Neuroanatomical and resting state EEG power correlates of central hearing loss in older adults

  • Nathalie Giroud
  • Sarah Hirsiger
  • Raphaela Muri
  • Andrea Kegel
  • Norbert Dillier
  • Martin Meyer
Original Article
  • 317 Downloads

Abstract

To gain more insight into central hearing loss, we investigated the relationship between cortical thickness and surface area, speech-relevant resting state EEG power, and above-threshold auditory measures in older adults and younger controls. Twenty-three older adults and 13 younger controls were tested with an adaptive auditory test battery to measure not only traditional pure-tone thresholds, but also above individual thresholds of temporal and spectral processing. The participants’ speech recognition in noise (SiN) was evaluated, and a T1-weighted MRI image obtained for each participant. We then determined the cortical thickness (CT) and mean cortical surface area (CSA) of auditory and higher speech-relevant regions of interest (ROIs) with FreeSurfer. Further, we obtained resting state EEG from all participants as well as data on the intrinsic theta and gamma power lateralization, the latter in accordance with predictions of the Asymmetric Sampling in Time hypothesis regarding speech processing (Poeppel, Speech Commun 41:245–255, 2003). Methodological steps involved the calculation of age-related differences in behavior, anatomy and EEG power lateralization, followed by multiple regressions with anatomical ROIs as predictors for auditory performance. We then determined anatomical regressors for theta and gamma lateralization, and further constructed all regressions to investigate age as a moderator variable. Behavioral results indicated that older adults performed worse in temporal and spectral auditory tasks, and in SiN, despite having normal peripheral hearing as signaled by the audiogram. These behavioral age-related distinctions were accompanied by lower CT in all ROIs, while CSA was not different between the two age groups. Age modulated the regressions specifically in right auditory areas, where a thicker cortex was associated with better auditory performance in older adults. Moreover, a thicker right supratemporal sulcus predicted more rightward theta lateralization, indicating the functional relevance of the right auditory areas in older adults. The question how age-related cortical thinning and intrinsic EEG architecture relates to central hearing loss has so far not been addressed. Here, we provide the first neuroanatomical and neurofunctional evidence that cortical thinning and lateralization of speech-relevant frequency band power relates to the extent of age-related central hearing loss in older adults. The results are discussed within the current frameworks of speech processing and aging.

Keywords

Cortical thickness Cortical surface area Central hearing loss Speech processing Speech-in-noise Resting state EEG power Aging 

Notes

Acknowledgements

This research was supported by the Swiss National Science Foundation (Grant no. 105314_152905  to MM), the ‘Fonds zur Förderung des akademischen Nachwuchses’ (FAN) of the ‘Zürcher Universitätsvereins’ (ZUNIV) (MM) and by the ‘Forschungskredit’ of the University of Zurich (Grant no. K-60241-01-01 to NG). We thank Dr. Susan Mérillat and Prof. Lutz Jäncke for their support in recruiting older participants through the lhab study (Zöllig et al. 2011) and providing us with the T1-weighted MR sequence and cognitive tasks used in this study. Furthermore, we are indebted to Allison Christen for proofreading the manuscript. During the work on her dissertation, NG was a pre-doctoral fellow of the International Max Planck Research School on the Life Course.

References

  1. Abe O, Yamasue H, Aoki S, Suga M, Yamada H, Kasai K, Masutani Y, Kato Nobuyuki, Kato Nobumasa, Ohtomo K (2008) Aging in the CNS: comparison of gray/white matter volume and diffusion tensor data. Neurobiol Aging 29:102–116. doi:10.1016/j.neurobiolaging.2006.09.003 PubMedCrossRefGoogle Scholar
