Brain Structure and Function

, Volume 222, Issue 9, pp 3899–3914 | Cite as

Functional organization of the medial temporal lobe memory system following neonatal hippocampal lesion in rhesus monkeys

  • Loïc J. Chareyron
  • Pamela Banta Lavenex
  • David G. Amaral
  • Pierre Lavenex
Original Article


Hippocampal damage in adult humans impairs episodic and semantic memory, whereas hippocampal damage early in life impairs episodic memory but leaves semantic learning relatively preserved. We have previously shown a similar behavioral dissociation in nonhuman primates. Hippocampal lesion in adult monkeys prevents allocentric spatial relational learning, whereas spatial learning persists following neonatal lesion. Here, we quantified the number of cells expressing the immediate–early gene c-fos, a marker of neuronal activity, to characterize the functional organization of the medial temporal lobe memory system following neonatal hippocampal lesion. Ninety minutes before brain collection, three control and four adult monkeys with bilateral neonatal hippocampal lesions explored a novel environment to activate brain structures involved in spatial learning. Three other adult monkeys with neonatal hippocampal lesions remained in their housing quarters. In unlesioned monkeys, we found high levels of c-fos expression in the intermediate and caudal regions of the entorhinal cortex, and in the perirhinal, parahippocampal, and retrosplenial cortices. In lesioned monkeys, spatial exploration induced an increase in c-fos expression in the intermediate field of the entorhinal cortex, the perirhinal, parahippocampal, and retrosplenial cortices, but not in the caudal entorhinal cortex. These findings suggest that different regions of the medial temporal lobe memory system may require different types of interaction with the hippocampus in support of memory. The caudal perirhinal cortex, the parahippocampal cortex, and the retrosplenial cortex may contribute to spatial learning in the absence of functional hippocampal circuits, whereas the caudal entorhinal cortex may require hippocampal output to support spatial learning.


Hippocampus Entorhinal Perirhinal Parahippocampal Cingulate Retrosplenial 



This research was supported by grants from the Swiss National Science Foundation (P00A-106701, PP00P3-124536, and 310030_143956), the US National Institutes of Health (NIH; MH041479; and NS16980); and conducted, in part, at the California National Primate Research Center (OD011107).

Significance statement

We characterized the functional organization of the medial temporal lobe memory system following neonatal hippocampal lesions in nonhuman primates. After exploration of a novel environment, c-fos expression, a marker of neuronal activity, was found in the intermediate and caudal regions of the entorhinal cortex, the caudal perirhinal cortex, and the parahippocampal and retrosplenial cortices of control monkeys. In lesioned monkeys, spatial exploration induced increased c-fos expression in the intermediate field of the entorhinal cortex, the caudal perirhinal cortex, and the parahippocampal and retrosplenial cortices. These findings suggest that the caudal perirhinal, parahippocampal, and retrosplenial cortices may contribute to spatial learning in the absence of functional hippocampal circuits, whereas the caudal entorhinal cortex may require hippocampal output to support spatial learning.

Supplementary material

429_2017_1441_MOESM1_ESM.docx (112 kb)
Supplementary material 1 (DOCX 113 kb)
429_2017_1441_MOESM2_ESM.docx (61 kb)
Supplementary material 2 (DOCX 61 kb)
429_2017_1441_MOESM3_ESM.docx (84 kb)
Supplementary material 3 (DOCX 84 kb)
429_2017_1441_MOESM4_ESM.docx (68 kb)
Supplementary material 4 (DOCX 69 kb)


