasciculus. Cereb Cortex 24(4):989–995. doi: 10.1093/cercor/bhs383 CrossRefPubMedGoogle Scholar
  50. Tomalski P, Johnson MH (2010) The effects of early adversity on the adult and developing brain. Curr Opin Psychiatry 23(3):233–238. doi: 10.1097/YCO.0b013e3283387a8c CrossRefPubMedGoogle Scholar
  51. Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385(6614):313–318CrossRefPubMedGoogle Scholar
  52. Vinckier F, Dehaene S, Jobert A, Dubus JP, Sigman M, Cohen L (2007) Hierarchical coding of letter strings in the ventral stream: dissecting the inner organization of the visual word-form system. Neuron 55(1):143–156. doi: 10.1016/j.neuron.2007.05.031 CrossRefPubMedGoogle Scholar
  53. Weiner KS, Barnett MA, Lorenz S, Caspers J, Stigliani A, Amunts K, Zilles K, Fischl B, Grill-Spector K (2017) The cytoarchitecture of domain-specific regions in human high-level visual cortex. Cereb Cortex 27(1):146–161. doi: 10.1093/cercor/bhw361 CrossRefPubMedGoogle Scholar
  54. Whitehurst GJ, Lonigan CJ (1998) Child development and emergent literacy. Child Dev 69(3):848–872CrossRefPubMedGoogle Scholar
  55. Xue Y, Meisels SJ (2004) Early literacy instruction and learning in kindergarten: evidence from the early childhood longitudinal study—kindergarten class of 1998–1999. Am Educ Res J 41(1):191–229CrossRefGoogle Scholar
  56. Yeatman JD, Dougherty RF, Ben-Shachar M, Wandell BA (2012) Development of white matter and reading skills. Proc Natl Acad Sci USA 109(44):E3045–E3053. doi: 10.1073/pnas.1206792109 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Zilles K, Palomero-Gallagher N, Amunts K (2013) Development of cortical folding during evolution and ontogeny. Trends Neurosci 36(5):275–284. doi: 10.1016/j.tins.2013.01.006 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Arnaud Cachia
    • 1
    • 2
    • 3
    • 4
    • 6
  • Margot Roell
    • 1
    • 2
    • 5
    • 6
  • Jean-François Mangin
    • 6
    • 7
    • 8
  • Zhong Yi Sun
    • 6
    • 7
    • 8
  • Antoinette Jobert
    • 7
  • Lucia Braga
    • 9
  • Olivier Houde
    • 1
    • 2
    • 3
    • 6
  • Stanislas Dehaene
    • 5
    • 6
    • 10
  • Grégoire Borst
    • 1
    • 2
    • 3
    • 6
  1. 1.Laboratory for the Psychology of Child Development and EducationCNRS UMR8240, SorbonneParisFrance
  2. 2.Paris Descartes University, Sorbonne Paris CitéParisFrance
  3. 3.Institut Universitaire de FranceParisFrance
  4. 4.Biomarkers of Brain Development and DisordersCenter of Psychiatry and Neurosciences, INSERM UMR894ParisFrance
  5. 5.Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, NeuroSpin CenterUniversité Paris-Sud, Université Paris-SaclayGif-sur-YvetteFrance
  6. 6.Ecole des Neurosciences de Paris (ENP)ParisFrance
  7. 7.UNATI, Neurospin, CEAGif-sur-YvetteFrance
  8. 8.CATI Multicenter Neuroimaging Platform, Neurospin, cati-neuroimaging.comGif-sur-YvetteFrance
  9. 9.SARAH Network-International Center for Neurosciences and RehabilitationBrasiliaBrazil
  10. 10.Collège de FranceParisFrance

Personalised recommendations