  2. Abrams DA, Nicol T, Zecker S, Kraus N (2008) Right-hemisphere auditory cortex is dominant for coding syllable patterns in speech. J Neurosci 28:3958–3965. doi:10.1523/JNEUROSCI.0187-08.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Allen JS, Bruss J, Brown CK, Damasio H (2005) Normal neuroanatomical variation due to age: the major lobes and a parcellation of the temporal region. Neurobiol Aging 26:1245–1260. doi:10.1016/j.neurobiolaging.2005.05.023 PubMedCrossRefGoogle Scholar
  4. Amlien IK, Fjell AM, Tamnes CK, Grydeland H, Krogsrud SK, Chaplin TA, Rosa MGP, Walhovd KB (2016) Organizing principles of human cortical development—thickness and area from 4 to 30 years: insights from comparative primate neuroanatomy. Cereb Cortex 26:257–267. doi:10.1093/cercor/bhu214 PubMedCrossRefGoogle Scholar
  5. Anderson S, White-Schwoch T, Parbery-Clark A, Kraus N (2013) A dynamic auditory-cognitive system supports speech-in-noise perception in older adults. Hear Res 300:18–32PubMedPubMedCentralCrossRefGoogle Scholar
  6. Annett M (1970) A classification of hand preference by association analysis. Br J Psychol 61:303–321PubMedCrossRefGoogle Scholar
  7. Bermudez P, Lerch JP, Evans AC, Zatorre RJ (2009) Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cereb Cortex 19:1583–1596. doi:10.1093/cercor/bhn196 PubMedCrossRefGoogle Scholar
  8. Bertoli S, Staehelin K, Zemp E, Schindler C, Bodmer D, Probst R (2009) Survey on hearing aid use and satisfaction in Switzerland and their determinants. Int J Audiol 48:183–195. doi:10.1080/14992020802572627 PubMedCrossRefGoogle Scholar
  9. Bharadwaj HM, Verhulst S, Shaheen L, Liberman MC, Shinn-Cunningham BG (2014) Cochlear neuropathy and the coding of supra-threshold sound. Front Syst Neurosci. doi:10.3389/fnsys.2014.00026 PubMedPubMedCentralGoogle Scholar
  10. Bidelman GM, Howell M (2016) Functional changes in inter- and intra-hemispheric cortical processing underlying degraded speech perception. NeuroImage 124(Part A):581–590. doi:10.1016/j.neuroimage.2015.09.020 PubMedCrossRefGoogle Scholar
  11. Boemio A, Fromm S, Braun A, Poeppel D (2005) Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nat Neurosci 8:389–395. doi:10.1038/nn1409 PubMedCrossRefGoogle Scholar
  12. Brant LJ, Fozard JL (1990) Age changes in pure-tone hearing thresholds in a longitudinal study of normal human aging. J Acoust Soc Am 88:813–820. doi:10.1121/1.399731 PubMedCrossRefGoogle Scholar
  13. Bühner M, Ziegler M, Bohnes B, Lauterbach K (2006) Übungseffekte in den TAP Untertests Test Go/Nogo und Geteilte Aufmerksamkeit sowie dem Aufmerksamkeits-Belastungstest (d2). Z. Für Neuropsychol. 17:191–199. doi:10.1024/1016-264X.17.3.191 CrossRefGoogle Scholar
  14. Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 17:85–100PubMedCrossRefGoogle Scholar
  15. Cabeza R, Anderson ND, Locantore JK, McIntosh AR (2002) Aging gracefully: compensatory brain activity in high-performing older adults. NeuroImage 17:1394–1402PubMedCrossRefGoogle Scholar
  16. Cardinale F, Chinnici G, Bramerio M, Mai R, Sartori I, Cossu M, Lo Russo G, Castana L, Colombo N, Caborni C, De Momi E, Ferrigno G (2014) Validation of FreeSurfer-estimated brain cortical thickness: comparison with histologic measurements. Neuroinformatics 12:535–542PubMedCrossRefGoogle Scholar
  17. Chien W, Lin FR (2012) Prevalence of hearing aid use among older adults in the united states. Arch Intern Med 172:292–293. doi:10.1001/archinternmed.2011.1408 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cruickshanks KJ, Wiley TL, Tweed TS, Klein BE, Klein R, Mares-Perlman JA, Nondahl DM (1998) Prevalence of hearing loss in older adults in Beaver Dam, Wisconsin. The epidemiology of hearing loss study. Am J Epidemiol 148:879–886PubMedCrossRefGoogle Scholar
  19. Dale AM, Sereno MI (1993) Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5:162–176PubMedCrossRefGoogle Scholar
  20. Dale AM, Fischl B, Sereno MI (1999) Cortical Surface-Based Analysis; I. Segmentation and Surface Reconstruction. NeuroImage 9:179–194PubMedGoogle Scholar
  21. Davis SW, Dennis NA, Daselaar SM, Fleck MS, Cabeza R (2008) Que PASA? The posterior-anterior shift in aging. Cereb Cortex N Y N 1991(18):1201–1209. doi:10.1093/cercor/bhm155 CrossRefGoogle Scholar
