Brain Structure and Function

, Volume 223, Issue 1, pp 415–428 | Cite as

Chronic stress targets adult neurogenesis preferentially in the suprapyramidal blade of the rat dorsal dentate gyrus

  • Nuno D. Alves
  • Patrícia Patrício
  • Joana S. Correia
  • António Mateus-Pinheiro
  • Ana R. Machado-Santos
  • Eduardo Loureiro-Campos
  • Mónica Morais
  • João M. Bessa
  • Nuno Sousa
  • Luísa Pinto
Original Article


The continuous generation of new neurons and glial cells in the adult hippocampal dentate gyrus (DG) represents an important form of adult neuroplasticity, involved in normal brain function and behavior but also associated with the etiopathogenesis and treatment of psychiatric disorders. Despite the large number of studies addressing cell genesis along the septotemporal axis, data on the anatomical gradients of cytogenesis along the DG transverse axis is scarce, especially after exposure to stress. As such, in this study we characterized both basal proliferation and survival of adult-born neural cells along the transverse axis of the rat dorsal DG, and after stress exposure. In basal conditions, both proliferating cells and newborn neurons and glial cells were preferentially located at the subgranular zone and suprapyramidal blade. Exposure to chronic stress induced an overall decrease in the generation of adult-born neural cells and, more specifically, produced a regional-specific decrease in the survival of adult-born neurons at the suprapyramidal blade. No particular region-specific alterations were observed on surviving adult-born glial cells. This work reveals, for the first time, a distinct survival profile of adult-born neural cells, neurons and glial cells, among the transverse axis of the DG, in both basal and stress conditions. Our results unveil that adult-born neurons are preferentially located in the suprapyramidal blade and suggest a regional-specific impact of chronic stress in this blade with potential repercussions for its functional significance.


Dentate gyrus Transverse axis Cytogenesis Proliferation Survival Chronic stress 


Compliance with ethical standards


NDA, PP, AMP, ARMS, MM and LP received fellowships from the Portuguese Foundation for Science and Technology (FCT). This work was funded by FCT (IF/01079/2014). This article has been developed under the scope of the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). This work has been funded by FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE), and by National funds, through the Foundation for Science and Technology (FCT), under the scope of the project POCI-01-0145-FEDER-007038.

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

429_2017_1490_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 2041 kb)