  1. Abrahams S, Pickering A, Polkey CE, Morris RG (1997) Spatial memory deficits in patients with unilateral damage to the right hippocampal formation. Neuropsychologia 35(1):11–24CrossRefPubMedGoogle Scholar
  2. Aggleton JP (2014) Looking beyond the hippocampus: old and new neurological targets for understanding memory disorders. Proc Biol Sci. doi: 10.1098/rspb.2014.0565 PubMedPubMedCentralGoogle Scholar
  3. Aguirre GK, D’Esposito M (1999) Topographical disorientation: a synthesis and taxonomy. Brain 122(Pt 9):1613–1628CrossRefPubMedGoogle Scholar
  4. Albasser MM, Poirier GL, Warburton EC, Aggleton JP (2007) Hippocampal lesions halve immediate-early gene protein counts in retrosplenial cortex: distal dysfunctions in a spatial memory system. Eur J Neurosci 26(5):1254–1266CrossRefPubMedGoogle Scholar
  5. Amaral DG, Lavenex P (2007) Hippocampal neuroanatomy. In: Amaral DG, Andersen P, Bliss T, Morris RGM, O’Keefe J (eds) The hippocampus book. Oxford University Press, Oxford, pp 37–114Google Scholar
  6. Amaral DG, Insausti R, Cowan WM (1987) The entorhinal cortex of the monkey: I. Cytoarchitectonic organization. J Comp Neurol 264(3):326–355CrossRefPubMedGoogle Scholar
  7. Angeli SJ, Murray EA, Mishkin M (1993) Hippocampectomized monkeys can remember one place but not two. Neuropsychologia 31(10):1021–1030CrossRefPubMedGoogle Scholar
  8. Auger SD, Zeidman P, Maguire EA (2015) A central role for the retrosplenial cortex in de novo environmental learning. Elife. doi: 10.7554/eLife.09031 PubMedPubMedCentralGoogle Scholar
  9. Banta Lavenex P, Lavenex P (2009) Spatial memory and the monkey hippocampus: not all space is created equal. Hippocampus 19(1):8–19. doi: 10.1002/hipo.20485 CrossRefPubMedGoogle Scholar
  10. Banta Lavenex P, Amaral DG, Lavenex P (2006) Hippocampal lesion prevents spatial relational learning in adult macaque monkeys. J Neurosci 26(17):4546–4558CrossRefGoogle Scholar
  11. Banta Lavenex PA, Colombo F, Ribordy Lambert F, Lavenex P (2014) The human hippocampus beyond the cognitive map: evidence from a densely amnesic patient. Front Hum Neurosci. doi: 10.3389/fnhum.2014.00711 PubMedPubMedCentralGoogle Scholar
  12. Bartsch T, Dohring J, Rohr A, Jansen O, Deuschl G (2011) CA1 neurons in the human hippocampus are critical for autobiographical memory, mental time travel, and autonoetic consciousness. Proc Natl Acad Sci USA 108(42):17562–17567. doi: 10.1073/pnas.1110266108 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bauman MD, Lavenex P, Mason WA, Capitanio JP, Amaral DG (2004a) The development of mother-infant interactions after neonatal amygdala lesions in rhesus monkeys. J Neurosci 24(3):711–721. doi: 10.1523/JNEUROSCI.3263-03.200424/3/711 CrossRefPubMedGoogle Scholar
  14. Bauman MD, Lavenex P, Mason WA, Capitanio JP, Amaral DG (2004b) The development of social behavior following neonatal amygdala lesions in rhesus monkeys. J Cogn Neurosci 16(8):1388–1411CrossRefPubMedGoogle Scholar
  15. Bauman MD, Toscano JE, Mason WA, Lavenex P, Amaral DG (2006) The expression of social dominance following neonatal lesions of the amygdala or hippocampus in rhesus monkeys (Macaca mulatta). Behav Neurosci 120(4):749–760. doi: 10.1037/0735-7044.120.4.749 CrossRefPubMedGoogle Scholar
  16. Bliss-Moreau E, Moadab G, Santistevan A, Amaral DG (2017) The effects of neonatal amygdala or hippocampus lesions on adult social behavior. Behav Brain Res 322(Pt A):123–137. doi: 10.1016/j.bbr.2016.11.052 CrossRefPubMedGoogle Scholar
  17. Bohbot VD, Iaria G, Petrides M (2004) Hippocampal function and spatial memory: evidence from functional neuroimaging in healthy participants and performance of patients with medial temporal lobe resections. Neuropsychology 18(3):418–425CrossRefPubMedGoogle Scholar
