Brain Structure and Function

, Volume 222, Issue 9, pp 3991–4004 | Cite as

The role of the putamen in language: a meta-analytic connectivity modeling study

  • Nestor Viñas-GuaschEmail author
  • Yan Jing Wu
Original Article


The putamen is a subcortical structure that forms part of the dorsal striatum of basal ganglia, and has traditionally been associated with reinforcement learning and motor control, including speech articulation. However, recent studies have shown involvement of the left putamen in other language functions such as bilingual language processing (Abutalebi et al. 2012) and production, with some authors arguing for functional segregation of anterior and posterior putamen (Oberhuber et al. 2013). A further step in exploring the role of putamen in language would involve identifying the network of coactivations of not only the left, but also the right putamen, given the involvement of right hemisphere in high order language functions (Vigneau et al. 2011). Here, a meta-analytic connectivity modeling technique was used to determine the patterns of coactivation of anterior and bilateral putamen in the language domain. Based on previous evidence, we hypothesized that left putamen coactivations would include brain regions directly associated with language processing, whereas right putamen coactivations would encompass regions involved in broader semantic processes, such as memory and visual imagery. The results showed that left anterior putamen coactivated with clusters predominantly in left hemisphere, encompassing regions directly associated with language processing, a left posterior putamen network spanning both hemispheres, and cerebellum. In right hemisphere, coactivations were in both hemispheres, in regions associated with visual and orthographic processing. These results confirm the differential involvement of right and left putamen in different language components, thus highlighting the need for further research into the role of putamen in language.


Putamen Language Meta-analytic connectivity modeling Coactivation 



The present work is supported by the Central Reserve Fund (The Education University of Hong Kong: 03A21) and the Area of Strength (The Faculty of Education and Human Development: 04094).


  1. Abutalebi J, Green DW (2016) Neuroimaging of language control in bilinguals: neural adaptation and reserve. Biling Lang Cogn 19(4):689–698. doi: 10.1017/S1366728916000225 CrossRefGoogle Scholar
  2. Abutalebi J, Della Rosa PA, Green DW, Hernandez M, Scifo P, Keim R, Costa A (2012) Bilingualism tunes the anterior cingulate cortex for conflict monitoring. Cereb Cortex (New York, N.Y.: 1991) 22(9):2076–2086. doi: 10.1093/cercor/bhr287 Google Scholar
  3. Abutalebi J, Rosa PAD, Gonzaga AK, Keim R, Costa A, Perani D (2013) The role of the left putamen in multilingual language production. Brain Lang 125(3):307–315. doi: 10.1016/j.bandl.2012.03.009 PubMedCrossRefGoogle Scholar
  4. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381PubMedCrossRefGoogle Scholar
  5. Ardila A, Bernal B, Rosselli M (2016a) How extended is Wernicke’s area? Meta-analytic connectivity study of BA20 and integrative proposal. Neurosci J 2016:4962562. doi: 10.1155/2016/4962562 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ardila A, Bernal B, Rosselli M (2016b) How localized are language brain areas? A review of brodmann areas involvement in oral language. Arch Clin Neuropsychol Off J Natl Acad Neuropsychol 31(1):112–122. doi: 10.1093/arclin/acv081 CrossRefGoogle Scholar