  1. Aimone JB, Deng W, Gage FH (2010) Adult neurogenesis: integrating theories and separating functions. Trends Cogn Sci 14:325–337. doi: 10.1016/j.tics.2010.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aimone JB, Deng W, Gage FH (2011) Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron 70:589–596. doi: 10.1016/j.neuron.2011.05.010 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alves ND et al (2017) Adult hippocampal neuroplasticity triggers susceptibility to recurrent depression. Transl Psychiatry 7:e1058. doi: 10.1038/tp.2017.29 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Amaral DG, Scharfman HE, Lavenex P (2007) The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 163:3–22. doi: 10.1016/S0079-6123(07)63001-5 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ambrogini P et al (2000) Spatial learning affects immature granule cell survival in adult rat dentate gyrus. Neurosci Lett 286:21–24CrossRefPubMedGoogle Scholar
  6. Bessa JM et al (2009) The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol Psychiatry 14(764–773):739. doi: 10.1038/mp.2008.119 CrossRefGoogle Scholar
  7. Biebl M, Cooper CM, Winkler J, Kuhn HG (2000) Analysis of neurogenesis and programmed cell death reveals a self-renewing capacity in the adult rat brain. Neurosci Lett 291:17–20CrossRefPubMedGoogle Scholar
  8. Brummelte S, Galea LA (2010) Chronic high corticosterone reduces neurogenesis in the dentate gyrus of adult male and female rats. Neuroscience 168:680–690. doi: 10.1016/j.neuroscience.2010.04.023 CrossRefPubMedGoogle Scholar
  9. Buzsaki G, Moser EI (2013) Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat Neurosci 16:130–138. doi: 10.1038/nn.3304 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cameron HA, McKay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435:406–417CrossRefPubMedGoogle Scholar
  11. Cerqueira JJ, Mailliet F, Almeida OF, Jay TM, Sousa N (2007) The prefrontal cortex as a key target of the maladaptive response to stress. J Neurosci 27:2781–2787. doi: 10.1523/JNEUROSCI.4372-06.2007 CrossRefPubMedGoogle Scholar
  12. Chawla MK et al (2005) Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience. Hippocampus 15:579–586. doi: 10.1002/hipo.20091 CrossRefPubMedGoogle Scholar
  13. Choi YS, Cho KO, Kim SY (2007) Asymmetry in enhanced neurogenesis in the rostral dentate gyrus following kainic acid-induced status epilepticus in adult rats. Arch Pharm Res 30:646–652CrossRefPubMedGoogle Scholar
  14. Chowdhury GM, Fujioka T, Nakamura S (2000) Induction and adaptation of Fos expression in the rat brain by two types of acute restraint stress. Brain Res Bull 52:171–182CrossRefPubMedGoogle Scholar
  15. Claiborne BJ, Amaral DG, Cowan WM (1990) Quantitative, three-dimensional analysis of granule cell dendrites in the rat dentate gyrus. J Comp Neurol 302:206–219. doi: 10.1002/cne.903020203 CrossRefPubMedGoogle Scholar
  16. Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14:311–321. doi: 10.1038/nrn3484 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dayer AG, Ford AA, Cleaver KM, Yassaee M, Cameron HA (2003) Short-term and long-term survival of new neurons in the rat dentate gyrus. J Comp Neurol 460:563–572. doi: 10.1002/cne.10675 CrossRefPubMedGoogle Scholar
  18. de Bruin JP, Sanchez-Santed F, Heinsbroek RP, Donker A, Postmes P (1994) A behavioural analysis of rats with damage to the medial prefrontal cortex using the Morris water maze: evidence for behavioural flexibility, but not for impaired spatial navigation. Brain Res 652:323–333CrossRefPubMedGoogle Scholar
  19. Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11:339–350. doi: 10.1038/nrn2822 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Desmond NL, Levy WB (1985) Granule cell dendritic spine density in the rat hippocampus varies with spine shape and location. Neurosci Lett 54:219–224CrossRefPubMedGoogle Scholar
  21. Dranovsky A et al (2011) Experience dictates stem cell fate in the adult hippocampus. Neuron 70:908–923. doi: 10.1016/j.neuron.2011.05.022 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Drouin A et al (2011) Catechin treatment improves cerebrovascular flow-mediated dilation and learning abilities in atherosclerotic mice. Am J Physiol Heart Circ Physiol 300:H1032–H1043. doi: 10.1152/ajpheart.00410.2010 CrossRefPubMedGoogle Scholar
