Substance P effects exclusively on prototypic neurons in mouse globus pallidus

Original Article

Abstract

Previous studies have suggested that the neurokinin-1 receptor (NK-1R) expressing neurons in the globus pallidus (GP) receive substance P (SP), presumably released by axon collaterals of striatal direct neurons. However, the effect of SP on the GP remains unclear. In this study, we identified that the SP-responsive cells comprise a highly specific cell type in the GP with regard to immunofluorescence, electrophysiology, and projection properties. Morphologically, NK-1R-immunoreactive neurons occasionally co-expressed parvalbumin (PV) and/or Lim-homeobox 6 (Lhx6), but not Forkhead box protein P2 (FoxP2), which is mainly expressed by arkypallidal neurons. Retrograde tracing experiments also showed that some of GP neurons projecting to the subthalamic nucleus (namely prototypic neurons) expressed NK-1R as well as Lhx6 and/or PV, but not FoxP2. In vitro electrophysiological study revealed that, among 48 GP neurons, the SP agonist induced inward current in 21 neurons. The response was prevented by bath application of the NK-1R antagonist. Based on the firing properties, 92 recorded GP neurons were classified into three distinct types, i.e., CL1, 2, and 3. Interestingly, all the SP-responsive neurons were found to be in CL2 and CL3 types, but not in CL1. Moreover, active and passive membrane properties of the neurons in those clusters and immunofluorescent identification suggested that CL1 and CL2/3 could be considered as arkypallidal and prototypic neurons, respectively. Therefore, SP-responsive neurons were one of the populations of prototypic neurons based on both anatomical and electrophysiological results. Altogether, the striatal direct pathway neurons could affect the indirect pathway in the way of prototypic neurons, via the action of SP to NK-1R.

Keywords

Neurokinin-1 receptor Globus pallidus Basal ganglia Striatum 

Supplementary material

429_2017_1453_MOESM1_ESM.tif (29.2 mb)
Supplementary material 1 (TIFF 29894 kb)
429_2017_1453_MOESM2_ESM.tif (17.9 mb)
Supplementary material 2 (TIFF 18295 kb)
429_2017_1453_MOESM3_ESM.tif (36.3 mb)
Supplementary material 3 (TIFF 37187 kb)
429_2017_1453_MOESM4_ESM.tif (20.4 mb)
Supplementary material 4 (TIFF 20864 kb)
429_2017_1453_MOESM5_ESM.tif (36.5 mb)
Supplementary material 5 (TIFF 37329 kb)
429_2017_1453_MOESM6_ESM.tif (34.2 mb)
Supplementary material 6 (TIFF 34980 kb)
429_2017_1453_MOESM7_ESM.tif (1 mb)
Supplementary material 7 (TIFF 1048 kb)
429_2017_1453_MOESM8_ESM.tif (4.2 mb)
Supplementary material 8 (TIFF 4290 kb)
429_2017_1453_MOESM9_ESM.tif (1 mb)
Supplementary material 9 (TIFF 1037 kb)
429_2017_1453_MOESM10_ESM.tif (860 kb)
Supplementary material 10 (TIFF 859 kb)
429_2017_1453_MOESM11_ESM.docx (31 kb)
Supplementary material 11 (DOCX 31 kb)

