Brain Structure and Function

, Volume 222, Issue 7, pp 2921–2939 | Cite as

Melatonin receptors: distribution in mammalian brain and their respective putative functions

  • Khuen Yen Ng
  • Mun Kit Leong
  • Huazheng Liang
  • George Paxinos


Melatonin, through its different receptors, has pleiotropic functions in mammalian brain. Melatonin is secreted mainly by the pineal gland and exerts its effects via receptor-mediated and non-receptor-mediated actions. With recent advancement in neuroanatomical mapping, we may now understand better the localizations of the two G protein-coupled melatonin receptors MT1 and MT2. The abundance of these melatonin receptors in respective brain regions suggests that receptor-mediated actions of melatonin might play crucial roles in the functions of central nervous system. Hence, this review aims to summarize the distribution of melatonin receptors in the brain and to discuss the putative functions of melatonin in the retina, cerebral cortex, reticular thalamic nucleus, habenula, hypothalamus, pituitary gland, periaqueductal gray, dorsal raphe nucleus, midbrain and cerebellum. Studies on melatonin receptors in the brain are important because cumulative evidence has pointed out that melatonin receptors not only play important physiological roles in sleep, anxiety, pain and circadian rhythm, but might also be involved in the pathogenesis of a number of neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease and Huntington’s disease.


Melatonin receptor Circadian rhythm Neurogenesis Nociception Depression Neurodegenerative disease 



This work is supported by MOSTI eScience Research Grant (02-02-10-SF0109) from Ministry of Science, Technology and Innovation of Malaysia.


  1. Adamah-Biassi EB, Zhang Y, Jung H, Vissapragada S, Miller RJ, Dubocovich M (2014) Distribution of MT1 melatonin receptor promoter-driven RFP expression in the brains of BAC C3H/HeN transgenic mice. J Histochem Cytochem Off J Histochem Soc 62(1):70–84. doi: 10.1369/0022155413507453 CrossRefGoogle Scholar
  2. Adi N, Mash DC, Ali Y, Singer C, Shehadeh L, Papapetropoulos S (2010) Melatonin MT1 and MT2 receptor expression in Parkinson’s disease. Med Sci Monit 16(2):Br61–Br67PubMedGoogle Scholar
  3. Al-Ghoul WM, Herman MD, Dubocovich ML (1998) Melatonin receptor subtype expression in human cerebellum. NeuroReport 9(18):4063–4068PubMedCrossRefGoogle Scholar
  4. Ambriz-Tututi M, Rocha-Gonzalez HI, Cruz SL, Granados-Soto V (2009) Melatonin: a hormone that modulates pain. Life Sci 84(15–16):489–498. doi: 10.1016/j.lfs.2009.01.024 PubMedCrossRefGoogle Scholar
  5. Barlow-Walden LR, Reiter RJ, Abe M, Pablos M, Menendez-Pelaez A, Chen LD, Poeggeler B (1995) Melatonin stimulates brain glutathione peroxidase activity. Neurochem Int 26(5):497–502PubMedCrossRefGoogle Scholar
  6. Becker-Andre M, Wiesenberg I, Schaeren-Wiemers N, Andre E, Missbach M, Saurat JH, Carlberg C (1994) Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J Biol Chem 269(46):28531–28534PubMedGoogle Scholar
  7. Bordet R, Devos D, Brique S, Touitou Y, Guieu JD, Libersa C, Destee A (2003) Study of circadian melatonin secretion pattern at different stages of Parkinson’s disease. Clin Neuropharmacol 26(2):65–72PubMedCrossRefGoogle Scholar
  8. Boulos LJ, Darcq E, Kieffer BL (2016) Translating the habenula—from rodents to humans. Biol Psychiatry. doi: 10.1016/j.biopsych.2016.06.003 PubMedGoogle Scholar
  9. Breen DP, Vuono R, Nawarathna U, Fisher K, Shneerson JM, Reddy AB, Barker RA (2014) Sleep and circadian rhythm regulation in early Parkinson disease. JAMA Neurol 71(5):589–595. doi: 10.1001/jamaneurol.2014.65 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Breen DP, Nombela C, Vuono R, Jones PS, Fisher K, Burn DJ, Brooks DJ, Reddy AB, Rowe JB, Barker RA (2016) Hypothalamic volume loss is associated with reduced melatonin output in Parkinson’s disease. Mov Disord Off J Mov Disord Soc. doi: 10.1002/mds.26592 Google Scholar
  11. Brunner P, Sozer-Topcular N, Jockers R, Ravid R, Angeloni D, Fraschini F, Eckert A, Muller-Spahn F, Savaskan E (2006) Pineal and cortical melatonin receptors MT1 and MT2 are decreased in Alzheimer’s disease. Eur J Histochem EJH 50(4):311–316PubMedGoogle Scholar
  12. Bubenik GA (2002) Gastrointestinal melatonin: localization, function, and clinical relevance. Dig Dis Sci 47(10):2336–2348PubMedCrossRefGoogle Scholar