  7. Bai JE, Shi J, Jiang Y, He S, Weng X (2011) Chinese and Korean characters engage the same visual word form area in proficient early Chinese-Korean bilinguals. Plos One 6(7):e22765. doi: 10.1371/journal.pone.0022765 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bak TH, O’Donovan DG, Xuereb JH, Boniface S, Hodges JR (2001) Selective impairment of verb processing associated with pathological changes in Brodmann areas 44 and 45 in the motor neurone disease–dementia–aphasia syndrome. Brain 124(1):103–120. doi: 10.1093/brain/124.1.103 PubMedCrossRefGoogle Scholar
  9. Baker CI, Liu J, Wald LL, Kwong KK, Benner T, Kanwisher N (2007) Visual word processing and experiential origins of functional selectivity in human extrastriate cortex. Proc Natl Acad Sci USA 104(21):9087–9092. doi: 10.1073/pnas.0703300104 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Becker TM, Prat CS, Stocco A (2016) A network-level analysis of cognitive flexibility reveals a differential influence of the anterior cingulate cortex in bilinguals versus monolinguals. Neuropsychologia 85:62–73. doi: 10.1016/j.neuropsychologia.2016.01.020 PubMedCrossRefGoogle Scholar
  11. Beeman M, Friedman RB, Grafman J, Perez E, Diamond S, Lindsay MB (1994) Summation priming and coarse semantic coding in the right hemisphere. J Cogn Neurosci 6(1):26–45. doi: 10.1162/jocn.1994.6.1.26 PubMedCrossRefGoogle Scholar
  12. Bernal B, Ardila A, Rosselli M (2015) Broca’s area network in language function: a pooling-data connectivity study. Front Psychol. doi: 10.3389/fpsyg.2015.00687 PubMedPubMedCentralGoogle Scholar
  13. Booth JR, Wood L, Lu D, Houk JC, Bitan T (2007) The role of the basal ganglia and cerebellum in language processing. Brain Res 1133(1):136–144. doi: 10.1016/j.brainres.2006.11.074 PubMedCrossRefGoogle Scholar
  14. Brownsett SLE, Wise RJS (2010) The contribution of the parietal lobes to speaking and writing. Cereb Cortex 20(3):517–523. doi: 10.1093/cercor/bhp120 PubMedCrossRefGoogle Scholar
  15. Bruck A, Aalto S, Nurmi E, Vahlberg T, Bergman J, Rinne JO (2006) Striatal subregional 6-[18F]fluoro-L-dopa uptake in early Parkinson’s disease: a two-year follow-up study. Mov Disord 21:958–963PubMedCrossRefGoogle Scholar
  16. Brunner RJ, Kornhuber HH, Seemüller E, Suger G, Wallesch C-W (1982) Basal ganglia participation in language pathology. Brain Lang 16(2):281–299. doi: 10.1016/0093-934X(82)90087-6 PubMedCrossRefGoogle Scholar
  17. Buckner RL, Raichle ME, Petersen SE (1995) Dissociation of human prefrontal cortical areas across different speech production tasks and gender groups. J Neurophysiol 74(5):2163–2173PubMedGoogle Scholar
  18. Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain J Neurol 129(Pt 3):564–583. doi: 10.1093/brain/awl004 CrossRefGoogle Scholar
  19. Cohen L, Dehaene S, Naccache L, Lehéricy S, Dehaene-Lambertz G, Hénaff MA, Michel F (2000) The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain J Neurol 123(Pt 2):291–307CrossRefGoogle Scholar
  20. Collignon O, Vandewalle G, Voss P, Albouy G, Charbonneau G, Lassonde M, Lepore F (2011) Functional specialization for auditory-spatial processing in the occipital cortex of congenitally blind humans. Proc Natl Acad Sci USA 108(11):4435–4440. doi: 10.1073/pnas.1013928108 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Crosson BA (1992) Subcortical functions in language and memory. Guilford Press, New YorkGoogle Scholar
  22. Croxson PL, Johansen-Berg H, Behrens TEJ, Robson MD, Pinsk MA, Gross CG, Rushworth MFS (2005) Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography. J Neurosci 25(39):8854–8866. doi: 10.1523/JNEUROSCI.1311-05.2005 PubMedCrossRefGoogle Scholar
  23. D’Souza D, D’Souza H (2016) Bilingual language control mechanisms in anterior cingulate cortex and dorsolateral prefrontal cortex: a developmental perspective. J Neurosci 36(20):5434–5436. doi: 10.1523/JNEUROSCI.0798-16.2016 PubMedCrossRefGoogle Scholar