  22. Destrieux C, Fischl B, Dale A, Halgren E (2010) Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage 53:1–15. doi:10.1016/j.neuroimage.2010.06.010 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Doelling KB, Arnal LH, Ghitza O, Poeppel D (2014) Acoustic landmarks drive delta–theta oscillations to enable speech comprehension by facilitating perceptual parsing. NeuroImage 85:761–768. doi:10.1016/j.neuroimage.2013.06.035 PubMedCrossRefGoogle Scholar
  24. Du Y, Buchsbaum BR, Grady CL, Alain C (2016) Increased activity in frontal motor cortex compensates impaired speech perception in older adults. Nat Commun 7:12241. doi:10.1038/ncomms12241 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Eckert MA, Cute SL, Vaden KI, Kuchinsky SE, Dubno JR (2012) Auditory cortex signs of age-related hearing loss. J Assoc Res Otolaryngol 13:703–713. doi:10.1007/s10162-012-0332-5 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Engvig A, Fjell AM, Westlye LT, Moberget T, Sundseth Ø, Larsen VA, Walhovd KB (2010) Effects of memory training on cortical thickness in the elderly. NeuroImage 52:1667–1676. doi:10.1016/j.neuroimage.2010.05.041 PubMedCrossRefGoogle Scholar
  27. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci 97:11050–11055PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fischl B, Sereno MI, Dale AM (1999a) Cortical surface-based analysis; II. Inflation, flattening, and a surface-based coordinate system. NeuroImage 9:195–207PubMedCrossRefGoogle Scholar
  29. Fischl B, Sereno MI, Tootell RB, Dale AM (1999b) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8:272–284PubMedCrossRefGoogle Scholar
  30. Fischl B, Liu A, Dale AM (2001) Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20:70–80PubMedCrossRefGoogle Scholar
  31. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, Van Der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355PubMedCrossRefGoogle Scholar
  32. Fischl B, Salat DH, van der Kouwe AJW, Makris N, Ségonne F, Quinn BT, Dale AM (2004a) Sequence-independent segmentation of magnetic resonance images. NeuroImage 23:69–84CrossRefGoogle Scholar
  33. Fischl B, Van Der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, Busa E, Caviness V, Makris N, Rosen B, Dale AM (2004b) Automatically parcellating the human cerebral cortex. Cereb Cortex 14:11–22PubMedCrossRefGoogle Scholar
  34. Fjell AM, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N, Agartz I, Salat DH, Greve DN, Fischl B, Dale AM, Walhovd KB (2009) High consistency of regional cortical thinning in aging across multiple samples. Cereb Cortex 19:2001–2012PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fjell AM, Westlye LT, Grydeland H, Amlien I, Espeseth T, Reinvang I, Raz N, Dale AM, Walhovd KB, Alzheimer Disease Neuroimaging Initiative (2014) Accelerating cortical thinning: unique to dementia or universal in aging? Cereb Cortex 24:919–934. doi:10.1093/cercor/bhs379 PubMedCrossRefGoogle Scholar
  36. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198PubMedCrossRefGoogle Scholar
  37. Fostick L, Ben-Artzi E, Babkoff H (2013) Aging and speech perception: beyond hearing threshold and cognitive ability. J Basic Clin Physiol Pharmacol 24:175–183PubMedGoogle Scholar
  38. Friederici AD (2012) The cortical language circuit: from auditory perception to sentence comprehension. Trends Cogn Sci 16:262–268PubMedCrossRefGoogle Scholar
  39. Füllgrabe C (2013) Age-dependent changes in temporal-fine-structure processing in the absence of peripheral hearing loss. Am J Audiol 22:313–315. doi:10.1044/1059-0889(2013/12-0070) PubMedCrossRefGoogle Scholar
  40. Füllgrabe C, Moore BCJ, Stone MA (2015) Age-group differences in speech identification despite matched audiometrically normal hearing: contributions from auditory temporal processing and cognition. Front Aging Neurosci. doi:10.3389/fnagi.2014.00347 PubMedPubMedCentralGoogle Scholar
  41. Gabrieli JDE, Poldrack RA, Desmond JE (1998) The role of left prefrontal cortex in language and memory. Proc Natl Acad Sci USA 95:906–913PubMedPubMedCentralCrossRefGoogle Scholar
  42. Giraud A-L, Poeppel D (2012) Cortical oscillations and speech processing: emerging computational principles and operations. Nat Neurosci 15:511–517PubMedPubMedCentralCrossRefGoogle Scholar