  13. Buckner RL (2013) The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 80(3):807–815. doi: 10.1016/j.neuron.2013.10.044 PubMedCrossRefGoogle Scholar
  14. Carlson LL, Weaver DR, Reppert SM (1989) Melatonin signal transduction in hamster brain: inhibition of adenylyl cyclase by a pertussis toxin-sensitive G protein. Endocrinology 125(5):2670–2676. doi: 10.1210/endo-125-5-2670 PubMedCrossRefGoogle Scholar
  15. Cazevieille C, Safa R, Osborne NN (1997) Melatonin protects primary cultures of rat cortical neurones from NMDA excitotoxicity and hypoxia/reoxygenation. Brain Res 768(1–2):120–124PubMedCrossRefGoogle Scholar
  16. Comai S, Gobbi G (2014) CCNP award paper: unveiling the role of melatonin MT(2) receptors in sleep, anxiety and other neuropsychiatric diseases: a novel target in psychopharmacology. J Psychiatry Neurosci 39(1):6–21. doi: 10.1503/jpn.130009 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Comai S, Ochoa-Sanchez R, Gobbi G (2013) Sleep-wake characterization of double MT(1)/MT(2) receptor knockout mice and comparison with MT(1) and MT(2) receptor knockout mice. Behav Brain Res 243:231–238. doi: 10.1016/j.bbr.2013.01.008 PubMedCrossRefGoogle Scholar
  18. Comai S, Ochoa-Sanchez R, Dominguez-Lopez S, Bambico FR, Gobbi G (2015) Melancholic-like behaviors and circadian neurobiological abnormalities in melatonin MT1 receptor knockout mice. Int J Neuropsychopharmacol. doi: 10.1093/ijnp/pyu075 PubMedPubMedCentralGoogle Scholar
  19. Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129(Pt 7):1659–1673. doi: 10.1093/brain/awl082 PubMedCrossRefGoogle Scholar
  20. Costa EJ, Lopes RH, Lamy-Freund MT (1995) Permeability of pure lipid bilayers to melatonin. J Pineal Res 19(3):123–126PubMedCrossRefGoogle Scholar
  21. Dardente H, Klosen P, Pevet P, Masson-Pevet M (2003) MT1 melatonin receptor mRNA expressing cells in the pars tuberalis of the European hamster: effect of photoperiod. J Neuroendocrinol 15(8):778–786PubMedCrossRefGoogle Scholar
  22. Deupi X, Dolker N, Lopez-Rodriguez ML, Campillo M, Ballesteros JA, Pardo L (2007) Structural models of class a G protein-coupled receptors as a tool for drug design: insights on transmembrane bundle plasticity. Curr Top Med Chem 7(10):991–998PubMedCrossRefGoogle Scholar
  23. Dominguez-Lopez S, Mahar I, Bambico FR, Labonte B, Ochoa-Sanchez R, Leyton M, Gobbi G (2012) Short-term effects of melatonin and pinealectomy on serotonergic neuronal activity across the light–dark cycle. J Psychopharmacol 26(6):830–844. doi: 10.1177/0269881111408460 PubMedCrossRefGoogle Scholar
  24. Dubocovich ML, Markowska M (2005) Functional MT1 and MT2 melatonin receptors in mammals. Endocrine 27(2):101–110. doi: 10.1385/endo:27:2:101 PubMedCrossRefGoogle Scholar
  25. Dubocovich ML, Benloucif S, Masana MI (1996) Melatonin receptors in the mammalian suprachiasmatic nucleus. Behav Brain Res 73(1–2):141–147PubMedGoogle Scholar
  26. Dubocovich ML, Hudson RL, Sumaya IC, Masana MI, Manna E (2005) Effect of MT1 melatonin receptor deletion on melatonin-mediated phase shift of circadian rhythms in the C57BL/6 mouse. J Pineal Res 39(2):113–120. doi: 10.1111/j.1600-079X.2005.00230.x PubMedCrossRefGoogle Scholar
  27. Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J (2010) International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev 62(3):343–380. doi: 10.1124/pr.110.002832 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Ebisawa T, Karne S, Lerner MR, Reppert SM (1994) Expression cloning of a high-affinity melatonin receptor from Xenopus dermal melanophores. Proc Natl Acad Sci USA 91(13):6133–6137PubMedPubMedCentralCrossRefGoogle Scholar
  29. Ekthuwapranee K, Sotthibundhu A, Govitrapong P (2015) Melatonin attenuates methamphetamine-induced inhibition of proliferation of adult rat hippocampal progenitor cells in vitro. J Pineal Res 58(4):418–428. doi: 10.1111/jpi.12225 PubMedCrossRefGoogle Scholar
  30. El-Sherif Y, Witt-Enderby P, Li PK, Tesoriero J, Hogan MV, Wieraszko A (2004) The actions of a charged melatonin receptor ligand, TMEPI, and an irreversible MT2 receptor agonist, BMNEP, on mouse hippocampal evoked potentials in vitro. Life Sci 75(26):3147–3156. doi: 10.1016/j.lfs.2004.06.009 PubMedCrossRefGoogle Scholar
  31. Esparza JL, Gomez M, Rosa Nogues M, Paternain JL, Mallol J, Domingo JL (2005) Melatonin reduces oxidative stress and increases gene expression in the cerebral cortex and cerebellum of aluminum-exposed rats. J Pineal Res 39(2):129–136. doi: 10.1111/j.1600-079X.2005.00225.x PubMedCrossRefGoogle Scholar