  23. Egeland M, Zunszain PA, Pariante CM (2015) Molecular mechanisms in the regulation of adult neurogenesis during stress. Nat Rev Neurosci 16:189–200. doi: 10.1038/nrn3855 CrossRefPubMedGoogle Scholar
  24. Encinas JM et al (2011) Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell 8:566–579. doi: 10.1016/j.stem.2011.03.010 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Encinas JM, Sierra A, Valcarcel-Martin R, Martin-Suarez S (2013) A developmental perspective on adult hippocampal neurogenesis. Int J Dev Neurosci 31:640–645. doi: 10.1016/j.ijdevneu.2013.04.001 CrossRefPubMedGoogle Scholar
  26. Esposito MS, Piatti VC, Laplagne DA, Morgenstern NA, Ferrari CC, Pitossi FJ, Schinder AF (2005) Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J Neurosci 25:10074–10086. doi: 10.1523/JNEUROSCI.3114-05.2005 CrossRefPubMedGoogle Scholar
  27. Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65:7–19. doi: 10.1016/j.neuron.2009.11.031 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Faulkner RL et al (2008) Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain. Proc Natl Acad Sci USA 105:14157–14162. doi: 10.1073/pnas.0806658105 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Fevurly RD, Spencer RL (2004) Fos expression is selectively and differentially regulated by endogenous glucocorticoids in the paraventricular nucleus of the hypothalamus and the dentate gyrus. J Neuroendocrinol 16:970–979. doi: 10.1111/j.1365-2826.2004.01257.x CrossRefPubMedGoogle Scholar
  30. Garthe A, Kempermann G (2013) An old test for new neurons: refining the Morris water maze to study the functional relevance of adult hippocampal neurogenesis. Front Neurosci 7:63. doi: 10.3389/fnins.2013.00063 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ge S, Yang CH, Hsu KS, Ming GL, Song H (2007) A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54:559–566. doi: 10.1016/j.neuron.2007.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gu Y, Arruda-Carvalho M, Wang J, Janoschka SR, Josselyn SA, Frankland PW, Ge S (2012) Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat Neurosci 15:1700–1706. doi: 10.1038/nn.3260 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Horner PJ, Palmer TD (2003) New roles for astrocytes: the nightlife of an ‘astrocyte’. La vida loca! Trends Neurosci 26:597–603. doi: 10.1016/j.tins.2003.09.010 CrossRefPubMedGoogle Scholar
  34. Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10:1369–1376. doi: 10.1038/nn2003 CrossRefPubMedGoogle Scholar
  35. Jabes A, Lavenex PB, Amaral DG, Lavenex P (2010) Quantitative analysis of postnatal neurogenesis and neuron number in the macaque monkey dentate gyrus. Eur J Neurosci 31:273–285. doi: 10.1111/j.1460-9568.2009.07061.x CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jayatissa MN, Bisgaard C, Tingstrom A, Papp M, Wiborg O (2006) Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression. Neuropsychopharmacology 31:2395–2404. doi: 10.1038/sj.npp.1301041 CrossRefPubMedGoogle Scholar
  37. Jinno S (2011) Topographic differences in adult neurogenesis in the mouse hippocampus: a stereology-based study using endogenous markers. Hippocampus 21:467–480. doi: 10.1002/hipo.20762 CrossRefPubMedGoogle Scholar
  38. Kanatsou S et al (2015) Overexpression of mineralocorticoid receptors partially prevents chronic stress-induced reductions in hippocampal memory and structural plasticity. PLoS One 10:e0142012. doi: 10.1371/journal.pone.0142012 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH (2003) Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 130:391–399CrossRefPubMedGoogle Scholar
  40. Kesner RP (2000) Behavioral analysis of the contribution of the hippocampus and parietal cortex to the processing of information: interactions and dissociations. Hippocampus 10:483–490. doi: 10.1002/1098-1063(2000)10:4<483:AID-HIPO15>3.0.CO;2-Z CrossRefPubMedGoogle Scholar