References

  1. Abdi A, Mallet N, Mohamed FY et al (2015) Prototypic and arkypallidal neurons in the dopamine-intact external globus pallidus. J Neurosci 35:6667–6688. doi:10.1523/JNEUROSCI.4662-14.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375. doi:10.1016/0166-2236(89)90074-X CrossRefPubMedGoogle Scholar
  3. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271. doi:10.1016/0166-2236(90)90107-L CrossRefPubMedGoogle Scholar
  4. Aosaki T, Kawaguchi Y (1996) Actions of substance P on rat neostriatal neurons in vitro. J Neurosci 16:5141–5153PubMedGoogle Scholar
  5. Bevan MD, Booth P, Eaton S, Bolam JP (1998) Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat. J Neurosci 18:9438–9452PubMedGoogle Scholar
  6. Bevan MD, Magill PJ, Terman D et al (2002) Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci 25:525–531. doi:10.1016/S0166-2236(02)02235-X CrossRefPubMedGoogle Scholar
  7. Cazorla M, de Carvalho FD, Chohan MO et al (2014) Dopamine D2 receptors regulate the anatomical and functional balance of basal ganglia circuitry. Neuron 81:153–164. doi:10.1016/j.neuron.2013.10.041 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen L, Cui Q-L, Yung W-H (2009) Neurokinin-1 receptor activation in globus pallidus. Front Neurosci 3:58. doi:10.3389/neuro.23.002.2009 PubMedPubMedCentralGoogle Scholar
  9. Cooper AJ, Stanford IM (2000) Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neurone in vitro. J Physiol 527(Pt 2):291–304. doi:10.1111/j.1469-7793.2000.t01-1-00291.x CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cui QL, Yung WH, Xue Y, Chen L (2007) Substance P excites globus pallidus neurons in vivo. Eur J Neurosci 26:1853–1861. doi:10.1111/j.1460-9568.2007.05803.x CrossRefPubMedGoogle Scholar
  11. Cui G, Jun SB, Jin X et al (2013) Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494:238–242. doi:10.1038/nature11846 CrossRefPubMedPubMedCentralGoogle Scholar
  12. DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285. doi:10.1016/0166-2236(90)90110-V CrossRefPubMedGoogle Scholar
  13. Dodson PD, Larvin JT, Duffell JM et al (2015) Distinct developmental origins manifest in the specialized encoding of movement by adult neurons of the external globus pallidus. Neuron 86:501–513. doi:10.1016/j.neuron.2015.03.007 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Eid L, Parent A, Parent M (2016) Asynaptic feature and heterogeneous distribution of the cholinergic innervation of the globus pallidus in primates. Brain Struct Funct 221:1139–1155. doi:10.1007/s00429-014-0960-0 CrossRefPubMedGoogle Scholar
  15. Elde R, Schalling M, Ceccatelli S et al (1990) Localization of neuropeptide receptor mRNA in rat brain: initial observations using probes for neurotensin and substance P receptors. Neurosci Lett 120:134–138. doi:10.1016/0304-3940(90)90187-E CrossRefPubMedGoogle Scholar
  16. Flandin P, Kimura S, Rubenstein JL (2010) The progenitor zone of the ventral medial ganglionic eminence requires Nk2–1 to generate most of the globus pallidus but few neocortical interneurons. J Neurosci 30:2812–2823. doi:10.1523/JNEUROSCI.4228-09.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fujiyama F, Sohn J, Nakano T et al (2011) Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector. Eur J Neurosci 33:668–677. doi:10.1111/j.1460-9568.2010.07564.x CrossRefPubMedGoogle Scholar
  18. Fujiyama F, Nakano T, Matsuda W et al (2015) A single-neuron tracing study of arkypallidal and prototypic neurons in healthy rats. Brain Struct Funct. doi:10.1007/s00429-015-1152-2 PubMedGoogle Scholar
  19. Furuta T, Koyano K, Tomioka R et al (2004) GABAergic basal forebrain neurons that express receptor for neurokinin B and send axons to the cerebral cortex. J Comp Neurol 473:43–58. doi:10.1002/cne.20087 CrossRefPubMedGoogle Scholar