  32. Evely KM, Hudson RL, Dubocovich ML, Haj-Dahmane S (2016) Melatonin receptor activation increases glutamatergic synaptic transmission in the rat medial lateral habenula. Synapse (New York, NY) 70(5):181–186. doi: 10.1002/syn.21892 CrossRefGoogle Scholar
  33. Fisher SP, Sugden D (2009) Sleep-promoting action of IIK7, a selective MT2 melatonin receptor agonist in the rat. Neurosci Lett 457(2):93–96. doi: 10.1016/j.neulet.2009.04.005 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fraschini F, Cesarani A, Alpini D, Esposti D, Stankov BM (1999) Melatonin influences human balance. Biol Signals Recept 8(1–2):111–119. doi: 10.1159/000014578 PubMedCrossRefGoogle Scholar
  35. Fujieda H, Hamadanizadeh SA, Wankiewicz E, Pang SF, Brown GM (1999) Expression of mt1 melatonin receptor in rat retina: evidence for multiple cell targets for melatonin. Neuroscience 93(2):793–799PubMedCrossRefGoogle Scholar
  36. Fujieda H, Scher J, Hamadanizadeh SA, Wankiewicz E, Pang SF, Brown GM (2000) Dopaminergic and GABAergic amacrine cells are direct targets of melatonin: immunocytochemical study of mt1 melatonin receptor in guinea pig retina. Vis Neurosci 17(1):63–70PubMedCrossRefGoogle Scholar
  37. Galano A, Tan DX, Reiter RJ (2013) On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J Pineal Res 54(3):245–257. doi: 10.1111/jpi.12010 PubMedCrossRefGoogle Scholar
  38. Gilgun-Sherki Y, Melamed E, Offen D (2001) Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40(8):959–975PubMedCrossRefGoogle Scholar
  39. Graeff FG (2012) New perspective on the pathophysiology of panic: merging serotonin and opioids in the periaqueductal gray. Braz J Med Biol Res Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica [et al] 45(4):366–375Google Scholar
  40. Hardeland R (2009) Melatonin: signaling mechanisms of a pleiotropic agent. BioFactors 35(2):183–192. doi: 10.1002/biof.23 PubMedCrossRefGoogle Scholar
  41. Harsanyi K, Mangel SC (1992) Activation of a D2 receptor increases electrical coupling between retinal horizontal cells by inhibiting dopamine release. Proc Natl Acad Sci USA 89(19):9220–9224PubMedPubMedCentralCrossRefGoogle Scholar
  42. Herbert J (1994) The suprachiasmatic nucleus. The mind’s clock. J Anat 184(Pt 2):431PubMedCentralGoogle Scholar
  43. Hunt AE, Al-Ghoul WM, Gillette MU, Dubocovich ML (2001) Activation of MT(2) melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am J Physiol Cell Physiol 280(1):C110–C118PubMedGoogle Scholar
  44. Jilg A, Moek J, Weaver DR, Korf HW, Stehle JH, von Gall C (2005) Rhythms in clock proteins in the mouse pars tuberalis depend on MT1 melatonin receptor signalling. Eur J Neurosci 22(11):2845–2854. doi: 10.1111/j.1460-9568.2005.04485.x PubMedCrossRefGoogle Scholar
  45. Jin X, von Gall C, Pieschl RL, Gribkoff VK, Stehle JH, Reppert SM, Weaver DR (2003) Targeted disruption of the mouse Mel(1b) melatonin receptor. Mol Cell Biol 23(3):1054–1060PubMedPubMedCentralCrossRefGoogle Scholar
  46. Jockers R, Maurice P, Boutin JA, Delagrange P (2008) Melatonin receptors, heterodimerization, signal transduction and binding sites: what’s new? Br J Pharmacol 154(6):1182–1195. doi: 10.1038/bjp.2008.184 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Klosen P, Bienvenu C, Demarteau O, Dardente H, Guerrero H, Pevet P, Masson-Pevet M (2002) The mt1 melatonin receptor and RORbeta receptor are co-localized in specific TSH-immunoreactive cells in the pars tuberalis of the rat pituitary. J Histochem Cytochem Off J Histochem Soc 50(12):1647–1657CrossRefGoogle Scholar
  48. Kotler M, Rodriguez C, Sainz RM, Antolin I, Menendez-Pelaez A (1998) Melatonin increases gene expression for antioxidant enzymes in rat brain cortex. J Pineal Res 24(2):83–89PubMedCrossRefGoogle Scholar
  49. Lacoste B, Angeloni D, Dominguez-Lopez S, Calderoni S, Mauro A, Fraschini F, Descarries L, Gobbi G (2015) Anatomical and cellular localization of melatonin MT1 and MT2 receptors in the adult rat brain. J Pineal Res 58(4):397–417. doi: 10.1111/jpi.12224 PubMedCrossRefGoogle Scholar
  50. Lahiri DK, Chen D, Ge YW, Bondy SC, Sharman EH (2004) Dietary supplementation with melatonin reduces levels of amyloid beta-peptides in the murine cerebral cortex. J Pineal Res 36(4):224–231. doi: 10.1111/j.1600-079X.2004.00121.x PubMedCrossRefGoogle Scholar