  41. Kheirbek MA, Hen R (2011) Dorsal vs ventral hippocampal neurogenesis: implications for cognition and mood. Neuropsychopharmacology 36:373–374. doi: 10.1038/npp.2010.148 CrossRefPubMedGoogle Scholar
  42. Kheirbek MA, Klemenhagen KC, Sahay A, Hen R (2012) Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat Neurosci 15:1613–1620. doi: 10.1038/nn.3262 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kheirbek MA et al (2013) Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus. Neuron 77:955–968. doi: 10.1016/j.neuron.2012.12.038 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kitamura T et al (2009) Adult neurogenesis modulates the hippocampus-dependent period of associative fear memory. Cell 139:814–827. doi: 10.1016/j.cell.2009.10.020 CrossRefPubMedGoogle Scholar
  45. Kocsis B, Vertes RP (1997) Phase relations of rhythmic neuronal firing in the supramammillary nucleus and mammillary body to the hippocampal theta activity in urethane anesthetized rats. Hippocampus 7:204–214. doi: 10.1002/(SICI)1098-1063(1997)7:2<204:AID-HIPO7>3.0.CO;2-M CrossRefPubMedGoogle Scholar
  46. Kuhn HG, Biebl M, Wilhelm D, Li M, Friedlander RM, Winkler J (2005) Increased generation of granule cells in adult Bcl-2-overexpressing mice: a role for cell death during continued hippocampal neurogenesis. Eur J Neurosci 22:1907–1915. doi: 10.1111/j.1460-9568.2005.04377.x CrossRefPubMedGoogle Scholar
  47. Lee JC, Yau SY, Lee TM, Lau BW, So KF (2016) Voluntary wheel running reverses the decrease in subventricular zone neurogenesis caused by corticosterone. Cell Transplant 25:1979–1986CrossRefPubMedGoogle Scholar
  48. Mateus-Pinheiro A, Patricio P, Bessa JM, Sousa N, Pinto L (2013a) Cell genesis and dendritic plasticity: a neuroplastic pas de deux in the onset and remission from depression. Mol Psychiatry 18:748–750. doi: 10.1038/mp.2013.56 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mateus-Pinheiro A et al (2013b) Sustained remission from depressive-like behavior depends on hippocampal neurogenesis Transl. Psychiatry 3:e210. doi: 10.1038/tp.2012.141 Google Scholar
  50. Mateus-Pinheiro A et al (2016) AP2gamma controls adult hippocampal neurogenesis and modulates cognitive, but not anxiety or depressive-like behavior. Mol Psychiatry. doi: 10.1038/mp.2016.169 Google Scholar
  51. Miller BR, Hen R (2015) The current state of the neurogenic theory of depression and anxiety. Curr Opin Neurobiol 30:51–58. doi: 10.1016/j.conb.2014.08.012 CrossRefPubMedGoogle Scholar
  52. Miller JA et al (2013) Conserved molecular signatures of neurogenesis in the hippocampal subgranular zone of rodents and primates. Development 140:4633–4644. doi: 10.1242/dev.097212 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702. doi: 10.1016/j.neuron.2011.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60CrossRefPubMedGoogle Scholar
  55. Nieto-Estevez V, Oueslati-Morales CO, Li L, Pickel J, Morales AV, Vicario-Abejon C (2016) Brain insulin-like growth factor-I directs the transition from stem cells to mature neurons during postnatal/adult hippocampal neurogenesis. Stem Cells 34:2194–2209. doi: 10.1002/stem.2397 CrossRefPubMedGoogle Scholar
  56. Nollet M, Gaillard P, Tanti A, Girault V, Belzung C, Leman S (2012) Neurogenesis-independent antidepressant-like effects on behavior and stress axis response of a dual orexin receptor antagonist in a rodent model of depression. Neuropsychopharmacology 37:2210–2221. doi: 10.1038/npp.2012.70 CrossRefPubMedPubMedCentralGoogle Scholar
  57. O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon Press, OxfordGoogle Scholar
  58. Olariu A, Cleaver KM, Cameron HA (2007) Decreased neurogenesis in aged rats results from loss of granule cell precursors without lengthening of the cell cycle. J Comp Neurol 501:659–667. doi: 10.1002/cne.21268 CrossRefPubMedGoogle Scholar
  59. O’Leary OF, Cryan JF (2014) A ventral view on antidepressant action: roles for adult hippocampal neurogenesis along the dorsoventral axis. Trends Pharmacol Sci 35:675–687. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  60. O’Leary OF et al (2014) GABAB(1) receptor subunit isoforms differentially regulate stress resilience. Proc Natl Acad Sci USA 111:15232–15237. doi: 10.1073/pnas.1404090111 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Oliveira TG et al (2016) The impact of chronic stress on the rat brain lipidome. Mol Psychiatry 21:80–88. doi: 10.1038/mp.2015.14 CrossRefPubMedGoogle Scholar