  20. Futami T, Hatanaka Y, Matsushita K, Furuya S (1998) Expression of substance P receptor in the substantia nigra. Mol Brain Res 54:183–198CrossRefPubMedGoogle Scholar
  21. Gerfen CR (1991) Substance P (neurokinin-1) receptor mRNA is selectively expressed in cholinergic neurons in the striatum and basal forebrain. Brain Res 556:165–170. doi:10.1016/0006-8993(91)90563-B CrossRefPubMedGoogle Scholar
  22. Gittis AH, Berke JD, Bevan MD et al (2014) New roles for the external globus pallidus in basal ganglia circuits and behavior. J Neurosci 34:15178–15183. doi:10.1523/JNEUROSCI.3252-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gomez-Gallego M, Fernandez-Villalba E, Fernandez-Barreiro A, Herrero MT (2007) Changes in the neuronal activity in the pedunculopontine nucleus in chronic MPTP-treated primates: an in situ hybridization study of cytochrome oxidase subunit I, choline acetyl transferase and substance P mRNA expression. J Neural Transm 114:319–326. doi:10.1007/s00702-006-0547-x CrossRefPubMedGoogle Scholar
  24. Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254. doi:10.1016/0166-2236(90)90104-I CrossRefPubMedGoogle Scholar
  25. Hama H, Hioki H, Namiki K et al (2015) ScaleS: an optical clearing palette for biological imaging. Nat Neurosci 18:1518–1529. doi:10.1038/nn.4107 CrossRefPubMedGoogle Scholar
  26. Hernández VM, Hegeman DJ, Cui Q et al (2015) Parvalbumin+ neurons and Npas1+ neurons are distinct neuron classes in the mouse external globus pallidus. J Neurosci 35:11830–11847. doi:10.1523/JNEUROSCI.4672-14.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hoover BR, Marshall JF (2002) Further characterization of preproenkephalin mRNA-containing cells in the rodent globus pallidus. Neuroscience 111:111–125. doi:10.1016/S0306-4522(01)00565-6 CrossRefPubMedGoogle Scholar
  28. Houk JC, Bastianen C, Fansler D et al (2007) Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philos Trans R Soc Lond B Biol Sci 362:1573–1583. doi:10.1098/rstb.2007.2063 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Isomura Y, Takekawa T, Harukuni R et al (2013) Reward-modulated motor information in identified striatum neurons. J Neurosci 33:10209–10220. doi:10.1523/JNEUROSCI.0381-13.2013 CrossRefPubMedGoogle Scholar
  30. Jakab RL, Goldman-Rakic P (1996) Presynaptic and postsynaptic subcellular localization of substance P receptor immunoreactivity in the neostriatum of the rat and rhesus monkey (Macaca mulatta). J Comp Neurol 369:125–136. doi:10.1002/(SICI)1096-9861(19960520)369:1<125:AID-CNE9>3.0.CO;2-5 CrossRefPubMedGoogle Scholar
  31. Kameda H, Hioki H, Tanaka YH et al (2012) Parvalbumin-producing cortical interneurons receive inhibitory inputs on proximal portions and cortical excitatory inputs on distal dendrites. Eur J Neurosci 35:838–854. doi:10.1111/j.1460-9568.2012.08027.x CrossRefPubMedGoogle Scholar
  32. Kawaguchi Y, Wilson CJ, Emson PC (1990) Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J Neurosci 10:3421–3438. http://www.jneurosci.org/content/10/10/3421
  33. Kita H (2007) Globus pallidus external segment. Prog Brain Res 160:111–133CrossRefPubMedGoogle Scholar
  34. Kita H, Kitai ST (1994) The morphology of globus pallidus projection neurons in the rat: an intracellular staining study. Brain Res 636:308–319. doi:10.1016/0006-8993(94)91030-8 CrossRefPubMedGoogle Scholar
  35. Lee T, Kaneko T, Taki K, Mizuno N (1997) Preprodynorphin-, preproenkephalin-, and preprotachykinin-expressing neurons in the rat neostriatum: an analysis by immunocytochemistry and retrograde tracing. J Comp Neurol 386:229–244. doi:10.1002/(SICI)1096-9861(19970922)386:2<229:AID-CNE5>3.0.CO;2-3 CrossRefPubMedGoogle Scholar
  36. Lessard A, Pickel VM (2005) Subcellular distribution of and plasticity of neurokinin-1 receptors in the rat substantia nigra and ventral tegmental area. Neurosci 135:1309–1323. doi:10.1016/j.neuroscience.2005.07.025 CrossRefGoogle Scholar