  51. Lakin ML, Miller CH, Stott ML, Winters WD (1981) Involvement of the pineal gland and melatonin in murine analgesia. Life Sci 29(24):2543–2551PubMedCrossRefGoogle Scholar
  52. Larson J, Jessen RE, Uz T, Arslan AD, Kurtuncu M, Imbesi M, Manev H (2006) Impaired hippocampal long-term potentiation in melatonin MT2 receptor-deficient mice. Neurosci Lett 393(1):23–26. doi: 10.1016/j.neulet.2005.09.040 PubMedCrossRefGoogle Scholar
  53. Lee CH, Yoo KY, Choi JH, Park OK, Hwang IK, Kwon YG, Kim YM, Won MH (2010) Melatonin’s protective action against ischemic neuronal damage is associated with up-regulation of the MT2 melatonin receptor. J Neurosci Res 88(12):2630–2640. doi: 10.1002/jnr.22430 PubMedGoogle Scholar
  54. Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, Gribkoff VK, Reppert SM (1997) Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 19(1):91–102PubMedCrossRefGoogle Scholar
  55. Liu RY, Zhou JN, van Heerikhuize J, Hofman MA, Swaab DF (1999) Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging, Alzheimer’s disease, and apolipoprotein E-epsilon4/4 genotype. J Clin Endocrinol Metab 84(1):323–327. doi: 10.1210/jcem.84.1.5394 PubMedGoogle Scholar
  56. Liu YJ, Zhuang J, Zhu HY, Shen YX, Tan ZL, Zhou JN (2007) Cultured rat cortical astrocytes synthesize melatonin: absence of a diurnal rhythm. J Pineal Res 43(3):232–238. doi: 10.1111/j.1600-079X.2007.00466.x PubMedCrossRefGoogle Scholar
  57. Liu J, Somera-Molina KC, Hudson RL, Dubocovich ML (2013) Melatonin potentiates running wheel-induced neurogenesis in the dentate gyrus of adult C3H/HeN mice hippocampus. J Pineal Res 54(2):222–231. doi: 10.1111/jpi.12023 PubMedCrossRefGoogle Scholar
  58. Lopez-Canul M, Comai S, Dominguez-Lopez S, Granados-Soto V, Gobbi G (2015a) Antinociceptive properties of selective MT(2) melatonin receptor partial agonists. Eur J Pharmacol 764:424–432. doi: 10.1016/j.ejphar.2015.07.010 PubMedCrossRefGoogle Scholar
  59. Lopez-Canul M, Palazzo E, Dominguez-Lopez S, Luongo L, Lacoste B, Comai S, Angeloni D, Fraschini F, Boccella S, Spadoni G, Bedini A, Tarzia G, Maione S, Granados-Soto V, Gobbi G (2015b) Selective melatonin MT2 receptor ligands relieve neuropathic pain through modulation of brainstem descending antinociceptive pathways. Pain 156(2):305–317. doi: 10.1097/01.j.pain.0000460311.71572.5f PubMedCrossRefGoogle Scholar
  60. Lowenstein PR, Rosenstein R, Cardinali DP (1985) Melatonin reverses pinealectomy-induced decrease of benzodiazepine binding in rat cerebral cortex. Neurochem Int 7(4):675–681PubMedCrossRefGoogle Scholar
  61. Luchetti F, Canonico B, Betti M, Arcangeletti M, Pilolli F, Piroddi M, Canesi L, Papa S, Galli F (2010) Melatonin signaling and cell protection function. Faseb J 24(10):3603–3624. doi: 10.1096/fj.10-154450 PubMedCrossRefGoogle Scholar
  62. Manda K, Ueno M, Anzai K (2008) Melatonin mitigates oxidative damage and apoptosis in mouse cerebellum induced by high-LET 56Fe particle irradiation. J Pineal Res 44(2):189–196. doi: 10.1111/j.1600-079X.2007.00507.x PubMedCrossRefGoogle Scholar
  63. Manto M, Bower JM, Conforto AB, Delgado-García Jé M, da Guarda SNF, Gerwig M, Habas C, Hagura N, Ivry RB, Mariën P, Molinari M, Naito E, Nowak DA, Ben Taib NO, Pelisson D, Tesche CD, Tilikete C, Timmann D (2012) Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum 11(2):457–487. doi: 10.1007/s12311-011-0331-9 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Marangos PJ, Patel J, Hirata F, Sondhein D, Paul SM, Skolnick P, Goodwin FK (1981) Inhibition of diazepam binding by tryptophan derivatives including melatonin and its brain metabolite N-acetyl-5-methoxy kynurenamine. Life Sci 29(3):259–267PubMedCrossRefGoogle Scholar
  65. Masson-Pevet M, George D, Kalsbeek A, Saboureau M, Lakhdar-Ghazal N, Pevet P (1994) An attempt to correlate brain areas containing melatonin-binding sites with rhythmic functions: a study in five hibernator species. Cell Tissue Res 278(1):97–106PubMedCrossRefGoogle Scholar
  66. Matzuk MM, Saper CB (1985) Preservation of hypothalamic dopaminergic neurons in Parkinson’s disease. Ann Neurol 18(5):552–555. doi: 10.1002/ana.410180507 PubMedCrossRefGoogle Scholar
  67. Mazzucchelli C, Pannacci M, Nonno R, Lucini V, Fraschini F, Stankov BM (1996) The melatonin receptor in the human brain: cloning experiments and distribution studies. Brain Res Mol Brain Res 39(1–2):117–126PubMedCrossRefGoogle Scholar