  24. Dapretto M, Bookheimer SY (1999) Form and content: dissociating syntax and semantics in sentence comprehension. Neuron 24(2):427–432PubMedCrossRefGoogle Scholar
  25. de Gelder B, Tamietto M, Pegna AJ, Van den Stock J (2015) Visual imagery influences brain responses to visual stimulation in bilateral cortical blindness. Cortex J Devoted Study Nerv Syst Behav 72:15–26. doi: 10.1016/j.cortex.2014.11.009 CrossRefGoogle Scholar
  26. Devlin JT, Raley J, Tunbridge E, Lanary K, Floyer-Lea A, Narain C, Moore DR (2003) Functional asymmetry for auditory processing in human primary auditory cortex. J Neurosci Off J Soc Neurosci 23(37):11516–11522Google Scholar
  27. Dong JW, Brennan NMP, Izzo G, Peck KK, Holodny AI (2016) fMRI activation in the middle frontal gyrus as an indicator of hemispheric dominance for language in brain tumor patients: a comparison with Broca’s area. Neuroradiology 58(5):513–520. doi: 10.1007/s00234-016-1655-4 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Draganski B, Kherif F, Klöppel S, Cook PA, Alexander DC, Parker GJM, Frackowiak RSJ (2008) Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J Neurosci 28(28):7143–7152. doi: 10.1523/JNEUROSCI.1486-08.2008 PubMedCrossRefGoogle Scholar
  29. du Boisgueheneuc F, Levy R, Volle E, Seassau M, Duffau H, Kinkingnehun S, Dubois B (2006) Functions of the left superior frontal gyrus in humans: a lesion study. Brain 129(12):3315–3328. doi: 10.1093/brain/awl244 PubMedCrossRefGoogle Scholar
  30. Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT (2009) Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30(9):2907–2926. doi: 10.1002/hbm.20718 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Eickhoff SB, Bzdok D, Laird AR, Roski C, Caspers S, Zilles K, Fox PT (2011) Co-activation patterns distinguish cortical modules, their connectivity and functional differentiation. NeuroImage 57(3):938–949. doi: 10.1016/j.neuroimage.2011.05.021 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT (2012) Activation likelihood estimation meta-analysis revisited. NeuroImage 59(3):2349–2361. doi: 10.1016/j.neuroimage.2011.09.017 PubMedCrossRefGoogle Scholar
  33. Erickson LC, Rauschecker JP, Turkeltaub PE (2016) Meta-analytic connectivity modeling of the human superior temporal sulcus. Brain Struct Funct. doi: 10.1007/s00429-016-1215-z PubMedGoogle Scholar
  34. Ferré P, Ska B, Lajoie C, Bleau A, Joanette Y (2011) Clinical focus on prosodic, discursive and pragmatic treatment for right hemisphere damaged adults: what’s right? Rehabil Res Pract 2011:1–10Google Scholar
  35. Finocchiaro C, Basso G, Giovenzana A, Caramazza A (2010) Morphological complexity reveals verb-specific prefrontal engagement. J Neurolinguist 23(6):553–563. doi: 10.1016/j.jneuroling.2010.04.004 CrossRefGoogle Scholar
  36. Ford AA, Triplett W, Sudhyadhom A, Gullett J, McGregor K, Fitzgerald DB, Crosson B (2013) Broca’s area and its striatal and thalamic connections: a diffusion-MRI tractography study. Front Neuroanat 7:8. doi: 10.3389/fnana.2013.00008 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fox PT, Lancaster JL (2002) Opinion: mapping context and content: the BrainMap model. Nat Rev Neurosci 3(4):319–321. doi: 10.1038/nrn789 PubMedCrossRefGoogle Scholar
  38. Fox PT, Laird AR, Fox SP, Fox PM, Uecker AM, Crank M, Lancaster JL (2005) BrainMap taxonomy of experimental design: description and evaluation. Hum Brain Mapp 25(1):185–198. doi: 10.1002/hbm.20141 PubMedCrossRefGoogle Scholar