  43. Giraud AL, Truy E (2002) The contribution of visual areas to speech comprehension: a PET study in cochlear implants patients and normal-hearing subjects. Neuropsychologia 40:1562–1569. doi:10.1016/S0028-3932(02)00023-4 PubMedCrossRefGoogle Scholar
  44. Giraud AL, Price CJ, Graham JM, Truy E, Frackowiak RS (2001) Cross-modal plasticity underpins language recovery after cochlear implantation. Neuron 30:657–663PubMedCrossRefGoogle Scholar
  45. Giraud A-L, Kleinschmidt A, Poeppel D, Lund TE, Frackowiak RSJ, Laufs H (2007) Endogenous cortical rhythms determine cerebral specialization for speech perception and production. Neuron 56:1127–1134. doi:10.1016/j.neuron.2007.09.038 PubMedCrossRefGoogle Scholar
  46. Giroud N, Lemke U, Reich P, Matthes KL, Meyer M (2017a) Longitudinal auditory learning facilitates auditory cognition as revealed by microstate analysis. Biol Psychol 123:25–36. doi:10.1016/j.biopsycho.2016.11.007 PubMedCrossRefGoogle Scholar
  47. Giroud N, Lemke U, Reich P, Matthes KL, Meyer M (2017b) The impact of hearing aids and age-related hearing loss on auditory plasticity across three months—an electrical neuroimaging study. Hear Res. doi:10.1016/j.heares.2017.06.012 PubMedGoogle Scholar
  48. Gordon-Salant S, Fitzgibbons PJ (1999) Profile of auditory temporal processing in older listeners. J Speech Lang Hear Res 42:300. doi:10.1044/jslhr.4202.300 PubMedCrossRefGoogle Scholar
  49. Gordon-Salant S, Yeni-Komshian GH, Fitzgibbons PJ (2010) Recognition of accented English in quiet and noise by younger and older listeners. J Acoust Soc Am 128:3152–3160. doi:10.1121/1.3495940 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Gordon-Salant S, Yeni-Komshian GH, Fitzgibbons PJ, Cohen JI (2015) Effects of age and hearing loss on recognition of unaccented and accented multisyllabic words. J Acoust Soc Am 137:884–897PubMedPubMedCentralCrossRefGoogle Scholar
  51. Grady C (2012) The cognitive neuroscience of ageing. Nat Rev Neurosci 13:491–505. doi:10.1038/nrn3256 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gross J, Hoogenboom N, Thut G, Schyns P, Panzeri S, Belin P, Garrod S (2013) Speech rhythms and multiplexed oscillatory sensory coding in the human brain. PLoS Biol 11:e1001752PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8:393–402PubMedCrossRefGoogle Scholar
  54. Hogstrom LJ, Westlye LT, Walhovd KB, Fjell AM (2013) The structure of the cerebral cortex across adult life: age-related patterns of surface area, thickness, and gyrification. Cereb Cortex 23:2521–2530. doi:10.1093/cercor/bhs231 PubMedCrossRefGoogle Scholar
  55. Hopkins K, Moore BCJ (2011) The effects of age and cochlear hearing loss on temporal fine structure sensitivity, frequency selectivity, and speech reception in noise. J Acoust Soc Am 130:334–349. doi:10.1121/1.3585848 PubMedCrossRefGoogle Scholar
  56. Huang Q, Tang J (2010) Age-related hearing loss or presbycusis. Eur Arch Otorhinolaryngol 267:1179–1191. doi:10.1007/s00405-010-1270-7 PubMedCrossRefGoogle Scholar
  57. Humes LE, Dubno JR, Gordon-Salant S, Lister JJ, Cacace AT, Cruickshanks KJ, Gates GA, Wilson RH, Wingfield A (2012) Central presbycusis: a review and evaluation of the evidence. J Am Acad Audiol 23:635–666PubMedCrossRefGoogle Scholar
  58. Husain FT, Medina RE, Davis CW, Szymko-Bennett Y, Simonyan K, Pajor NM, Horwitz B (2011) Neuroanatomical changes due to hearing loss and chronic tinnitus: a combined VBM and DTI study. Brain Res 1369:74–88PubMedCrossRefGoogle Scholar
  59. Hutsler J, Galuske RAW (2003) Hemispheric asymmetries in cerebral cortical networks. Trends Neurosci 26:429–435. doi:10.1016/S0166-2236(03)00198-X PubMedCrossRefGoogle Scholar
  60. Jung T, Makeig S, Humphries C, Lee T, McKeown M, Iragui V (2000) Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37:163–178PubMedCrossRefGoogle Scholar
  61. Kreiner H, Eviatar Z (2014) The missing link in the embodiment of syntax: prosody. Brain Lang 137:91–102. doi:10.1016/j.bandl.2014.08.004 PubMedCrossRefGoogle Scholar