  68. Megaw PL, Boelen MG, Morgan IG, Boelen MK (2006) Diurnal patterns of dopamine release in chicken retina. Neurochem Int 48(1):17–23. doi: 10.1016/j.neuint.2005.08.004 PubMedCrossRefGoogle Scholar
  69. Meyer P, Pache M, Loeffler KU, Brydon L, Jockers R, Flammer J, Wirz-Justice A, Savaskan E (2002) Melatonin MT-1-receptor immunoreactivity in the human eye. Br J Ophthalmol 86(9):1053–1057PubMedPubMedCentralCrossRefGoogle Scholar
  70. Morgan PJ, Barrett P, Howell HE, Helliwell R (1994) Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochem Int 24(2):101–146PubMedCrossRefGoogle Scholar
  71. Musshoff U, Riewenherm D, Berger E, Fauteck JD, Speckmann EJ (2002) Melatonin receptors in rat hippocampus: molecular and functional investigations. Hippocampus 12(2):165–173. doi: 10.1002/hipo.1105 PubMedCrossRefGoogle Scholar
  72. Neu JM, Niles LP (1997) A marked diurnal rhythm of melatonin ML1A receptor mRNA expression in the suprachiasmatic nucleus. Brain Res Mol Brain Res 49(1–2):303–306PubMedCrossRefGoogle Scholar
  73. Nosjean O, Ferro M, Coge F, Beauverger P, Henlin JM, Lefoulon F, Fauchere JL, Delagrange P, Canet E, Boutin JA (2000) Identification of the melatonin-binding site MT3 as the quinone reductase 2. J Biol Chem 275(40):31311–31317. doi: 10.1074/jbc.M005141200 PubMedCrossRefGoogle Scholar
  74. Ochoa-Sanchez R, Comai S, Lacoste B, Bambico FR, Dominguez-Lopez S, Spadoni G, Rivara S, Bedini A, Angeloni D, Fraschini F, Mor M, Tarzia G, Descarries L, Gobbi G (2011) Promotion of non-rapid eye movement sleep and activation of reticular thalamic neurons by a novel MT2 melatonin receptor ligand. J Neurosci 31(50):18439–18452. doi: 10.1523/jneurosci.2676-11.2011 PubMedCrossRefGoogle Scholar
  75. Ochoa-Sanchez R, Comai S, Spadoni G, Bedini A, Tarzia G, Gobbi G (2014) Melatonin, selective and non-selective MT1/MT2 receptors agonists: differential effects on the 24-h vigilance states. Neurosci Lett 561:156–161. doi: 10.1016/j.neulet.2013.12.069 PubMedCrossRefGoogle Scholar
  76. O’Neal-Moffitt G, Pilli J, Kumar SS, Olcese J (2014) Genetic deletion of MT(1)/MT(2) melatonin receptors enhances murine cognitive and motor performance. Neuroscience 277:506–521. doi: 10.1016/j.neuroscience.2014.07.018 PubMedCrossRefGoogle Scholar
  77. O’Neal-Moffitt G, Delic V, Bradshaw PC, Olcese J (2015) Prophylactic melatonin significantly reduces Alzheimer’s neuropathology and associated cognitive deficits independent of antioxidant pathways in AbetaPP(swe)/PS1 mice. Mol Neurodegener 10:27. doi: 10.1186/s13024-015-0027-6 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Parada E, Buendia I, Leon R, Negredo P, Romero A, Cuadrado A, Lopez MG, Egea J (2014) Neuroprotective effect of melatonin against ischemia is partially mediated by alpha-7 nicotinic receptor modulation and HO-1 overexpression. J Pineal Res 56(2):204–212. doi: 10.1111/jpi.12113 PubMedCrossRefGoogle Scholar
  79. Paxinos G, Watson C (2013) The rat brain in stereotaxic coordinates, 7th edn. Elsevier Academic Press, San DiegoGoogle Scholar
  80. Pechanova O, Paulis L, Simko F (2014) Peripheral and central effects of melatonin on blood pressure regulation. Int J Mol Sci 15(10):17920–17937. doi: 10.3390/ijms151017920 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Petit L, Lacroix I, de Coppet P, Strosberg AD, Jockers R (1999) Differential signaling of human Mel1a and Mel1b melatonin receptors through the cyclic guanosine 3′–5′-monophosphate pathway. Biochem Pharmacol 58(4):633–639PubMedCrossRefGoogle Scholar
  82. Pévet P (2002) Melatonin. Dialogues Clin Neurosci 4(1):57–72PubMedPubMedCentralGoogle Scholar
  83. Pinato L, da Silveira Cruz-Machado S, Franco DG, Campos LMG, Cecon E, Fernandes P, Bittencourt JC, Markus RP (2015) Selective protection of the cerebellum against intracerebroventricular LPS is mediated by local melatonin synthesis. Brain Struct Funct 220(2):827–840. doi: 10.1007/s00429-013-0686-4 PubMedCrossRefGoogle Scholar
  84. Poirel VJ, Masson-Pevet M, Pevet P, Gauer F (2002) MT1 melatonin receptor mRNA expression exhibits a circadian variation in the rat suprachiasmatic nuclei. Brain Res 946(1):64–71PubMedCrossRefGoogle Scholar
  85. Ramirez-Rodriguez G, Klempin F, Babu H, Benitez-King G, Kempermann G (2009) Melatonin modulates cell survival of new neurons in the hippocampus of adult mice. Neuropsychopharmacology 34(9):2180–2191. doi: 10.1038/npp.2009.46 PubMedCrossRefGoogle Scholar