  39. Friederici AD (2002a) Towards a neural basis of auditory sentence processing. Trends Cogn Sci 6(2):78–84. doi: 10.1016/S1364-6613(00)01839-8 PubMedCrossRefGoogle Scholar
  40. Friederici AD (2002b) Towards a neural basis of auditory sentence processing. Trends Cogn Sci 6(2):78–84. doi: 10.1016/S1364-6613(00)01839-8 PubMedCrossRefGoogle Scholar
  41. Friederici AD, Meyer M, von Cramon DY (2000) Auditory language comprehension: an event-related fMRI study on the processing of syntactic and lexical information. Brain Lang 75(3):289–300PubMedCrossRefGoogle Scholar
  42. Gaysina D, Maughan B, Richards M (2010) Association of reading problems with speech and motor development: results from a British 1946 birth cohort. Dev Med Child Neurol 52(7):680–681. doi: 10.1111/j.1469-8749.2010.03649.x PubMedPubMedCentralCrossRefGoogle Scholar
  43. Ghosh S, Basu A, Kumaran SS, Khushu S (2010) Functional mapping of language networks in the normal brain using a word-association task. Indian J Radiol Imaging 20(3):182–187. doi: 10.4103/0971-3026.69352 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gough PM, Nobre AC, Devlin JT (2005) Dissociating linguistic processes in the left inferior frontal cortex with transcranial magnetic stimulation. J Neurosci Off J Soc Neurosci 25(35):8010–8016. doi: 10.1523/JNEUROSCI.2307-05.2005 CrossRefGoogle Scholar
  45. Grande M, Meffert E, Schoenberger E, Jung S, Frauenrath T, Huber W, Heim S (2012) From a concept to a word in a syntactically complete sentence: an fMRI study on spontaneous language production in an overt picture description task. ResearchGate 61(3):702–714. doi: 10.1016/j.neuroimage.2012.03.087 Google Scholar
  46. Hagoort P (2005) On Broca, brain, and binding: a new framework. Trends Cogn Sci 9(9):416–423. doi: 10.1016/j.tics.2005.07.004 PubMedCrossRefGoogle Scholar
  47. Helmich RC, Aarts E, de Lange FP, Bloem BR, Toni I (2009) Increased dependence of action selection on recent motor history in Parkinson’s disease. J Neurosci Off J Soc Neurosci 29(19):6105–6113. doi: 10.1523/JNEUROSCI.0704-09.2009 CrossRefGoogle Scholar
  48. Helmich RC, Derikx LC, Bakker M, Scheeringa R, Bloem BR, Toni I (2010) Spatial remapping of cortico-striatal connectivity in Parkinson’s disease. Cerebral Cortex 20(5):1175–1186. doi: 10.1093/cercor/bhp178 PubMedCrossRefGoogle Scholar
  49. Hofmann MJ, Herrmann MJ, Dan I, Obrig H, Conrad M, Kuchinke L, Fallgatter AJ (2008) Differential activation of frontal and parietal regions during visual word recognition: an optical topography study. NeuroImage 40(3):1340–1349. doi: 10.1016/j.neuroimage.2007.12.037 PubMedCrossRefGoogle Scholar
  50. Humphries S, Holler J, Crawford TJ, Herrera E, Poliakoff E (2016) A third-person perspective on co-speech action gestures in Parkinson’s disease. Cortex J Devoted Study Nerv Syst Behav 78:44–54. doi: 10.1016/j.cortex.2016.02.009 CrossRefGoogle Scholar
  51. Kang AM, Constable RT, Gore JC, Avrutin S (1999) An event-related fMRI study of implicit phrase-level syntactic and semantic processing. NeuroImage 10(5):555–561. doi: 10.1006/nimg.1999.0493 PubMedCrossRefGoogle Scholar
  52. Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 318:876–880PubMedCrossRefGoogle Scholar
  53. Koenigs M, Barbey AK, Postle BR, Grafman J (2009) Superior parietal cortex is critical for the manipulation of information in working memory. J Neurosci Off J Soc Neurosci 29(47):14980–14986. doi: 10.1523/JNEUROSCI.3706-09.2009 CrossRefGoogle Scholar
  54. Krieg SM, Sollmann N, Tanigawa N, Foerschler A, Meyer B, Ringel F (2016) Cortical distribution of speech and language errors investigated by visual object naming and navigated transcranial magnetic stimulation. Brain Struct Funct 221(4):2259–2286. doi: 10.1007/s00429-015-1042-7 PubMedCrossRefGoogle Scholar