  62. Kuperberg GR, Holcomb PJ, Sitnikova T, Greve D, Dale AM, Caplan D (2003) Distinct patterns of neural modulation during the processing of conceptual and syntactic anomalies. J Cogn Neurosci 15:272–293PubMedCrossRefGoogle Scholar
  63. Lecluyse W, Meddis R (2009) A simple single-interval adaptive procedure for estimating thresholds in normal and impaired listeners. J Acoust Soc Am 126:2570PubMedCrossRefGoogle Scholar
  64. Lecluyse W, Tan CM, McFerran D, Meddis R (2013) Acquisition of auditory profiles for good and impaired hearing. Int J Audiol 52:596–605. doi:10.3109/14992027.2013.796530 PubMedCrossRefGoogle Scholar
  65. Lee FS, Matthews LJ, Dubno JR, Mills JH (2005) Longitudinal study of pure-tone thresholds in older persons. Ear Hear 26:1–11PubMedCrossRefGoogle Scholar
  66. Lee NR, Adeyemi EI, Lin A, Clasen LS, Lalonde FM, Condon E, Driver DI, Shaw P, Gogtay N, Raznahan A, Giedd JN (2016) Dissociations in cortical morphometry in youth with Down syndrome: evidence for reduced surface area but increased thickness. Cereb Cortex 26:2982–2990. doi:10.1093/cercor/bhv107 PubMedCrossRefGoogle Scholar
  67. Lemaitre H, Goldman AL, Sambataro F, Verchinski BA, Meyer-Lindenberg A, Weinberger DR, Mattay VS (2012) Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiol. Aging 33:617.e1–617.e9. doi:10.1016/j.neurobiolaging.2010.07.013 Google Scholar
  68. Liberman MC, Epstein MJ, Cleveland SS, Wang H, Maison SF (2016) Toward a differential diagnosis of hidden hearing loss in humans. PLoS One 11:e0162726. doi:10.1371/journal.pone.0162726 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Liem F, Zaehle T, Burkhard A, Jäncke L, Meyer M (2012) Cortical thickness of supratemporal plane predicts auditory N1 amplitude. NeuroReport 23:1026–1030. doi:10.1097/WNR.0b013e32835abc5c PubMedCrossRefGoogle Scholar
  70. Liem F, Hurschler MA, Jäncke L, Meyer M (2014) On the planum temporale lateralization in suprasegmental speech perception: evidence from a study investigating behavior, structure, and function. Hum Brain Mapp 35:1779–1789. doi:10.1002/hbm.22291 PubMedCrossRefGoogle Scholar
  71. Liem F, Mérillat S, Bezzola L, Hirsiger S, Philipp M, Madhyastha T, Jäncke L (2015) Reliability and statistical power analysis of cortical and subcortical FreeSurfer metrics in a large sample of healthy elderly. NeuroImage 108:95–109. doi:10.1016/j.neuroimage.2014.12.035 PubMedCrossRefGoogle Scholar
  72. Lin FR, Ferrucci L, An Y, Goh JO, Doshi J, Metter EJ, Davatzikos C, Kraut MA, Resnick SM (2014) Association of hearing impairment with brain volume changes in older adults. NeuroImage 90:84–92. doi:10.1016/j.neuroimage.2013.12.059 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lundquist AP (2009) Spatial heterogeneity of functional magnetic resonance imaging indices of dorsolateral prefrontal cortex activation evoked by a working memory task. A comparison of patients with schizophrenia and healthy controls (Unpublished Master’s Thesis). Swiss Federal Institute of Technology, LausanneGoogle Scholar
  74. Luo H, Poeppel D (2007) Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron 54:1001–1010. doi:10.1016/j.neuron.2007.06.004 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Luo H, Poeppel D (2012) Cortical oscillations in auditory perception and speech: evidence for two temporal windows in human auditory cortex. Front Psychol 3:170PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lyall AE, Shi F, Geng X, Woolson S, Li G, Wang L, Hamer RM, Shen D, Gilmore JH (2015) Dynamic development of regional cortical thickness and surface area in early childhood. Cereb Cortex 25:2204–2212. doi:10.1093/cercor/bhu027 PubMedCrossRefGoogle Scholar
  77. Meyer M, Liem F, Hirsiger S, Jäncke L, Hänggi J (2014) Cortical surface area and cortical thickness demonstrate differential structural asymmetry in auditory-related areas of the human cortex. Cereb Cortex 24:2541–2552PubMedCrossRefGoogle Scholar
  78. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202. doi:10.1146/annurev.neuro.24.1.167 PubMedCrossRefGoogle Scholar