  86. Ramirez-Rodriguez G, Ortiz-Lopez L, Dominguez-Alonso A, Benitez-King GA, Kempermann G (2011) Chronic treatment with melatonin stimulates dendrite maturation and complexity in adult hippocampal neurogenesis of mice. J Pineal Res 50(1):29–37. doi: 10.1111/j.1600-079X.2010.00802.x PubMedCrossRefGoogle Scholar
  87. Ranft K, Dobrowolny H, Krell D, Bielau H, Bogerts B, Bernstein HG (2010) Evidence for structural abnormalities of the human habenular complex in affective disorders but not in schizophrenia. Psychol Med 40(4):557–567. doi: 10.1017/s0033291709990821 PubMedCrossRefGoogle Scholar
  88. Reiter RJ, Tan DX, Manchester LC, Pilar Terron M, Flores LJ, Koppisepi S (2007) Medical implications of melatonin: receptor-mediated and receptor-independent actions. Adv Med Sci 52:11–28PubMedGoogle Scholar
  89. Reppert SM, Weaver DR, Ebisawa T (1994) Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron 13(5):1177–1185PubMedCrossRefGoogle Scholar
  90. Reppert SM, Godson C, Mahle CD, Weaver DR, Slaugenhaupt SA, Gusella JF (1995) Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc Natl Acad Sci USA 92(19):8734–8738PubMedPubMedCentralCrossRefGoogle Scholar
  91. Reppert SM, Weaver DR, Ebisawa T, Mahle CD, Kolakowski LF Jr (1996) Cloning of a melatonin-related receptor from human pituitary. FEBS Lett 386(2–3):219–224PubMedCrossRefGoogle Scholar
  92. Rivera-Bermudez MA, Masana MI, Brown GM, Earnest DJ, Dubocovich ML (2004) Immortalized cells from the rat suprachiasmatic nucleus express functional melatonin receptors. Brain Res 1002(1–2):21–27. doi: 10.1016/j.brainres.2003.12.008 PubMedCrossRefGoogle Scholar
  93. Roy D, Belsham DD (2002) Melatonin receptor activation regulates GnRH gene expression and secretion in GT1-7 GnRH neurons. Signal transduction mechanisms. J Biol Chem 277(1):251–258. doi: 10.1074/jbc.M108890200 PubMedCrossRefGoogle Scholar
  94. Ruksee N, Tongjaroenbuangam W, Mahanam T, Govitrapong P (2014) Melatonin pretreatment prevented the effect of dexamethasone negative alterations on behavior and hippocampal neurogenesis in the mouse brain. J Steroid Biochem Mol Biol 143:72–80. doi: 10.1016/j.jsbmb.2014.02.011 PubMedCrossRefGoogle Scholar
  95. Saarela S, Reiter RJ (1994) Function of melatonin in thermoregulatory processes. Life Sci 54(5):295–311PubMedCrossRefGoogle Scholar
  96. Sallinen P, Saarela S, Ilves M, Vakkuri O, Leppaluoto J (2005) The expression of MT1 and MT2 melatonin receptor mRNA in several rat tissues. Life Sci 76(10):1123–1134. doi: 10.1016/j.lfs.2004.08.016 PubMedCrossRefGoogle Scholar
  97. Saravanan KS, Sindhu KM, Mohanakumar KP (2007) Melatonin protects against rotenone-induced oxidative stress in a hemiparkinsonian rat model. J Pineal Res 42(3):247–253. doi: 10.1111/j.1600-079X.2006.00412.x PubMedCrossRefGoogle Scholar
  98. Savaskan E, Olivieri G, Meier F, Brydon L, Jockers R, Ravid R, Wirz-Justice A, Muller-Spahn F (2002a) Increased melatonin 1a-receptor immunoreactivity in the hippocampus of Alzheimer’s disease patients. J Pineal Res 32(1):59–62PubMedCrossRefGoogle Scholar
  99. Savaskan E, Wirz-Justice A, Olivieri G, Pache M, Krauchi K, Brydon L, Jockers R, Muller-Spahn F, Meyer P (2002b) Distribution of melatonin MT1 receptor immunoreactivity in human retina. J Histochem Cytochem Off J Histochem Soc 50(4):519–526. doi: 10.1177/002215540205000408 CrossRefGoogle Scholar
  100. Savaskan E, Ayoub MA, Ravid R, Angeloni D, Fraschini F, Meier F, Eckert A, Muller-Spahn F, Jockers R (2005) Reduced hippocampal MT2 melatonin receptor expression in Alzheimer’s disease. J Pineal Res 38(1):10–16. doi: 10.1111/j.1600-079X.2004.00169.x PubMedCrossRefGoogle Scholar
  101. Savaskan E, Jockers R, Ayoub M, Angeloni D, Fraschini F, Flammer J, Eckert A, Muller-Spahn F, Meyer P (2007) The MT2 melatonin receptor subtype is present in human retina and decreases in Alzheimer’s disease. Curr Alzheimer Res 4(1):47–51PubMedCrossRefGoogle Scholar
  102. Scher J, Wankiewicz E, Brown GM, Fujieda H (2002) MT(1) melatonin receptor in the human retina: expression and localization. Investig Ophthalmol Vis Sci 43(3):889–897Google Scholar
  103. Sharkey J, Olcese J (2007) Transcriptional inhibition of oxytocin receptor expression in human myometrial cells by melatonin involves protein kinase C signaling. J Clin Endocrinol Metab 92(10):4015–4019. doi: 10.1210/jc.2007-1128 PubMedCrossRefGoogle Scholar
