Advertisement

Brain Structure and Function

, Volume 222, Issue 9, pp 4131–4147 | Cite as

Population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space

  • Lei Feng
  • Tina Jeon
  • Qiaowen Yu
  • Minhui Ouyang
  • Qinmu Peng
  • Virendra Mishra
  • Mihovil Pletikos
  • Nenad Sestan
  • Michael I. Miller
  • Susumu Mori
  • Steven Hsiao
  • Shuwei Liu
  • Hao HuangEmail author
Original Article

Abstract

Animal models of the rhesus macaque (Macaca mulatta), the most widely used nonhuman primate, have been irreplaceable in neurobiological studies. However, a population-averaged macaque brain diffusion tensor imaging (DTI) atlas, including comprehensive gray and white matter labeling as well as bony and facial landmarks guiding invasive experimental procedures, is not available. The macaque white matter tract pathways and microstructures have been rarely recorded. Here, we established a population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space incorporating bony and facial landmarks, and delineated microstructures and three-dimensional pathways of major white matter tracts in vivo MRI/DTI and ex vivo (postmortem) DTI of ten rhesus macaque brains were acquired. Single-subject macaque brain DTI template was obtained by transforming the postmortem high-resolution DTI data into in vivo space. Ex vivo DTI of ten macaque brains was then averaged in the in vivo single-subject template space to generate population-averaged macaque brain DTI atlas. The white matter tracts were traced with DTI-based tractography. One hundred and eighteen neural structures including all cortical gyri, white matter tracts and subcortical nuclei, were labeled manually on population-averaged DTI-derived maps. The in vivo microstructural metrics of fractional anisotropy, axial, radial and mean diffusivity of the traced white matter tracts were measured. Population-averaged digital atlas integrated into in vivo space can be used to label the experimental macaque brain automatically. Bony and facial landmarks will be available for guiding invasive procedures. The DTI metric measurements offer unique insights into heterogeneous microstructural profiles of different white matter tracts.

Keywords

Macaque brain Atlas Population-averaged High-resolution DTI White matter tracts Invasive procedures 

Notes

Acknowledgements

This study was supported by NIH Grants R21 EB009545(HH), R01MH092535(HH), U01MH105972(NS) and U54 HD086984(HH).

