Advertisement

Brain Structure and Function

, Volume 222, Issue 6, pp 2907–2915 | Cite as

Activation of ventral tegmental area dopamine neurons produces wakefulness through dopamine D2-like receptors in mice

  • Yo OishiEmail author
  • Yoshiaki Suzuki
  • Koji Takahashi
  • Toshiya Yonezawa
  • Takeshi Kanda
  • Yohko Takata
  • Yoan Cherasse
  • Michael LazarusEmail author
Short Communication

Abstract

A growing body of evidence suggests that dopamine plays a role in sleep–wake regulation, but the dopamine-producing brain areas that control sleep–wake states are unclear. In this study, we chemogenetically activated dopamine neurons in the ventral midbrain of mice to examine the role of these neurons in sleep–wake regulation. We found that activation of dopamine neurons in the ventral tegmental area (VTA), but not in the substantia nigra, strongly induced wakefulness, although both cell populations expressed the neuronal activity marker c-Fos after chemogenetic stimulation. Analysis of the pattern of behavioral states revealed that VTA activation increased the duration of wakefulness and decreased the number of wakefulness episodes, indicating that wakefulness was consolidated by VTA activation. The increased wakefulness evoked by VTA activation was completely abolished by pretreatment with the dopamine D2/D3 receptor antagonist raclopride, but not by the D1 receptor antagonist SCH23390. These findings indicate that the activation of VTA dopamine neurons promotes wakefulness via D2/D3 receptors.

Keywords

Chemogenetics Sleep DAT-Cre mice Midbrain Substantia nigra D1 receptors 

Notes

Acknowledgements

Our research was supported by Japan Society for the Promotion of Science Grant 15K18359 (to Y.O.), 26220207/16K18358 (to T.K.), 26640025 (to Y.T.), and 2604762 (to M.L.); a grant from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (Grant-in-Aid for Scientific Research on Innovative Areas “Living in Space”, 16H01629, to M.L.); a CREST grant from the Japan Science and Technology Agency (to M.L.); the World Premier International Research Center Initiative (WPI) from MEXT (to Y.O., T.K., Y.T., Y.C., and M.L.); a grant from the Japan Foundation for Applied Enzymology (to Y.O.) and a grant from The Naito Foundation, Japan (to M.L.).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