  104. Shelton L, Pendse G, Maleki N, Moulton EA, Lebel A, Becerra L, Borsook D (2012) Mapping pain activation and connectivity of the human habenula. J Neurophysiol 107(10):2633–2648. doi: 10.1152/jn.00012.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Shibata S, Cassone VM, Moore RY (1989) Effects of melatonin on neuronal activity in the rat suprachiasmatic nucleus in vitro. Neurosci Lett 97(1–2):140–144PubMedCrossRefGoogle Scholar
  106. Siuciak JA, Fang JM, Dubocovich ML (1990) Autoradiographic localization of 2-[125I]iodomelatonin binding sites in the brains of C3H/HeN and C57BL/6J strains of mice. Eur J Pharmacol 180(2–3):387–390PubMedCrossRefGoogle Scholar
  107. Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT (2012) Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol 351(2):152–166. doi: 10.1016/j.mce.2012.01.004 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Song Y, Ayre EA, Pang SF (1992) The identification and characterization of 125I-labelled iodomelatonin-binding sites in the duck kidney. J Endocrinol 135(2):353–359PubMedCrossRefGoogle Scholar
  109. Song Y, Chan CW, Brown GM, Pang SF, Silverman M (1997) Studies of the renal action of melatonin: evidence that the effects are mediated by 37 kDa receptors of the Mel1a subtype localized primarily to the basolateral membrane of the proximal tubule. Faseb J 11(1):93–100PubMedGoogle Scholar
  110. Srinivasan V, Cardinali DP, Srinivasan US, Kaur C, Brown GM, Spence DW, Hardeland R, Pandi-Perumal SR (2011) Therapeutic potential of melatonin and its analogs in Parkinson’s disease: focus on sleep and neuroprotection. Ther Adv Neurol Disord 4(5):297–317. doi: 10.1177/1756285611406166 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Stankov B, Cozzi B, Lucini V, Fumagalli P, Scaglione F, Fraschini F (1991) Characterization and mapping of melatonin receptors in the brain of three mammalian species: rabbit, horse and sheep. A comparative in vitro binding study. Neuroendocrinology 53(3):214–221PubMedCrossRefGoogle Scholar
  112. Stankov B, Biella G, Panara C, Lucini V, Capsoni S, Fauteck J, Cozzi B, Fraschini F (1992) Melatonin signal transduction and mechanism of action in the central nervous system: using the rabbit cortex as a model. Endocrinology 130(4):2152–2159. doi: 10.1210/endo.130.4.1312448 PubMedGoogle Scholar
  113. Sugden D, McArthur AJ, Ajpru S, Duniec K, Piggins HD (1999) Expression of mt(1) melatonin receptor subtype mRNA in the entrained rat suprachiasmatic nucleus: a quantitative RT-PCR study across the diurnal cycle. Brain Res Mol Brain Res 72(2):176–182PubMedCrossRefGoogle Scholar
  114. Tosini G, Owino S, Guillaume JL, Jockers R (2014) Understanding melatonin receptor pharmacology: latest insights from mouse models, and their relevance to human disease. BioEssays 36(8):778–787. doi: 10.1002/bies.201400017 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Uz T, Akhisaroglu M, Ahmed R, Manev H (2003) The pineal gland is critical for circadian Period1 expression in the striatum and for circadian cocaine sensitization in mice. Neuropsychopharmacology 28(12):2117–2123. doi: 10.1038/sj.npp.1300254 PubMedGoogle Scholar
  116. Uz T, Arslan AD, Kurtuncu M, Imbesi M, Akhisaroglu M, Dwivedi Y, Pandey GN, Manev H (2005) The regional and cellular expression profile of the melatonin receptor MT1 in the central dopaminergic system. Brain Res Mol Brain Res 136(1–2):45–53. doi: 10.1016/j.molbrainres.2005.01.002 PubMedCrossRefGoogle Scholar
  117. Videnovic A, Noble C, Reid KJ, Peng J, Turek FW, Marconi A, Rademaker AW, Simuni T, Zadikoff C, Zee PC (2014) Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. JAMA Neurol 71(4):463–469. doi: 10.1001/jamaneurol.2013.6239 PubMedPubMedCentralCrossRefGoogle Scholar
  118. von Gall C, Weaver DR, Moek J, Jilg A, Stehle JH, Korf HW (2005) Melatonin plays a crucial role in the regulation of rhythmic clock gene expression in the mouse pars tuberalis. Ann N Y Acad Sci 1040:508–511. doi: 10.1196/annals.1327.105 CrossRefGoogle Scholar
  119. Waly N, Hallworth R (2015) Circadian Pattern of melatonin MT1 and MT2 receptor localization in the rat suprachiasmatic nucleus. J Circadian Rhythms 13:Art. 1CrossRefGoogle Scholar
  120. Wang LM, Suthana NA, Chaudhury D, Weaver DR, Colwell CS (2005) Melatonin inhibits hippocampal long-term potentiation. Eur J Neurosci 22(9):2231–2237. doi: 10.1111/j.1460-9568.2005.04408.x PubMedPubMedCentralCrossRefGoogle Scholar