  18. Bohbot VD, Allen JJ, Dagher A, Dumoulin SO, Evans AC, Petrides M, Kalina M, Stepankova K, Nadel L (2015) Role of the parahippocampal cortex in memory for the configuration but not the identity of objects: converging evidence from patients with selective thermal lesions and fMRI. Front Hum Neurosci 9:431. doi: 10.3389/fnhum.2015.00431 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bonnevie T, Dunn B, Fyhn M, Hafting T, Derdikman D, Kubie JL, Roudi Y, Moser EI, Moser MB (2013) Grid cells require excitatory drive from the hippocampus. Nat Neurosci 16(3):309–317. doi: 10.1038/nn.3311 CrossRefPubMedGoogle Scholar
  20. Burgess N, Maguire EA, O’Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35(4):625–641CrossRefPubMedGoogle Scholar
  21. Canto CB, Koganezawa N, Beed P, Moser EI, Witter MP (2012) All layers of medial entorhinal cortex receive presubicular and parasubicular inputs. J Neurosci 32(49):17620–17631. doi: 10.1523/JNEUROSCI.3526-12.2012 CrossRefPubMedGoogle Scholar
  22. Carmer SG, Swanson MR (1973) Evaluation of 10 pairwise multiple comparison procedures by Monte-Carlo methods. J Am Stat Assoc 68(341):66–74. doi: 10.2307/2284140 CrossRefGoogle Scholar
  23. Chareyron LJ, Amaral DG, Lavenex P (2016) Selective lesion of the hippocampus increases the differentiation of immature neurons in the monkey amygdala. Proc Natl Acad Sci USA 113(50):14420–14425. doi: 10.1073/pnas.1604288113 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Chrobak JJ, Amaral DG (2007) Entorhinal cortex of the monkey: VII. intrinsic connections. J Comp Neurol 500(4):612–633. doi: 10.1002/cne.21200 CrossRefPubMedGoogle Scholar
  25. Clarke A, Tyler LK (2014) Object-specific semantic coding in human perirhinal cortex. J Neurosci 34(14):4766–4775. doi: 10.1523/JNEUROSCI.2828-13.2014 CrossRefPubMedGoogle Scholar
  26. Davachi L (2006) Item, context and relational episodic encoding in humans. Curr Opin Neurobiol 16(6):693–700. doi: 10.1016/j.conb.2006.10.012 CrossRefPubMedGoogle Scholar
  27. Ennaceur A, Neave N, Aggleton JP (1996) Neurotoxic lesions of the perirhinal cortex do not mimic the behavioural effects of fornix transection in the rat. Behav Brain Res 80(1–2):9–25CrossRefPubMedGoogle Scholar
  28. Epstein RA (2008) Parahippocampal and retrosplenial contributions to human spatial navigation. Trends Cogn Sci 12(10):388–396CrossRefPubMedPubMedCentralGoogle Scholar
  29. Epstein RA, Vass LK (2014) Neural systems for landmark-based wayfinding in humans. Philos Trans R Soc Lond B Biol Sci 369(1635):20120533. doi: 10.1098/rstb.2012.0533 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Glavis-Bloom C, Alvarado MC, Bachevalier J (2013) Neonatal hippocampal damage impairs specific food/place associations in adult macaques. Behav Neurosci 127(1):9–22. doi: 10.1037/a0031498 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Guzowski JF, Setlow B, Wagner EK, McGaugh JL (2001) Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J Neurosci 21(14):5089–5098PubMedGoogle Scholar
  32. Holdstock JS, Gutnikov SA, Gaffan D, Mayes AR (2000) Perceptual and mnemonic matching-to-sample in humans: contributions of the hippocampus, perirhinal and other medial temporal lobe cortices. Cortex 36(3):301–322CrossRefPubMedGoogle Scholar