  55. Laird AR, Lancaster JL, Fox PT (2005) BrainMap: the social evolution of a human brain mapping database. Neuroinformatics 3(1):65–78PubMedCrossRefGoogle Scholar
  56. Laird AR, Eickhoff SB, Rottschy C, Bzdok D, Ray KL, Fox PT (2013) Networks of task co-activations. NeuroImage 80:505–514. doi: 10.1016/j.neuroimage.2013.04.073 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lehéricy S, Ducros M, Krainik A, Francois C, Van de Moortele P-F, Ugurbil K, Kim D-S (2004) 3-D diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections to the human striatum. Cereb Cortex (New York, N.Y.: 1991) 14(12):1302–1309. doi: 10.1093/cercor/bhh091 Google Scholar
  58. Lehéricy S, Benali H, Van de Moortele P-F, Pélégrini-Issac M, Waechter T, Ugurbil K, Doyon J (2005) Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc Natl Acad Sci USA 102(35):12566–12571. doi: 10.1073/pnas.0502762102 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Levy J, Pernet C, Treserras S, Boulanouar K, Aubry F, Démonet J-F, Celsis P (2009) Testing for the dual-route cascade reading model in the brain: an fMRI effective connectivity account of an efficient reading style. PLoS One. doi: 10.1371/journal.pone.0006675 Google Scholar
  60. Liu H, Jiang Y, Zhang B, Ma L, He S, Weng X (2013) The orthographic sensitivity to written Chinese in the occipital-temporal cortex. Exp Brain Res 227(3):387–396. doi: 10.1007/s00221-013-3518-0 PubMedCrossRefGoogle Scholar
  61. Ma L, Jiang Y, Bai JE, Gong Q, Liu H, Chen H-C, Weng X (2011) Robust and task-independent spatial profile of the visual word form activation in fusiform cortex. PloS One 6(10):e26310. doi: 10.1371/journal.pone.0026310 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Manes JL, Parkinson AL, Larson CR, Greenlee JD, Eickhoff SB, Corcos DM, Robin DA (2014) Connectivity of the subthalamic nucleus and globus pallidus pars interna to regions within the speech network. Hum Brain Mapp 35(7):3499–3516. doi: 10.1002/hbm.22417 PubMedCrossRefGoogle Scholar
  63. Marini A (2012) Characteristics of narrative discourse processing after damage to the right hemisphere. Semin Speech Lang 33(1):68–78. doi: 10.1055/s-0031-1301164 PubMedCrossRefGoogle Scholar
  64. Matteau I, Kupers R, Ricciardi E, Pietrini P, Ptito M (2010) Beyond visual, aural and haptic movement perception: hMT+ is activated by electrotactile motion stimulation of the tongue in sighted and in congenitally blind individuals. Brain Res Bull 82(5–6):264–270. doi: 10.1016/j.brainresbull.2010.05.001 PubMedCrossRefGoogle Scholar
  65. Nakano K, Kayahara T, Tsutsumi T, Ushiro H (2000) Neural circuits and functional organization of the striatum. J Neurol 247 Suppl 5:V1–15Google Scholar
  66. Nurmi E, Ruottinen HM, Bergman J, Haaparanta M, Solin O, Sonninen P, Rinne JO (2001) Rate of progression in Parkinson’s disease: a 6-[18F]fluoro-L-dopa PET study. Mov Disord 16:608–615PubMedCrossRefGoogle Scholar
  67. Oberhuber M, Jones ŌP, Hope TMH, Prejawa S, Seghier ML, Green DW, Price CJ (2013) Functionally distinct contributions of the anterior and posterior putamen during sublexical and lexical reading. Front Hum Neurosci. doi: 10.3389/fnhum.2013.00787 PubMedPubMedCentralGoogle Scholar
  68. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20(1):91–127 PubMedCrossRefGoogle Scholar
  69. Pernet CR, Poline JB, Demonet JF, Rousselet GA (2009) Brain classification reveals the right cerebellum as the best biomarker of dyslexia. BMC Neurosci 10:67. doi: 10.1186/1471-2202-10-67 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME (1989) Positron emission tomographic studies of the processing of single words. J Cogn Neurosci 1(2):153–170PubMedCrossRefGoogle Scholar