  37. Lévesque M, Parent A (2005) The striatofugal fiber system in primates: a reevaluation of its organization based on single-axon tracing studies. Proc Natl Acad Sci USA 102:11888–11893. doi:10.1073/pnas.0502710102 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lévesque M, Bédard A, Cossette M, Parent A (2003) Novel aspects of the chemical anatomy of the striatum and its efferents projections. J Chem Neuroanat 26:271–281. doi:10.1016/j.jchemneu.2003.07.001 CrossRefPubMedGoogle Scholar
  39. Lévesque M, Parent R, Parent A (2006) Cellular and subcellular localization of neurokinin-1 and neurokinin-3 receptors in primate globus pallidus. Eur J Neurosci 23:2760–2772. doi:10.1111/j.1460-9568.2006.04800.x CrossRefPubMedGoogle Scholar
  40. Lévesque M, Wallman MJ, Parent R, Sík A, Parent A (2007) Neurokinin-1 and neurokinin-3 receptors in primate substantia nigra. Neurosci Res 57:362–371. doi:10.1016/j.neures.2006.11.002 CrossRefPubMedGoogle Scholar
  41. Mallet N, Micklem BR, Henny P et al (2012) Dichotomous organization of the external globus pallidus. Neuron 74:1075–1086. doi:10.1016/j.neuron.2012.04.027 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Mallet N, Schmidt R, Leventhal D et al (2016) Arkypallidal cells send a stop signal to striatum. Neuron 89:308–316. doi:10.1016/j.neuron.2015.12.017 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mantyh PW, Hunt SP, Maggio JE (1984) Substance P receptors: localization by light microscopic autoradiography in rat brain using [3H]SP as the radioligand. Brain Res 307:147–165. doi:10.1016/0006-8993(84)90470-0 CrossRefPubMedGoogle Scholar
  44. Mastro KJ, Bouchard RS, Holt HK, Gittis AH (2014) Transgenic mouse lines subdivide external segment of the globus pallidus (GPe) neurons and reveal distinct GPe output pathways. J Neurosci 34:2087–2099. doi:10.1523/JNEUROSCI.4646-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mileusnic D, Magnuson DJ, Hejna MJ et al (1999) Age and species-dependent differences in the neurokinin B system in rat and human brain. Neurobiol Aging 20:19–35. doi:10.1016/S0197-4580(99)00019-6 CrossRefPubMedGoogle Scholar
  46. Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425. doi:10.1016/S0301-0082(96)00042-1 CrossRefPubMedGoogle Scholar
  47. Mink JW, Thach WT (1993) Basal ganglia intrinsic circuits and their role in behavior. Curr Opin Neurobiol 3:950–957. doi:10.1016/0959-4388(93)90167-W CrossRefPubMedGoogle Scholar
  48. Mounir S, Parent A (2002) The expression of neurokinin-1 receptor at striatal and pallidal levels in normal human brain. Neurosci Res 44:71–81. doi:10.1016/S0168-0102(02)00087-1 CrossRefPubMedGoogle Scholar
  49. Nakaya Y, Kaneko T, Shigemoto R et al (1994) Immunohistochemical localization of substance P receptor in the central nervous system of the adult rat. J Comp Neurol 347:249–274. doi:10.1002/cne.903470208 CrossRefPubMedGoogle Scholar
  50. Nambu A, Llinás R (1994) Electrophysiology of globus pallidus neurons in vitro. J Neurophysiol 72:1127–1139PubMedGoogle Scholar
  51. Nambu A, Llinás R (1997) Morphology of globus pallidus neurons: its correlation with electrophysiology in guinea pig brain slices. J Comp Neurol 377:85–94. doi:10.1002/(SICI)1096-9861(19970106)377:1<85:AID-CNE8>3.0.CO;2-F CrossRefPubMedGoogle Scholar
  52. Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo-pallidal “hyperdirect” pathway. Neurosci Res 43:111–117. doi:10.1016/S0168-0102(02)00027-5 CrossRefPubMedGoogle Scholar
  53. Nóbrega-Pereira S, Gelman D, Bartolini G et al (2010) Origin and molecular specification of globus pallidus neurons. J Neurosci 30:2824–2834. doi:10.1523/JNEUROSCI.4023-09.2010 CrossRefPubMedGoogle Scholar