  33. Howard LR, Javadi AH, Yu Y, Mill RD, Morrison LC, Knight R, Loftus MM, Staskute L, Spiers HJ (2014) The hippocampus and entorhinal cortex encode the path and Euclidean distances to goals during navigation. Curr Biol 24(12):1331–1340. doi: 10.1016/j.cub.2014.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kinnavane L, Amin E, Horne M, Aggleton JP (2014) Mapping parahippocampal systems for recognition and recency memory in the absence of the rat hippocampus. Eur J Neurosci 40(12):3720–3734. doi: 10.1111/ejn.12740 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Knierim JJ, Neunuebel JP, Deshmukh SS (2014) Functional correlates of the lateral and medial entorhinal cortex: objects, path integration and local-global reference frames. Philos Trans R Soc Lond B Biol Sci 369(1635):20130369. doi: 10.1098/rstb.2013.0369 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kobayashi Y, Amaral DG (2000) Macaque monkey retrosplenial cortex: I. three-dimensional and cytoarchitectonic organization. J Comp Neurol 426(3):339–365CrossRefPubMedGoogle Scholar
  37. Kobayashi Y, Amaral DG (2003) Macaque monkey retrosplenial cortex: II. Cortical afferents. J Comp Neurol 466(1):48–79CrossRefPubMedGoogle Scholar
  38. Lavenex P, Amaral DG (2000) Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus 10(4):420–430. doi: 10.1002/1098-1063(2000)10:4<420:AID-HIPO8>3.0.CO;2-5 CrossRefPubMedGoogle Scholar
  39. Lavenex P, Suzuki WA, Amaral DG (2002) Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex. J Comp Neurol 447(4):394–420. doi: 10.1002/cne.10243 CrossRefPubMedGoogle Scholar
  40. Lavenex P, Suzuki WA, Amaral DG (2004) Perirhinal and parahippocampal cortices of the macaque monkey: intrinsic projections and interconnections. J Comp Neurol 472(3):371–394CrossRefPubMedGoogle Scholar
  41. Lavenex P, Lavenex PB, Amaral DG (2007) Spatial relational learning persists following neonatal hippocampal lesions in macaque monkeys. Nat Neurosci 10(2):234–239. doi: 10.1038/nn1820 CrossRefPubMedGoogle Scholar
  42. Lavenex P, Lavenex PB, Bennett JL, Amaral DG (2009) Postmortem changes in the neuroanatomical characteristics of the primate brain: hippocampal formation. J Comp Neurol 512(1):27–51CrossRefPubMedPubMedCentralGoogle Scholar
  43. Machado CJ, Snyder AZ, Cherry SR, Lavenex P, Amaral DG (2008) Effects of neonatal amygdala or hippocampus lesions on resting brain metabolism in the macaque monkey: a microPET imaging study. Neuroimage 39:832–846. doi: 10.1016/j.neuroimage.2007.09.029 CrossRefPubMedGoogle Scholar
  44. Milner B, Squire LR, Kandel ER (1998) Cognitive neuroscience and the study of memory. Neuron 20(3):445–468CrossRefPubMedGoogle Scholar
  45. Morris RGM (2007) Theories of hippocampal function. The hippocampus book. Oxford University Press, Oxford, New York, pp 581–713Google Scholar
  46. Morris RG, Garrud P, Rawlins JN, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297(5868):681–683CrossRefPubMedGoogle Scholar
  47. Morris RG, Pickering A, Abrahams S, Feigenbaum JD (1996) Space and the hippocampal formation in humans. Brain Res Bull 40(5–6):487–490CrossRefPubMedGoogle Scholar
  48. Moscovitch M, Rosenbaum RS, Gilboa A, Addis DR, Westmacott R, Grady C, McAndrews MP, Levine B, Black S, Winocur G, Nadel L (2005) Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory. J Anat 207(1):35–66CrossRefPubMedPubMedCentralGoogle Scholar
  49. Moscovitch M, Nadel L, Winocur G, Gilboa A, Rosenbaum RS (2006) The cognitive neuroscience of remote episodic, semantic and spatial memory. Curr Opin Neurobiol 16(2):179–190CrossRefPubMedGoogle Scholar
  50. Murray EA, Richmond BJ (2001) Role of perirhinal cortex in object perception, memory, and associations. Curr Opin Neurobiol 11(2):188–193CrossRefPubMedGoogle Scholar
  51. Nadel L (1991) The hippocampus and space revisited. Hippocampus 1(3):221–229CrossRefPubMedGoogle Scholar