  71. Poeppel D, Idsardi WJ, Van Wassenhove V (2008) Speech perception at the interface of neurobiology and linguistics. Philos Trans R Soc B Biol Sci 363(1493):1071–1086. doi: 10.1098/rstb.2007.2160 CrossRefGoogle Scholar
  72. Postuma RB, Dagher A (2006) Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb Cortex (New York, N.Y.: 1991) 16(10):1508–1521. doi: 10.1093/cercor/bhj088 Google Scholar
  73. Price CJ, Mechelli A (2005) Reading and reading disturbance. Curr Opin Neurobiol 15(2):231–238. doi: 10.1016/j.conb.2005.03.003 PubMedCrossRefGoogle Scholar
  74. Raichle ME, Fiez JA, Videen TO, MacLeod AM, Pardo JV, Fox PT, Petersen SE (1994) Practice-related changes in human brain functional anatomy during nonmotor learning. Cereb Cortex (New York, N.Y.: 1991) 4(1):8–26Google Scholar
  75. Richardson FM, Seghier ML, Leff AP, Thomas MSC, Price CJ (2011) Multiple routes from occipital to temporal cortices during reading. J Neurosci Off J Soc Neurosci 31(22):8239–8247. doi: 10.1523/JNEUROSCI.6519-10.2011 CrossRefGoogle Scholar
  76. Robles SG, Gatignol P, Capelle L, Mitchell M-C, Duffau H (2005) The role of dominant striatum in language: a study using intraoperative electrical stimulations. J Neurol Neurosurg Psychiatry 76(7):940–946. doi: 10.1136/jnnp.2004.045948 CrossRefGoogle Scholar
  77. Robinson JL, Laird AR, Glahn DC, Lovallo WR, Fox PT (2010) Metaanalytic connectivity modeling: delineating the functional connectivity of the human amygdala. Hum Brain Mapp 31(2):173–184. doi: 10.1002/hbm.20854 PubMedPubMedCentralGoogle Scholar
  78. Rodd JM, Longe OA, Randall B, Tyler LK (2010) The functional organisation of the fronto-temporal language system: evidence from syntactic and semantic ambiguity. Neuropsychologia 48(5):1324–1335. doi: 10.1016/j.neuropsychologia.2009.12.035 PubMedCrossRefGoogle Scholar
  79. Schmidt GL, Seger CA (2009) Neural correlates of metaphor processing: the roles of figurativeness, familiarity and difficulty. Brain Cogn 71(3):375–386. doi: 10.1016/j.bandc.2009.06.001 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Seghier ML (2013) The angular gyrus: multiple functions and multiple subdivisions. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry 19(1):43–61. doi: 10.1177/1073858412440596 Google Scholar
  81. Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5(3):776–794PubMedGoogle Scholar
  82. Senior C, Russell T, Gazzaniga MS (eds) (2009) Methods in mind. The MIT Press, London, CambridgeGoogle Scholar
  83. Shallice T, Fletcher P, Frith CD, Grasby P, Frackowiak RS, Dolan RJ (1994) Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature 368(6472):633–635. doi: 10.1038/368633a0 PubMedCrossRefGoogle Scholar
  84. Stein JL, Wiedholz LM, Bassett DS, Weinberger DR, Zink CF, Mattay VS, Meyer-Lindenberg A (2007) A validated network of effective amygdala connectivity. NeuroImage 36(3):736–745. doi: 10.1016/j.neuroimage.2007.03.022 PubMedCrossRefGoogle Scholar
  85. Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage 44(2):489–501. doi: 10.1016/j.neuroimage.2008.08.039 PubMedCrossRefGoogle Scholar
  86. Teichmann M, Darcy I, Bachoud-Lévi A-C, Dupoux E (2009) The role of the striatum in phonological processing. Evidence from early stages of Huntington’s disease. Cortex 45(7):839–849. doi: 10.1016/j.cortex.2008.12.005 PubMedCrossRefGoogle Scholar