  79. Moore DR, Edmondson-Jones M, Dawes P, Fortnum H, McCormack A, Pierzycki RH, Munro KJ (2014) Relation between speech-in-noise threshold, hearing loss and cognition from 40–69 years of age. PLoS One 9:e107720. doi:10.1371/journal.pone.0107720 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Morillon B, Lehongre K, Frackowiak RSJ, Ducorps A, Kleinschmidt A, Poeppel D, Giraud A-L (2010) Neurophysiological origin of human brain asymmetry for speech and language. Proc Natl Acad Sci USA 107:18688–18693. doi:10.1073/pnas.1007189107 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Morillon B, Liégeois-Chauvel C, Arnal LH, Bénar C-G, Giraud A-L (2012) Asymmetric function of theta and gamma activity in syllable processing: an intra-cortical study. Front Psychol 3:248. doi:10.3389/fpsyg.2012.00248 PubMedPubMedCentralCrossRefGoogle Scholar
  82. O’Brien LM, Ziegler DA, Deutsch CK, Frazier JA, Herbert MR, Locascio JJ (2011) Statistical adjustments for brain size in volumetric neuroimaging studies: some practical implications in methods. Psychiatry Res Neuroimaging 193:113–122. doi:10.1016/j.pscychresns.2011.01.007 PubMedCrossRefGoogle Scholar
  83. Overath T, McDermott JH, Zarate JM, Poeppel D (2015) The cortical analysis of speech-specific temporal structure revealed by responses to sound quilts. Nat Neurosci 18:903–911. doi:10.1038/nn.4021 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, Jacobson K, Lyons MJ, Grant MD, Franz CE, Xian H, Tsuang M, Fischl B, Seidman L, Dale A, Kremen WS (2009) Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex 19:2728–2735. doi:10.1093/cercor/bhp026 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Peelle JE, Davis MH (2012) Neural oscillations carry speech rhythm through to comprehension. Front Psychol 3:320PubMedPubMedCentralCrossRefGoogle Scholar
  86. Peelle JE, Troiani V, Grossman M, Wingfield A (2011) Hearing loss in older adults affects neural systems supporting speech comprehension. J Neurosci 31:12638–12643PubMedPubMedCentralCrossRefGoogle Scholar
  87. Pena M, Werker JF, Dehaene-Lambertz G (2012) Earlier speech Exposure does not accelerate speech acquisition. J Neurosci 32:11159–11163PubMedCrossRefGoogle Scholar
  88. Penhune VB, Zatorre RJ, MacDonald JD, Evans AC (1996) Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex 6:661–672PubMedCrossRefGoogle Scholar
  89. Perrin F, Pernier J, Bertrand O, Giard M, Echaliler J (1987) Mapping of scalp potentials by surface spline interpolation. Electroencephalogr Clin Neurophysiol 66:75–81PubMedCrossRefGoogle Scholar
  90. Pichora-Fuller MK, Souza PE (2003) Effects of aging on auditory processing of speech. Int J Audiol 42(Suppl 2):2S11-6PubMedGoogle Scholar
  91. Pickles JO (2012) An introduction to the physiology of hearing, 4th edn. Emerald, LondonGoogle Scholar
  92. Plack CJ, Barker D, Prendergast G (2014) Perceptual consequences of “hidden” hearing loss. Trends Hear. doi:10.1177/2331216514550621 PubMedPubMedCentralGoogle Scholar
  93. Poeppel D (2001) Pure word deafness and the bilateral processing of the speech code. Cogn Sci 25:679–693CrossRefGoogle Scholar
  94. Poeppel D (2003) The analysis of speech in different temporal integration windows: cerebral lateralization as “asymmetric sampling in time”. Speech Commun 41:245–255. doi:10.1016/S0167-6393(02)00107-3 CrossRefGoogle Scholar
  95. Popelka MM, Cruickshanks KJ, Wiley TL, Tweed TS, Klein BEK, Klein R (1998) Low prevalence of hearing aid use among older adults with hearing loss: the epidemiology of hearing loss study. J Am Geriatr Soc 46:1075–1078. doi:10.1111/j.1532-5415.1998.tb06643.x PubMedCrossRefGoogle Scholar
  96. Profant O, Škoch A, Balogová Z, Tintěra J, Hlinka J, Syka J (2014) Diffusion tensor imaging and MR morphometry of the central auditory pathway and auditory cortex in aging. Neuroscience 260:87–97. doi:10.1016/j.neuroscience.2013.12.010 PubMedCrossRefGoogle Scholar
  97. Profant O, Tintěra J, Balogová Z, Ibrahim I, Jilek M, Syka J (2015) Functional changes in the human auditory cortex in ageing. PLoS One 10:e0116692. doi:10.1371/journal.pone.0116692 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Rajkowska G, Goldman-Rakic PS (1995) Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach Coordinate System. Cereb Cortex 5:323–337PubMedCrossRefGoogle Scholar
  99. Rakic P (1988) Specification of cerebral cortical areas. Science 241:170–176PubMedCrossRefGoogle Scholar
  100. Rakic P (1995) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18:383–388PubMedCrossRefGoogle Scholar
  101. Rakic P (2007) The radial edifice of cortical architecture: from neuronal silhouettes to genetic engineering. Brain Res Rev 55:204–219PubMedPubMedCentralCrossRefGoogle Scholar
  102. Raz N, Gunning FM, Head D, Dupuis JH, McQuain J, Briggs SD, Loken WJ, Thornton AE, Acker JD (1997) Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cereb Cortex 7:268–282PubMedCrossRefGoogle Scholar
  103. Reuter M, Rosas HD, Fischl B (2010) Highly accurate inverse consistent registration: a robust approach. NeuroImage 53:1181–1196PubMedPubMedCentralCrossRefGoogle Scholar
  104. Reuter-Lorenz PA, Park DC (2010) Human neuroscience and the aging mind: a new look at old problems. J Gerontol B Psychol Sci Soc Sci 65B:405–415. doi:10.1093/geronb/gbq035 PubMedCentralCrossRefGoogle Scholar
  105. Rosas HD, Liu AK, Hersch S, Glessner M, Ferrante RJ, Salat DH, van der Kouwe A, Jenkins BG, Dale AM, Fischl B (2002) Regional and progressive thinning of the cortical ribbon in Huntington’s disease. Neurology 58:695–701PubMedCrossRefGoogle Scholar
  106. Roth TN, Hanebuth D, Probst R (2011) Prevalence of age-related hearing loss in Europe: a review. Eur Arch Otorhinolaryngol 268:1101–1107. doi:10.1007/s00405-011-1597-8 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Rufener KS, Oechslin MS, Wöstmann M, Dellwo V, Meyer M (2016) Age-related neural oscillation patterns during the processing of temporally manipulated speech. Brain Topogr 29:440–458. doi:10.1007/s10548-015-0464-0 PubMedCrossRefGoogle Scholar
  108. Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E, Morris JC, Dale AM, Fischl B (2004) Thinning of the cerebral cortex in aging. Cereb Cortex 14:721–730PubMedCrossRefGoogle Scholar
  109. Schepers IM, Yoshor D, Beauchamp MS (2015) Electrocorticography reveals enhanced visual cortex responses to visual speech. Cereb Cortex 25:4103–4110. doi:10.1093/cercor/bhu127 PubMedCrossRefGoogle Scholar
  110. Schneider BA, Pichora-Fuller MK (2001) Age-related changes in temporal processing: implications for speech perception. Semin Hear 22:227–240. doi:10.1055/s-2001-15628 CrossRefGoogle Scholar
  111. Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B (2004) A hybrid approach to the skull stripping problem in MRI. NeuroImage 22:1060–1075PubMedCrossRefGoogle Scholar
  112. Sheppard JP, Wang J-P, Wong PC (2011) Large-scale cortical functional organization and speech perception across the lifespan. PLoS One 6:e16510. doi:10.1371/journal.pone.0016510 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315. doi:10.1038/nn1008 PubMedCrossRefGoogle Scholar
  114. Steinhauer K, Abada SH, Pauker E, Itzhak I, Baum SR (2010) Prosody-syntax interactions in aging: event-related potentials reveal dissociations between on-line and off-line measures. Neurosci Lett 472:133–138. doi:10.1016/j.neulet.2010.01.072 PubMedCrossRefGoogle Scholar
  115. Storsve AB, Fjell AM, Tamnes CK, Westlye LT, Overbye K, Aasland HW, Walhovd KB (2014a) Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change. J Neurosci 34:8488–8498PubMedCrossRefGoogle Scholar
  116. Storsve AB, Fjell AM, Tamnes CK, Westlye LT, Overbye K, Aasland HW, Walhovd KB (2014b) Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change. J Neurosci 34:8488–8498PubMedCrossRefGoogle Scholar
  117. Tisserand DJ, Pruessner JC, Sanz Arigita EJ, van Boxtel MPJ, Evans AC, Jolles J, Uylings HBM (2002) Regional frontal cortical volumes decrease differentially in aging: an MRI study to compare volumetric approaches and voxel-based morphometry. NeuroImage 17:657–669. doi:10.1006/nimg.2002.1173 PubMedCrossRefGoogle Scholar
  118. Vermeire K, Knoop A, Boel C, Auwers S, Schenus L, Talaveron-Rodriguez M, De Boom C, De Sloovere M (2016) Speech recognition in noise by younger and older adults effects of age, hearing loss, and temporal resolution. Ann Otol Rhinol Laryngol 125:297–302PubMedCrossRefGoogle Scholar
  119. Vigneau M, Beaucousin V, Hervé P, Jobard G, Petit L, Crivello F, Mellet E, Zago LMB, Tzourio-Mazoyer N (2011) What is right-hemisphere contribution to phonological, lexico-semantic, and sentence processing? Insights from a meta-analysis. NeuroImage 54:577–593PubMedCrossRefGoogle Scholar
  120. Wagener KC, Brand T, Kollmeier B (1999a) Entwicklung und Evaluation eines Satztests für die deutsche Sprache III: evaluation des Oldenburger Satztests. Audiol Acoust 38:8695Google Scholar
  121. Wagener KC, Brand T, Kollmeier B (1999b) Entwicklung und Evaluation eines Satztests in deutscher Sprache II: optimierung des Oldenburger Satztests. Z Für Audiol 38:44–56CrossRefGoogle Scholar
  122. Wagener KC, Kühnel V, Kollmeier B (1999c) Entwicklung und Evaluation eines Satztests in deutscher Sprache I: design des Oldenburger Satztests. Z Für Audiol 38:4–15Google Scholar
  123. Wiley TL, Chappell R, Carmichael L, Nondahl DM, Cruickshanks KJ (2008) Changes in hearing thresholds over 10 years in older adults. J Am Acad Audiol 19:281–292PubMedPubMedCentralCrossRefGoogle Scholar
  124. Williams JT, Darcy I, Newman SD (2016) Bimodal bilingualism as multisensory training? Evidence for improved audiovisual speech perception after sign language exposure. Brain Res 1633:101–110. doi:10.1016/j.brainres.2015.12.046 PubMedCrossRefGoogle Scholar
  125. Wingfield A, Peelle JE (2015) The effects of hearing loss on neural processing and plasticity. Front Syst Neurosci 9:35. doi:10.3389/fnsys.2015.00035 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Wingfield A, Wayland SC, Stine EAL (1992) Adult age differences in the use of prosody for syntactic parsing and recall of spoken sentences. J Gerontol 47:P350–P356. doi:10.1093/geronj/47.5.P350 PubMedCrossRefGoogle Scholar
  127. Wingfield A, Lindfield KC, Goodglass H (2000) Effects of age and hearing sensitivity on the use of prosodic information in spoken word recognition. J Speech Lang Hear Res 43:915. doi:10.1044/jslhr.4304.915 PubMedCrossRefGoogle Scholar
  128. Wong PC, Uppunda AK, Parrish TB, Dhar S (2008) Cortical mechanisms of speech perception in noise. J Speech Lang Hear Res 51:1026PubMedCrossRefGoogle Scholar
  129. Wong PC, Jin JX, Gunasekera GM, Abel R, Lee ER, Dhar S (2009) Aging and cortical mechanisms of speech perception in noise. Neuropsychologia 47:693–703PubMedCrossRefGoogle Scholar
  130. Wong PC, Ettlinger M, Sheppard JP, Gunasekera GM, Dhar S (2010) Neuroanatomical characteristics and speech perception in noise in older adults. Ear Hear 31:471–479PubMedPubMedCentralCrossRefGoogle Scholar
  131. Yu L, Rao A, Zhang Y, Burton PC, Rishiq D, Abrams H (2017) Neuromodulatory effects of auditory training and hearing aid use on audiovisual speech perception in elderly individuals. Front Aging Neurosci 9:30. doi:10.3389/fnagi.2017.00030 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Zatorre RJ, Belin P (2001) Spectral and temporal processing in human auditory cortex. Cereb Cortex 11:946–953PubMedCrossRefGoogle Scholar
  133. Zimmermann P, Fimm B (2002) Testbatterie zurAufmerksamkeitsprüfung (TAP). PsyTest, HerzogenrathGoogle Scholar
  134. Zöllig J, Mérillat S, Eschen A, Röcke C, Martin M, Jäncke L (2011) Plasticity and imaging research in healthy aging: core ideas and profile of the International Normal Aging and Plasticity Imaging Center (INAPIC). Gerontology 57:190–192. doi:10.1159/000324307 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Nathalie Giroud
    • 1
    • 2
  • Sarah Hirsiger
    • 3
  • Raphaela Muri
    • 1
  • Andrea Kegel
    • 4
  • Norbert Dillier
    • 4
  • Martin Meyer
    • 1
    • 2
    • 5
  1. 1.Research Unit for Neuroplasticity and Learning in the Healthy Aging Brain, Department of PsychologyUniversity of ZurichZurichSwitzerland
  2. 2.University Research Priority Program “Dynamics of Healthy Aging”, Department of PsychologyUniversity of ZurichZurichSwitzerland
  3. 3.Department of Psychiatry, Psychotherapy and PsychosomaticsPsychiatric Hospital of the University of ZurichZurichSwitzerland
  4. 4.Experimental Audiology, Department of Oto-Rhino-Laryngology, Head and Neck SurgeryUniversity Hospital ZurichZurichSwitzerland
  5. 5.Cognitive Neuroscience, Department of PsychologyUniversity of KlagenfurtKlagenfurtAustria

Personalised recommendations