  52. Nadel L, Hardt O (2004) The spatial brain. Neuropsychology 18(3):473–476CrossRefPubMedGoogle Scholar
  53. O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34(1):171–175CrossRefPubMedGoogle Scholar
  54. O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon Press, OxfordGoogle Scholar
  55. Olarte-Sanchez CM, Amin E, Warburton EC, Aggleton JP (2015) Perirhinal cortex lesions impair tests of object recognition memory but spare novelty detection. Eur J Neurosci 42(12):3117–3127. doi: 10.1111/ejn.13106 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Parslow DM, Rose D, Brooks B, Fleminger S, Gray JA, Giampietro V, Brammer MJ, Williams S, Gasston D, Andrew C, Vythelingum GN, Ioannou G, Simmons A, Morris RG (2004) Allocentric spatial memory activation of the hippocampal formation measured with fMRI. Neuropsychology 18(3):450–461CrossRefPubMedGoogle Scholar
  57. Parslow DM, Morris RG, Fleminger S, Rahman Q, Abrahams S, Recce M (2005) Allocentric spatial memory in humans with hippocampal lesions. Acta Physiol (Oxf) 118(1–2):123–147. doi: 10.1016/j.actpsy.2004.10.006 Google Scholar
  58. Pitkänen A, Kelly JL, Amaral DG (2002) Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the entorhinal cortex in the macaque monkey. Hippocampus 12(2):186–205. doi: 10.1002/hipo.1099 CrossRefPubMedGoogle Scholar
  59. Rouiller EM (1997) Mapping activity in the adutiory pathway with c-fos. Acoustical signal processing in the central auditory system. Plemun Press, New York, pp 33–48CrossRefGoogle Scholar
  60. Shires KL, Aggleton JP (2008) Mapping immediate-early gene activity in the rat after place learning in a water-maze: the importance of matched control conditions. Eur J Neurosci 28(5):982–996. doi: 10.1111/j.1460-9568.2008.06402.x CrossRefPubMedGoogle Scholar
  61. Suzuki WA (2010) Untangling memory from perception in the medial temporal lobe. Trends Cogn Sci 14(5):195–200. doi: 10.1016/j.tics.2010.02.002 CrossRefPubMedGoogle Scholar
  62. Suzuki WA, Amaral DG (1994a) Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 350:497–533CrossRefPubMedGoogle Scholar
  63. Suzuki WA, Amaral DG (1994b) Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J Neurosci 14(3 Pt 2):1856–1877PubMedGoogle Scholar
  64. Suzuki WA, Amaral DG (1996) The construction of straight-line unfolded two-dimensional density maps of neuroanatomical projections in the monkey cerebral cortex. Neurosci Protoc 96:7–19Google Scholar
  65. Suzuki WA, Amaral DG (2003) Where are the perirhinal and parahippocampal cortices? A historical overview of the nomenclature and boundaries applied to the primate medial temporal lobe. Neuroscience 120:893–906CrossRefPubMedGoogle Scholar
  66. Vann SD, Aggleton JP, Maguire EA (2009) What does the retrosplenial cortex do? Nat Rev Neurosci 10(11):792–802. doi: 10.1038/nrn2733 CrossRefPubMedGoogle Scholar
  67. Vargha-Khadem F, Gadian DG, Watkins KE, Connelly A, VanPaesschen W, Mishkin M (1997) Differential effects of early hippocampal pathology on episodic and semantic memory. Science 277(5324):376–380CrossRefPubMedGoogle Scholar
  68. Warburton EC, Brown MW (2015) Neural circuitry for rat recognition memory. Behav Brain Res 285:131–139. doi: 10.1016/j.bbr.2014.09.050 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Laboratory of Brain and Cognitive Development, Department of MedicineUniversity of FribourgFribourgSwitzerland
  2. 2.Laboratory of Brain and Cognitive Development, Institute of PsychologyUniversity of LausanneLausanneSwitzerland
  3. 3.Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, California National Primate Research CenterMIND Institute, UC DavisDavisUSA

Personalised recommendations