  121. Wang X, Sirianni A, Pei Z, Cormier K, Smith K, Jiang J, Zhou S, Wang H, Zhao R, Yano H, Kim JE, Li W, Kristal BS, Ferrante RJ, Friedlander RM (2011) The melatonin MT1 receptor axis modulates mutant Huntingtin-mediated toxicity. J Neurosci 31(41):14496–14507. doi: 10.1523/jneurosci.3059-11.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Weaver DR, Stehle JH, Stopa EG, Reppert SM (1993) Melatonin receptors in human hypothalamus and pituitary: implications for circadian and reproductive responses to melatonin. J Clin Endocrinol Metab 76(2):295–301. doi: 10.1210/jcem.76.2.8381796 PubMedGoogle Scholar
  123. Weaver DR, Reppert SM (1996) The Mel1a melatonin receptor gene is expressed in human suprachiasmatic nuclei. Neuroreport 8(1):109–112PubMedCrossRefGoogle Scholar
  124. Weaver DR, Liu C, Reppert SM (1996) Nature’s knockout: the Mel1b receptor is not necessary for reproductive and circadian responses to melatonin in Siberian hamsters. Mol Endocrinol 10(11):1478–1487. doi: 10.1210/mend.10.11.8923472 PubMedGoogle Scholar
  125. Weil ZM, Hotchkiss AK, Gatien ML, Pieke-Dahl S, Nelson RJ (2006) Melatonin receptor (MT1) knockout mice display depression-like behaviors and deficits in sensorimotor gating. Brain Res Bull 68(6):425–429. doi: 10.1016/j.brainresbull.2005.09.016 PubMedCrossRefGoogle Scholar
  126. Wiechmann AF, Sherry DM (2013) Role of melatonin and its receptors in the vertebrate retina. Int Rev Cell Mol Biol 300:211–242. doi: 10.1016/b978-0-12-405210-9.00006-0 PubMedCrossRefGoogle Scholar
  127. Williams LM (1989) Melatonin-binding sites in the rat brain and pituitary mapped by in vitro autoradiography. J Mol Endocrinol 3(1):71–75PubMedCrossRefGoogle Scholar
  128. Williams LM, Lincoln GA, Mercer JG, Barrett P, Morgan PJ, Clarke IJ (1997) Melatonin receptors in the brain and pituitary gland of hypothalamo-pituitary disconnected Soay rams. J Neuroendocrinol 9(8):639–643PubMedCrossRefGoogle Scholar
  129. Witt-Enderby PA, Bennett J, Jarzynka MJ, Firestine S, Melan MA (2003) Melatonin receptors and their regulation: biochemical and structural mechanisms. Life Sci 72(20):2183–2198PubMedCrossRefGoogle Scholar
  130. Wongchitrat P, Lansubsakul N, Kamsrijai U, Sae-Ung K, Mukda S, Govitrapong P (2016) Melatonin attenuates the high-fat diet and streptozotocin-induced reduction in rat hippocampal neurogenesis. Neurochem Int 100:97–109. doi: 10.1016/j.neuint.2016.09.006 PubMedCrossRefGoogle Scholar
  131. Wu YH, Zhou JN, Balesar R, Unmehopa U, Bao A, Jockers R, Van Heerikhuize J, Swaab DF (2006) Distribution of MT1 melatonin receptor immunoreactivity in the human hypothalamus and pituitary gland: colocalization of MT1 with vasopressin, oxytocin, and corticotropin-releasing hormone. J Comp Neurol 499(6):897–910. doi: 10.1002/cne.21152 PubMedCrossRefGoogle Scholar
  132. Wu YH, Ursinus J, Zhou JN, Scheer FA, Ai-Min B, Jockers R, van Heerikhuize J, Swaab DF (2013) Alterations of melatonin receptors MT1 and MT2 in the hypothalamic suprachiasmatic nucleus during depression. J Affect Disord 148(2–3):357–367. doi: 10.1016/j.jad.2012.12.025 PubMedCrossRefGoogle Scholar
  133. Yang XF, Miao Y, Ping Y, Wu HJ, Yang XL, Wang Z (2011) Melatonin inhibits tetraethylammonium-sensitive potassium channels of rod ON type bipolar cells via MT2 receptors in rat retina. Neuroscience 173:19–29. doi: 10.1016/j.neuroscience.2010.11.028 PubMedCrossRefGoogle Scholar
  134. Yu CX, Wu GC, Xu SF, Chen CH (2000) Melatonin influences the release of endogenous opioid peptides in rat periaqueductal gray. Sheng li xue bao [Acta physiologica Sinica] 52(3):207–210Google Scholar
  135. Zisapel N (2001) Melatonin-dopamine interactions: from basic neurochemistry to a clinical setting. Cell Mol Neurobiol 21(6):605–616PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of PharmacyMonash University MalaysiaSubang JayaMalaysia
  2. 2.Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaSubang JayaMalaysia
  3. 3.School of ScienceMonash University MalaysiaSubang JayaMalaysia
  4. 4.Brain Structure and Function GroupNeuroscience Research AustraliaRandwickAustralia
  5. 5.School of MedicineWestern Sydney UniversityCampbelltownAustralia
  6. 6.School of Medical SciencesThe University of New South WalesKensingtonAustralia

Personalised recommendations