  87. Thesen T, McDonald CR, Carlson C, Doyle W, Cash S, Sherfey J, Halgren E (2012) Sequential then interactive processing of letters and words in the left fusiform gyrus. Nat Commun 3:1284. doi: 10.1038/ncomms2220 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Thoma RJ, Chaze C, Lewine JD, Calhoun VD, Clark VP, Bustillo J, Turner JA (2016) Functional MRI evaluation of multiple neural networks underlying auditory verbal hallucinations in schizophrenia spectrum disorders. Front Psychiatry 7:39. doi: 10.3389/fpsyt.2016.00039 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Thothathiri M, Rattinger M, Trivedi B (2017) Cognitive control during sentence generation. Cogn Neurosci 8(1):39–49. doi: 10.1080/17588928.2015.1090421 PubMedCrossRefGoogle Scholar
  90. Tulving E, Kapur S, Markowitsch HJ, Craik FI, Habib R, Houle S (1994) Neuroanatomical correlates of retrieval in episodic memory: auditory sentence recognition. Proc Natl Acad Sci 91(6):2012–2015PubMedPubMedCentralCrossRefGoogle Scholar
  91. Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA (2002) Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. NeuroImage 16(3 Pt 1):765–780PubMedCrossRefGoogle Scholar
  92. Turkeltaub PE, Eickhoff SB, Laird AR, Fox M, Wiener M, Fox P (2012) Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Hum Brain Mapp 33(1):1–13. doi: 10.1002/hbm.21186 PubMedCrossRefGoogle Scholar
  93. Ullman MT (2001) A neurocognitive perspective on language: the declarative/procedural model. Nat Rev Neurosci 2(10):717–726. doi: 10.1038/35094573 PubMedCrossRefGoogle Scholar
  94. Ullman MT (2006) Is Broca’s area part of a basal ganglia thalamocortical circuit? Cortex J Devoted Study Nerv Syst Behav 42(4):480–485. doi: 10.1016/S0010-9452(08)70382-4 CrossRefGoogle Scholar
  95. Van Ettinger-Veenstra H, Ragnehed M, McAllister A, Lundberg P, Engström M (2012) Right-hemispheric cortical contributions to language ability in healthy adults. Brain Lang 120(3):395–400. doi: 10.1016/j.bandl.2011.10.002 PubMedCrossRefGoogle Scholar
  96. Vigneau M, Beaucousin V, Hervé P-Y, Jobard G, Petit L, Crivello F, Tzourio-Mazoyer N (2011) What is right-hemisphere contribution to phonological, lexico-semantic, and sentence processing? Insights from a meta-analysis. NeuroImage 54(1):577–593. doi: 10.1016/j.neuroimage.2010.07.036 PubMedCrossRefGoogle Scholar
  97. Wager TD, Smith EE (2003) Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci 3(4):255–274PubMedCrossRefGoogle Scholar
  98. Wong D, Pisoni DB, Learn J, Gandour JT, Miyamoto RT, Hutchins GD (2002) PET imaging of differential cortical activation by monaural speech and nonspeech stimuli. Hear Res 166(1–2):9–23PubMedPubMedCentralCrossRefGoogle Scholar
  99. Xiang H, Lin C, Ma X, Zhang Z, Bower JM, Weng X, Gao J-H (2003) Involvement of the cerebellum in semantic discrimination: an fMRI study. Hum Brain Mapp 18(3):208–214. doi: 10.1002/hbm.10095 PubMedCrossRefGoogle Scholar
  100. York C, Olm C, Boller A, McCluskey L, Elman L, Haley J, Grossman M (2014) Action verb comprehension in amyotrophic lateral sclerosis and Parkinson’s disease. J Neurol 261(6):1073–1079. doi: 10.1007/s00415-014-7314y PubMedPubMedCentralCrossRefGoogle Scholar
  101. Zald DH, McHugo M, Ray KL, Glahn DC, Eickhoff SB, Laird AR (2014) Meta-analytic connectivity modeling reveals differential functional connectivity of the medial and lateral orbitofrontal cortex. Cereb Cortex 24(1):232–248. doi: 10.1093/cercor/bhs308 PubMedCrossRefGoogle Scholar
  102. Zu Eulenburg P, Caspers S, Roski C, Eickhoff SB (2012) Meta-analytical definition and functional connectivity of the human vestibular cortex. NeuroImage 60(1):162–169. doi: 10.1016/j.neuroimage.2011.12.032 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Centre for Brain and Education, Faculty of Education and Human DevelopmentThe Education University of Hong KongHong Kong S.A.R.China
  2. 2.College of Psychology and SociologyShenzhen UniversityShenzhenChina

Personalised recommendations