  62. Overstreet Wadiche L, Bromberg DA, Bensen AL, Westbrook GL (2005) GABAergic signaling to newborn neurons in dentate gyrus. J Neurophysiol 94:4528–4532. doi: 10.1152/jn.00633.2005 CrossRefPubMedGoogle Scholar
  63. Pace TW, Gaylord R, Topczewski F, Girotti M, Rubin B, Spencer RL (2005) Immediate-early gene induction in hippocampus and cortex as a result of novel experience is not directly related to the stressfulness of that experience. Eur J Neurosci 22:1679–1690. doi: 10.1111/j.1460-9568.2005.04354.x CrossRefPubMedGoogle Scholar
  64. Patricio P, Mateus-Pinheiro A, Sousa N, Pinto L (2013) Re-cycling paradigms: cell cycle regulation in adult hippocampal neurogenesis and implications for depression. Mol Neurobiol 48:84–96. doi: 10.1007/s12035-013-8422-x CrossRefPubMedPubMedCentralGoogle Scholar
  65. Pinto V et al (2015) Differential impact of chronic stress along the hippocampal dorsal–ventral axis. Brain Struct Funct 220:1205–1212. doi: 10.1007/s00429-014-0713-0 CrossRefPubMedGoogle Scholar
  66. Rahimi O, Claiborne BJ (2007) Morphological development and maturation of granule neuron dendrites in the rat dentate gyrus. Prog Brain Res 163:167–181. doi: 10.1016/S0079-6123(07)63010-6 CrossRefPubMedGoogle Scholar
  67. Rajkowska G, Miguel-Hidalgo JJ (2007) Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 6:219–233CrossRefPubMedPubMedCentralGoogle Scholar
  68. Ramirez-Amaya V, Vazdarjanova A, Mikhael D, Rosi S, Worley PF, Barnes CA (2005) Spatial exploration-induced Arc mRNA and protein expression: evidence for selective, network-specific reactivation. J Neurosci 25:1761–1768. doi: 10.1523/JNEUROSCI.4342-04.2005 CrossRefPubMedGoogle Scholar
  69. Ramirez-Amaya V, Marrone DF, Gage FH, Worley PF, Barnes CA (2006) Integration of new neurons into functional neural networks. J Neurosci 26:12237–12241. doi: 10.1523/JNEUROSCI.2195-06.2006 CrossRefPubMedGoogle Scholar
  70. Ruediger S, Spirig D, Donato F, Caroni P (2012) Goal-oriented searching mediated by ventral hippocampus early in trial-and-error learning. Nat Neurosci 15:1563–1571. doi: 10.1038/nn.3224 CrossRefPubMedGoogle Scholar
  71. Satvat E, Gheidi A, Voll S, Odintsova IV, Marrone DF (2012) Location is everything: neurons born during fluoxetine treatment accumulate in regions that do not support spatial learning. Neuropharmacology 62:1627–1633. doi: 10.1016/j.neuropharm.2011.11.025 CrossRefPubMedGoogle Scholar
  72. Scharfman HE, Sollas AL, Smith KL, Jackson MB, Goodman JH (2002) Structural and functional asymmetry in the normal and epileptic rat dentate gyrus. J Comp Neurol 454:424–439. doi: 10.1002/cne.10449 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Schmidt B, Marrone DF, Markus EJ (2012) Disambiguating the similar: the dentate gyrus and pattern separation. Behav Brain Res 226:56–65. doi: 10.1016/j.bbr.2011.08.039 CrossRefPubMedGoogle Scholar
  74. Schousboe A, Waagepetersen HS (2006) Glial modulation of GABAergic and glutamat ergic neurotransmission. Curr Top Med Chem 6:929–934CrossRefPubMedGoogle Scholar
  75. Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160PubMedGoogle Scholar
  76. Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410:372–376. doi: 10.1038/35066584 CrossRefPubMedGoogle Scholar
  77. Silva R, Lu J, Wu Y, Martins L, Almeida OF, Sousa N (2006) Mapping cellular gains and losses in the postnatal dentate gyrus: implications for psychiatric disorders. Exp Neurol 200:321–331. doi: 10.1016/j.expneurol.2006.02.119 CrossRefPubMedGoogle Scholar
  78. Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15:1768–1777PubMedGoogle Scholar