  54. Obeso J, Rodríguez-Oroz MC, Benitez-Temino B et al (2008) Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord 23(Suppl 3):S548–S559. doi:10.1002/mds.22062 CrossRefPubMedGoogle Scholar
  55. Parent A, De Bellefeuille L (1983) The pallidointralaminar and pallidonigral projections in primate as studied by retrograde double-labeling method. Brain Res 278:11–27. doi:10.1016/0006-8993(83)90222-6 CrossRefPubMedGoogle Scholar
  56. Paxinos G, Franklin KB (2013) The mouse brain in stereotaxic coordinates, 4th edn. Elsevier, AmsterdamGoogle Scholar
  57. Quirion R, Shults CW, Moody TW, Pert CB, Chase TN, O’Donohue TL (1983) Autoradiographic distribution of substance P receptors in rat central nervous system. Nature 303:714–716. doi:10.1038/303714a0 CrossRefPubMedGoogle Scholar
  58. Role LW (1984) Substance P modulation of acetylcholine-induced currents in embryonic chicken sympathetic and ciliary ganglion neurons. Proc Natl Acad Sci USA 81:2924–2928CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sadek AR, Magill PJ, Bolam JP (2007) A single-cell analysis of intrinsic connectivity in the rat globus pallidus. J Neurosci 27:6352–6362. doi:10.1523/JNEUROSCI.0953-07.2007 CrossRefPubMedGoogle Scholar
  60. Sato F, Lavallée P, Lévesque M, Parent A (2000) Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. J Comp Neurol 417:17–31. doi:10.1002/(SICI)1096-9861(20000131)417:1<17:AID-CNE2>3.0.CO;2-I CrossRefPubMedGoogle Scholar
  61. Shen KZ, North RA (1992) Substance P opens cation channels and closes potassium channels in rat locus coeruleus neurons. Neuroscience 50:345–353. doi:10.1016/0306-4522(92)90428-5 CrossRefPubMedGoogle Scholar
  62. Shughrue PJ, Lane MV, Merchenthaler I (1996) In situ hybridization analysis of the distribution of neurokinin-3 mRNA in the rat central nervous system. J Comp Neurol 372:395–414. doi:10.1002/(SICI)1096-9861(19960826)372:3<395:AID-CNE5>3.0.CO;2-Y CrossRefPubMedGoogle Scholar
  63. Smith Y, Bolam JP (1989) Neurons of the substantia nigra reticulata receive a dense GABA-containing input from the globus pallidus in the rat. Brain Res 493:160–167. doi:10.1016/0006-8993(89)91011-1 CrossRefPubMedGoogle Scholar
  64. Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86:353–387. doi:10.1016/S0306-4522(98)00004-9 CrossRefPubMedGoogle Scholar
  65. Sosulina L, Strippel C, Romo-Parra H et al (2015) Substance P excites GABAergic neurons in the mouse central amygdala through neurokinin 1 receptor activation. J Neurophysiol. doi:10.1152/jn.00883.2014 Google Scholar
  66. Stephenson-Jones M, Samuelsson E, Ericsson J et al (2011) Evolutionary conservation of the basal ganglia as a common vertebrate mechanism for action selection. Curr Biol 21:1081–1091. doi:10.1016/j.cub.2011.05.001 CrossRefPubMedGoogle Scholar
  67. Vincent SR, Satoh K, Armstrong DM, Fibiger HC (1983) Substance P in the ascending cholinergic reticular system. Nature 306:688–691. doi:10.1038/306688a0 CrossRefPubMedGoogle Scholar
  68. Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244CrossRefGoogle Scholar
  69. Whitty CJ, Walker PD, Goebel DJ, Poosch MS, Bannon MJ (1995) Quantitation, cellular localization and regulation of neurokinin receptor gene expression within the rat substantia nigra. Neurosci 64:419–425. doi:10.1016/0306-4522(94)00373-D CrossRefGoogle Scholar
  70. Wichmann T, Delong MR (1996) Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 6:751–758. doi:10.1016/S0959-4388(96)80024-9 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Laboratory of Neural Circuitry, Graduate School of Brain ScienceDoshisha UniversityKyotanabeJapan
  2. 2.Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Brain ScienceDoshisha UniversityKyotanabeJapan
  3. 3.Department of Morphological Brain Science, Graduate School of MedicineKyoto UniversityKyotoJapan

Personalised recommendations