References

  1. Adluru N, Zhang H, Fox AS, Shelton SE, Ennis CM, Bartosic AM, Oler JA, do Tromp PM, Zakszewski E, Gee JC, Kalin NH, Alexander AL (2012) A diffusion tensor brain template for rhesus macaques. Neuroimage 59(1):306–318CrossRefPubMedGoogle Scholar
  2. Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson 103:247–254CrossRefGoogle Scholar
  3. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15:435–455CrossRefPubMedGoogle Scholar
  4. Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34(1):144–155CrossRefPubMedGoogle Scholar
  5. Black KJ, Koller JM, Snyder AZ, Perlmutter JS (2001) Template images for nonhuman primate neuroimaging: 2. Macaque. Neuroimage 4(3):744–748CrossRefGoogle Scholar
  6. Calabrese E, Badea A, Coe CL, Lubach GR, Shi Y, Styner MA, Johnson GA (2015) A diffusion tensor MRI atlas of the postmortem rhesus macaque brain. Neuroimage 117:408–416CrossRefPubMedPubMedCentralGoogle Scholar
  7. Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17:77–94CrossRefPubMedGoogle Scholar
  8. Dyrby TB, Baare WFC, Alexander DC, Jelsing J, Garde E, Sogaard LV (2011) An ex vivo imaging pipeline for producing high-quality and high-resolution diffusion weighted imaging datasets. Hum Brain Mapp 32:544–563CrossRefPubMedGoogle Scholar
  9. Frey S, Pandya DN, Chakravarty MM, Bailey L, Petrides M, Collins DL (2011) An MRI based average macaque monkey stereotaxic atlas and space (MNI monkey space). Neuroimage 55(4):1435–1442CrossRefPubMedGoogle Scholar
  10. Hendry SH, Calkins DJ (1998) Neuronal chemistry and functional organization in the primate visual system. Trends Neurosci 21:344–349CrossRefPubMedGoogle Scholar
  11. Hendry SH, Yoshioka T (1994) A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 264:575–577CrossRefPubMedGoogle Scholar
  12. Hofer S, Merboldt KD, Tammer R, Frahm J (2008) Rehsus monkey and human share a similar topography of the corpus callosum as revealed by diffusion tensor MRI in vivo. Cereb Cortex 18:1079–1084CrossRefPubMedGoogle Scholar
  13. Huang H, Ceritoglu C, Li X, Qiu A, Miller MI, van Zijl PCM, Mori S (2008a) Correction of B0 susceptibility induced distortion in diffusion-weighted images using large-deformation diffeomorphic metric mapping. Magn Reson Imaging 26:1294–1302CrossRefPubMedPubMedCentralGoogle Scholar
  14. Huang H, Yamamoto A, Hossain MA, Younes L, Mori S (2008b) Quantitative cortical mapping of fractional anisotropy in developing rat brains. J Neurosci 28:1427–1433CrossRefPubMedPubMedCentralGoogle Scholar
  15. Huang H, Prince JL, Mishra V, Carass A, Landman B, Park DC, Tamminga C, King R, Miller MI, van Zijl PC, Mori S (2011) A framework on surface-based connectivity quantification for the human brain. J Neurosci Methods 197(2):324–332CrossRefPubMedPubMedCentralGoogle Scholar
  16. Huang H, Fan X, Weiner M, Martin-Cook K, Xiao G, Davis J, Devous M, Rosenberg R, Diaz-Arrastia R (2012a) Distinctive disruption patterns of white matter tracts in Alzheimer’s disease with full diffusion tensor characterization. Neurobiol Aging 33:2029–2045CrossRefPubMedGoogle Scholar
  17. Huang H, Gundapuneedi T, Rao U (2012b) White matter disruptions in adolescents exposed to childhood maltreatment and vulnerability to psychopathology. Neuropsychopharmacology 37:2693–2701CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jiang H, Van Zijl PC, Kim J, Pearlson GD, Mori S (2006) DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed 81:106–116CrossRefPubMedGoogle Scholar
  19. Jones DK, Horsfield MA, Simmons A (1999) Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 42:515–525CrossRefPubMedGoogle Scholar
  20. Lerch JP, Gazdzinski L, Germann J, Sled JG, Henkelman RM, Nieman BJ (2012) Wanted dead or alive? The tradeoff between in vivo versus ex vivo MR brain imaging in the mouse. Front Neuroinform 6:6CrossRefPubMedPubMedCentralGoogle Scholar
  21. Liu C, Tian X, Liu H, Mo Y, Bai F, Zhao X, Ma Y, Wang J (2015) Rehsus monkey brain development during late infancy and the effect of phencyclidine: a longitudinal MRI and DTI study. Neuroimage 107:65–75CrossRefPubMedGoogle Scholar
  22. Martin R, Bowden DM (1996) A stereotaxic template atlas of the macaque brain for digital imaging and quantitative neuroanatomy. Neuroimage 4:119–150CrossRefPubMedGoogle Scholar
  23. Martin R, Bowden DM (2000) Primate brain maps: structure of the macaque brain. Elsevier, AmsterdamGoogle Scholar
  24. McLaren DG, Kosmatka KJ, Oakes TR, Kroenke CD, Kohama SG, Matochik JA, Ingram DK, Johnson SC (2009) A population-average MRI-based atlas collection of the rhesus macaque. Neuroimage 45(1):52–59CrossRefPubMedGoogle Scholar