  79. Snyder JS et al (2009a) Adult-born hippocampal neurons are more numerous, faster maturing, and more involved in behavior in rats than in mice. J Neurosci 29:14484–14495. doi: 10.1523/JNEUROSCI.1768-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Snyder JS, Radik R, Wojtowicz JM, Cameron HA (2009b) Anatomical gradients of adult neurogenesis and activity: young neurons in the ventral dentate gyrus are activated by water maze training. Hippocampus 19:360–370. doi: 10.1002/hipo.20525 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA (2011) Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476:458–461. doi: 10.1038/nature10287 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Song H, Stevens CF, Gage FH (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417:39–44. doi: 10.1038/417039a CrossRefPubMedGoogle Scholar
  83. Sousa N, Almeida OF, Holsboer F, Paula-Barbosa MM, Madeira MD (1998) Maintenance of hippocampal cell numbers in young and aged rats submitted to chronic unpredictable stress. Comparison with the effects of corticosterone treatment. Stress 2:237–249CrossRefPubMedGoogle Scholar
  84. Tannenholz L, Jimenez JC, Kheirbek MA (2014) Local and regional heterogeneity underlying hippocampal modulation of cognition and mood Front. Behav Neurosci 8:147. doi: 10.3389/fnbeh.2014.00147 Google Scholar
  85. Tanti A, Belzung C (2013) Neurogenesis along the septo-temporal axis of the hippocampus: are depression and the action of antidepressants region-specific? Neuroscience 252:234–252. doi: 10.1016/j.neuroscience.2013.08.017 CrossRefPubMedGoogle Scholar
  86. Tanti A, Rainer Q, Minier F, Surget A, Belzung C (2012) Differential environmental regulation of neurogenesis along the septo-temporal axis of the hippocampus. Neuropharmacology. doi: 10.1016/j.neuropharm.2012.04.022 PubMedGoogle Scholar
  87. Tashiro A, Sandler VM, Toni N, Zhao C, Gage FH (2006) NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature 442:929–933. doi: 10.1038/nature05028 CrossRefPubMedGoogle Scholar
  88. Toni N et al (2007) Synapse formation on neurons born in the adult hippocampus. Nat Neurosci 10:727–734. doi: 10.1038/nn1908 CrossRefPubMedGoogle Scholar
  89. Toni N, Laplagne DA, Zhao C, Lombardi G, Ribak CE, Gage FH, Schinder AF (2008) Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci 11:901–907. doi: 10.1038/nn.2156 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Toyoda A, Iio W, Goto T, Koike H, Tsukahara T (2014) Differential expression of genes encoding neurotrophic factors and their receptors along the septal-temporal axis of the rat hippocampus. Anim Sci J 85:986–993. doi: 10.1111/asj.12268 CrossRefPubMedGoogle Scholar
  91. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9:519–525. doi: 10.1038/nn1659 CrossRefPubMedGoogle Scholar
  92. Ueki T et al (2003) A novel secretory factor, Neurogenesin-1, provides neurogenic environmental cues for neural stem cells in the adult hippocampus. J Neurosci 23:11732–11740PubMedGoogle Scholar
  93. VanElzakker M, Fevurly RD, Breindel T, Spencer RL (2008) Environmental novelty is associated with a selective increase in Fos expression in the output elements of the hippocampal formation and the perirhinal cortex. Learn Mem 15:899–908. doi: 10.1101/lm.1196508 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Vinogradova OS (1995) Expression, control, and probable functional significance of the neuronal theta-rhythm. Prog Neurobiol 45:523–583CrossRefPubMedGoogle Scholar
  95. Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52:90–110. doi: 10.1159/000087097 CrossRefPubMedGoogle Scholar
  96. Wu MV, Sahay A, Duman RS, Hen R (2015) Functional differentiation of adult-born neurons along the septotemporal axis of the dentate gyrus. Cold Spring Harb Perspect Biol 7:a018978. doi: 10.1101/cshperspect.a018978 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Wyss JM, Swanson LW, Cowan WM (1979) Evidence for an input to the molecular layer and the stratum granulosum of the dentate gyrus from the supramammillary region of the hypothalamus. Anat Embryol (Berl) 156:165–176CrossRefGoogle Scholar
  98. Youngblood BD, Zhou J, Smagin GN, Ryan DH, Harris RB (1997) Sleep deprivation by the “flower pot” technique and spatial reference memory. Physiol Behav 61:249–256CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
  2. 2.ICVS/3B’s-PT Government Associate LaboratoryGuimarãesPortugal

Personalised recommendations