References

  1. Alberico SL, Cassell MD, Narayanan NS (2015) The vulnerable ventral tegmental area in Parkinson’s disease. Basal Ganglia 5(2–3):51–55. doi: 10.1016/j.baga.2015.06.001 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anaclet C, Ferrari L, Arrigoni E, Bass CE, Saper CB, Lu J, Fuller PM (2014) The GABAergic parafacial zone is a medullary slow wave sleep-promoting center. Nat Neurosci 17(9):1217–1224. doi: 10.1038/nn.3789 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Backman CM, Malik N, Zhang Y, Shan L, Grinberg A, Hoffer BJ, Westphal H, Tomac AC (2006) Characterization of a mouse strain expressing Cre recombinase from the 3′ untranslated region of the dopamine transporter locus. Genesis 44(8):383–390. doi: 10.1002/dvg.20228 CrossRefPubMedGoogle Scholar
  4. Barateau L, Lopez R, Dauvilliers Y (2016) Management of narcolepsy. Curr Treat Options Neurol 18(10):43. doi: 10.1007/s11940-016-0429-y CrossRefPubMedGoogle Scholar
  5. Berridge CW (2006) Neural substrates of psychostimulant-induced arousal. Neuropsychopharmacology 31(11):2332–2340. doi: 10.1038/sj.npp.1301159 CrossRefPubMedGoogle Scholar
  6. Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68(5):815–834. doi: 10.1016/j.neuron.2010.11.022 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chamberlin NL, Du B, de Lacalle S, Saper CB (1998) Recombinant adeno-associated virus vector: use for transgene expression and anterograde tract tracing in the CNS. Brain Res 793(1–2):169–175CrossRefPubMedPubMedCentralGoogle Scholar
  8. Davie CA (2008) A review of Parkinson’s disease. Br Med Bull 86:109–127. doi: 10.1093/bmb/ldn013 CrossRefPubMedGoogle Scholar
  9. Guillery RW (2002) On counting and counting errors. J Comp Neurol 447(1):1–7. doi: 10.1002/cne.10221 CrossRefPubMedGoogle Scholar
  10. Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56(1):27–78. doi: 10.1016/j.brainresrev.2007.05.004 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Jones BE, Bobillier P, Pin C, Jouvet M (1973) The effect of lesions of catecholamine-containing neurons upon monoamine content of the brain and EEG and behavioral waking in the cat. Brain Res 58(1):157–177CrossRefPubMedGoogle Scholar
  12. Kohler C, Hall H, Ogren SO, Gawell L (1985) Specific in vitro and in vivo binding of 3 H-raclopride. A potent substituted benzamide drug with high affinity for dopamine D-2 receptors in the rat brain. Biochem Pharmacol 34(13):2251–2259CrossRefPubMedGoogle Scholar
  13. Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC, Cusher DS, Maratos-Flier E, Roth BL, Lowell BB (2011) Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest 121(4):1424–1428. doi: 10.1172/JCI46229 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lazarus M, Shen HY, Cherasse Y, Qu WM, Huang ZL, Bass CE, Winsky-Sommerer R, Semba K, Fredholm BB, Boison D, Hayaishi O, Urade Y, Chen JF (2011) Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the nucleus accumbens. J Neurosci 31(27):10067–10075. doi: 10.1523/JNEUROSCI.6730-10.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Lena I, Parrot S, Deschaux O, Muffat-Joly S, Sauvinet V, Renaud B, Suaud-Chagny MF, Gottesmann C (2005) Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res 81(6):891–899. doi: 10.1002/jnr.20602 CrossRefPubMedGoogle Scholar
  16. Lu J, Jhou TC, Saper CB (2006) Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci 26(1):193–202. doi: 10.1523/JNEUROSCI.2244-05.2006 CrossRefPubMedGoogle Scholar
  17. Matsumoto M, Takada M (2013) Distinct representations of cognitive and motivational signals in midbrain dopamine neurons. Neuron 79(5):1011–1024. doi: 10.1016/j.neuron.2013.07.002 CrossRefPubMedGoogle Scholar
  18. Meador-Woodruff JH, Mansour A, Bunzow JR, Van Tol HH, Watson SJ Jr, Civelli O (1989) Distribution of D2 dopamine receptor mRNA in rat brain. Proc Natl Acad Sci USA 86(19):7625–7628CrossRefPubMedPubMedCentralGoogle Scholar
  19. Miller JD, Farber J, Gatz P, Roffwarg H, German DC (1983) Activity of mesencephalic dopamine and non-dopamine neurons across stages of sleep and walking in the rat. Brain Res 273(1):133–141CrossRefPubMedGoogle Scholar
  20. Oades RD, Halliday GM (1987) Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res 434(2):117–165CrossRefPubMedGoogle Scholar
  21. Oishi Y, Takata Y, Taguchi Y, Kohtoh S, Urade Y, Lazarus M (2016) Polygraphic recording procedure for measuring sleep in mice. J Vis Exp 107:e53678. doi: 10.3791/53678 Google Scholar
  22. Ongini E, Bonizzoni E, Ferri N, Milani S, Trampus M (1993) Differential effects of dopamine D-1 and D-2 receptor antagonist antipsychotics on sleep–wake patterns in the rat. J Pharmacol Exp Ther 266(2):726–731PubMedGoogle Scholar
  23. Paxinos G, Franklin K (2001) The mouse brain in stereotaxic coordinates. Academic, San DiegoGoogle Scholar
  24. Qu WM, Huang ZL, Xu XH, Matsumoto N, Urade Y (2008) Dopaminergic D1 and D2 receptors are essential for the arousal effect of modafinil. J Neurosci 28(34):8462–8469. doi: 10.1523/JNEUROSCI.1819-08.2008 CrossRefPubMedGoogle Scholar
  25. Qu WM, Xu XH, Yan MM, Wang YQ, Urade Y, Huang ZL (2010) Essential role of dopamine D2 receptor in the maintenance of wakefulness, but not in homeostatic regulation of sleep, in mice. J Neurosci 30(12):4382–4389. doi: 10.1523/JNEUROSCI.4936-09.2010 CrossRefPubMedGoogle Scholar
  26. Russo SJ, Nestler EJ (2013) The brain reward circuitry in mood disorders. Nat Rev Neurosci 14(9):609–625. doi: 10.1038/nrn3381 CrossRefPubMedGoogle Scholar
  27. Schultz W (2015) Neuronal reward and decision signals: from theories to data. Physiol Rev 95(3):853–951. doi: 10.1152/physrev.00023.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Steinfels GF, Heym J, Strecker RE, Jacobs BL (1983) Behavioral correlates of dopaminergic unit activity in freely moving cats. Brain Res 258(2):217–228CrossRefPubMedGoogle Scholar
  29. Trulson ME (1985) Simultaneous recording of substantia nigra neurons and voltammetric release of dopamine in the caudate of behaving cats. Brain Res Bull 15(2):221–223CrossRefPubMedGoogle Scholar
  30. Trulson ME, Preussler DW (1984) Dopamine-containing ventral tegmental area neurons in freely moving cats: activity during the sleep-waking cycle and effects of stress. Exp Neurol 83(2):367–377. doi: 10.1016/S0014-4886(84)90105-5 CrossRefPubMedGoogle Scholar
  31. Urban DJ, Roth BL (2015) DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu Rev Pharmacol Toxicol 55:399–417. doi: 10.1146/annurev-pharmtox-010814-124803 CrossRefPubMedGoogle Scholar
  32. Wang YQ, Li R, Wang DR, Cherasse Y, Zhang Z, Zhang MQ, Lavielle O, McEown K, Schiffmann SN, de Kerchove d’Exaerde A, Qu WM, Lazarus M, Huang ZL (2016) Adenosine A2A receptors in the olfactory bulb suppress rapid eye movement sleep in rodents. Brain Struct Funct. doi: 10.1007/s00429-016-1281-2 Google Scholar
  33. Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5(6):483–494. doi: 10.1038/nrn1406 CrossRefPubMedGoogle Scholar
  34. Wisor JP, Nishino S, Sora I, Uhl GH, Mignot E, Edgar DM (2001) Dopaminergic role in stimulant-induced wakefulness. J Neurosci 21(5):1787–1794PubMedGoogle Scholar
  35. Zhang J, Xiong B, Zhen X, Zhang A (2009) Dopamine D1 receptor ligands: where are we now and where are we going. Med Res Rev 29(2):272–294. doi: 10.1002/med.20130 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.International Institute for Integrative Sleep Medicine (WPI-IIIS)University of TsukubaTsukubaJapan

Personalised recommendations