  25. Miller MI, Trouve A, Younes L (2002) On the metrics and Euler–Lagrange equations of computational anatomy. Annu Rev Biomed Eng 4:375–405CrossRefPubMedGoogle Scholar
  26. Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269CrossRefPubMedGoogle Scholar
  27. Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, Hua K, Faria AV, Mahmood A, Woods R, Toga AW (2008) Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 40(2):570–582CrossRefPubMedPubMedCentralGoogle Scholar
  28. Paxinos G, Huang XF, Toga AW (2009) The rhesus monkey brain I stereotaxic coordinates, 2nd edn. Academic Press, San DiegoGoogle Scholar
  29. Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906CrossRefPubMedGoogle Scholar
  30. Rohlfing T, Kroenke CD, Sullivan EV, Dubach MF, Bowden DM, Grant KA, Pfefferbaum A (2012) The INIA19 template and neuromaps atlas for primate brain image parcellation and spatial normalization. Front Neuroinform 6:27CrossRefPubMedPubMedCentralGoogle Scholar
  31. Saleem KS, Logothetis NK (2007) A combined MRI and histology atlas of the rhesus monkey brain in stereotaxic coordinates. Elsevier, San DiegoGoogle Scholar
  32. Schmahmann D, Pandya DN (2006) Fiber pathways of the brain. Oxford Univ. Press, USACrossRefGoogle Scholar
  33. Shi Y, Budin F, Yapuncich E, Rumple A, Young JT, Payne C, Zhang X, Hu X, Godfrey J, Howell B, Sanchez MM, Styner MA (2017) UNC-Emory infant atlases for macaque brain image analysis: postnatal brain development through 12 months. Front Neurosci 10:617CrossRefPubMedPubMedCentralGoogle Scholar
  34. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505CrossRefPubMedGoogle Scholar
  35. Song SK, Yoshino J, Le TQ, Lin SJ, Sun SW, Cross AH, Armstrong RC (2005) Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage 26:132–140CrossRefPubMedGoogle Scholar
  36. Steinmetz PN, Roy A, Fitzgerald PJ, Hsiao SS, Johnson KO, Niebur E (2000) Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature 404:187–190CrossRefPubMedGoogle Scholar
  37. Stieltjes B, Kaufmann WE, van Zijl PC, Fredericksen K, Pearlson GD, Solaiyappan M, Mori S (2001) Diffusion tensor imaging and axonal tracking in the human brainstem. Neuroimage 14:723–735CrossRefPubMedGoogle Scholar
  38. Van Essen DC, Dierker DL (2007) Surface-based and probabilistic atlases of primate cerebral cortex. Neuron 56(2):209–225CrossRefPubMedGoogle Scholar
  39. Wakana S, Jiang H, Nagae-Poetscher LM, Van Zijl PC, Mori S (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230:77–87CrossRefPubMedGoogle Scholar
  40. Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, Hua K, Zhang J, Jiang H, Dubey P, Blitz A, Van Zijl PC, Mori S (2007) Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 36:630–644CrossRefPubMedPubMedCentralGoogle Scholar
  41. Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC (1998) Automated image registration: i. General methods and intrasubject, intramodality validation. J Comput Assist Tomogr 22:139–152CrossRefPubMedGoogle Scholar
  42. Xu D, Mori S, Shen D, van Ziji PC, Davatzikos C (2003) Spatial normalization of diffusion tensor fields. Magn Reson Med 50:175–182CrossRefPubMedGoogle Scholar
  43. Zakszewski E, Adluru N, do Tromp PM, Kalin N, Alexander AL (2014) A diffusion-tensor-based white matter atlas for rhesus macaques. PLoS One 9(9):e107398CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zhang J, Richards LJ, Yarowsky P, Huang H, van Zijl PC, Mori S (2003) Three-dimensional anatomical characterization of the developing mouse brain by diffusion tensor microimaging. Neuroimage 20:1639–1648CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Lei Feng
    • 1
    • 2
  • Tina Jeon
    • 2
    • 3
  • Qiaowen Yu
    • 1
    • 3
  • Minhui Ouyang
    • 2
    • 3
  • Qinmu Peng
    • 2
  • Virendra Mishra
    • 3
  • Mihovil Pletikos
    • 4
  • Nenad Sestan
    • 4
  • Michael I. Miller
    • 5
  • Susumu Mori
    • 6
    • 7
  • Steven Hsiao
    • 8
  • Shuwei Liu
    • 1
  • Hao Huang
    • 2
    • 3
    • 9
    Email author
  1. 1.Research Center for Sectional and Imaging AnatomyShandong University School of MedicineJinanChina
  2. 2.Radiology ResearchChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  3. 3.Advanced Imaging Research CenterUniversity of Texas Southwestern Medical CenterDallasUSA
  4. 4.Department of Neuroscience and Kavli Institute for NeuroscienceYale School of MedicineNew HavenUSA
  5. 5.Center for Imaging ScienceJohns Hopkins UniversityBaltimoreUSA
  6. 6.Department of Radiology, School of MedicineJohns Hopkins UniversityBaltimoreUSA
  7. 7.F.M. Kirby Research Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreUSA
  8. 8.Mind/Brain InstituteJohns Hopkins UniversityBaltimoreUSA
  9. 9.Department of Radiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations