Skip to main content
Log in

Bipolar cell gap junctions serve major signaling pathways in the human retina

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Connexin36 (Cx36) constituent gap junctions (GJ) throughout the brain connect neurons into functional syncytia. In the retina they underlie the transmission, averaging and correlation of signals prior conveying visual information to the brain. This is the first study that describes retinal bipolar cell (BC) GJs in the human inner retina, whose function is enigmatic even in the examined animal models. Furthermore, a number of unique features (e.g. fovea, trichromacy, midget system) necessitate a reexamination of the animal model results in the human retina. Well-preserved postmortem human samples of this study are allowed to identify Cx36 expressing BCs neurochemically. Results reveal that both rod and cone pathway interneurons display strong Cx36 expression. Rod BC inputs to AII amacrine cells (AC) appear in juxtaposition to AII GJs, thus suggesting a strategic AII cell targeting by rod BCs. Cone BCs serving midget, parasol or koniocellular signaling pathways display a wealth of Cx36 expression to form homologously coupled arrays. In addition, they also establish heterologous GJ contacts to serve an exchange of information between parallel signaling streams. Interestingly, a prominent Cx36 expression was exhibited by midget system BCs that appear to maintain intimate contacts with bistratified BCs serving other pathways. These findings suggest that BC GJs in parallel signaling streams serve both an intra- and inter-pathway exchange of signals in the human retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alonso JM, Usrey WM, Reid RC (1996) Precisely correlated firing in cells of the lateral geniculate nucleus. Nature 383:815–819

    Article  CAS  PubMed  Google Scholar 

  • Arai I, Tanaka M, Tachibana M (2010) Active roles of electronically coupled bipolar cell network in the adult retina. J Neurosci 30:9260–9270. doi:10.1523/JNEUROSCI.1590-10.2010

    Article  CAS  PubMed  Google Scholar 

  • Bloomfield SA, Dacheux RF (2001) Rod vision: pathways and processing in the mammalian retina. Prog Retin Eye Res 20:351–384

    Article  CAS  PubMed  Google Scholar 

  • Bloomfield SA, Völgyi B (2009) The diverse functional roles and regulation of neuronal gap junctions in the retina. Nat Rev Neurosci 10:495–506. doi:10.1038/nrn2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YY, Liu SL, Hu DP, Xing YQ, Shen Y (2014) N-methyl-N -nitrosourea induced retinal degeneration in mice. Exp Eye Res 121:102–113. doi:10.1016/j.exer.2013.12.019

    Article  CAS  PubMed  Google Scholar 

  • Cohen E, Sterling P (1990) Cenvergence and divergence of cones onto bipolar cells in the central area of cat retina. Philos Trans R Soc Lond B Biol Sci 330:323–328

    Article  CAS  PubMed  Google Scholar 

  • Dacey D, Packer OS, Diller L, Brainard D, Peterson B, Lee B (2000) Center surround receptive field structure of cone bipolar cells in primate retina. Vision Res 40:1801–1811

    Article  CAS  PubMed  Google Scholar 

  • Dacey DM, Peterson BB, Robinson FR, Gamlin PD (2003) Fireworks in the primate retina: in vitro photodynamics reveals diverse LGN-projecting ganglion cell types. Neuron 37:15–27

    Article  CAS  PubMed  Google Scholar 

  • Dacey DM, Crook JD, Packer OS (2014) Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina. Vis Neurosci 31:139–151. doi:10.1017/S0952523813000230

    Article  PubMed  Google Scholar 

  • Deans MR, Völgyi B, Goodenough DA, Bloomfield SA, Paul DL (2002) Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 36:703–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eliasieh K, Liets LC, Chalupa LM (2007) Cellular reorganization in the human retina during normal aging. Invest Ophthalmol Vis Sci 48:2824–2830

    Article  PubMed  Google Scholar 

  • Famiglietti EV, Kolb H (1975) A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina. Brain Res 84:293–300

    Article  PubMed  Google Scholar 

  • Feigenspan A, Teubner B, Willecke K, Weiler R (2001) Expression of neuronal connexin36 in AII amacrine cells of the mammalian retina. J Neurosci 21:230–239

    CAS  PubMed  Google Scholar 

  • Feigenspan A, Janssen-Bienhold U, Hormuzdi S, Monyer H, Degen J, Söhl G, Willecke K, Ammermüller J, Weiler R (2004) Expression of connexin36 in cone pedicles and OFF-cone bipolar cells of the mouse retina. J Neurosci 24:3325–3334

    Article  CAS  PubMed  Google Scholar 

  • Ghosh KK, Martin PR, Grünert U (1997) Morphological analysis of the blue cone pathway in the retina of a New World monkey, the marmoset Callithrix jacchus. J Comp Neurol 379:211–225

    Article  CAS  PubMed  Google Scholar 

  • Ghosh KK, Bujan S, Haverkamp S, Feigenspan A, Wässle H (2004) Types of bipolar cells in the mouse retina. J Comp Neurol 469:70–82

    Article  PubMed  Google Scholar 

  • Grünert U, Martin PR, Wässle H (1994) Immunocytochemical analysis of bipolar cells in the macaque monkey retina. J Comp Neurol 348:607–627

    Article  PubMed  Google Scholar 

  • Güldenagel M, Söhl G, Plum A, Traub O, Teubner B, Weiler R, Willecke KS (2000) Expression patterns of connexin genes in mouse retina. J Comp Neurol 425:193–201

    Article  PubMed  Google Scholar 

  • Güldenagel M, Ammermüller J, Feigenspan A, Teubner B, Degen J, Söhl G, Willecke K, Weiler R (2001) Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36. J Neurosci 21:6036–6044

    PubMed  Google Scholar 

  • Han Y, Massey SC (2005) Electrical synapses in retinal ON cone bipolar cells: subtype-specific expression of connexins. PNAS 102:13313–13318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haverkamp S, Haeseleer F, Hendrickson A (2003) A comparison of immunocytochemical markers to identify bipolar cell types in human and monkey retina. Visual Neurosci 20:589–600

    Article  Google Scholar 

  • Hidaka S, Akahori Y, Kurosawa Y (2004) Dendrodendritic electrical synapses between mammalian retinal ganglion cells. J Neurosci 24:10553–10567

    Article  CAS  PubMed  Google Scholar 

  • Hombach S, Janssen-Bienhold U, Söhl G, Schubert T, Büssow H, Ott T, Weiler R, Willecke K (2004) Functional expression of connexin57 in horizontal cells of the mouse retina. Eur J Neurosci 19:2633–2640

    Article  PubMed  Google Scholar 

  • Hunyady B, Krempels K, Harta G, Mezey E (1996) Immunohistochemical signal amplification by catalyzed reporter deposition and its application in double immunostaining. J Histochem Cytochem 44:1353–1362

    Article  CAS  PubMed  Google Scholar 

  • Jacobs AL, Werblin FS (1998) Spatiotemporal patterns at the retinal output. J Neurophysiol 80:447–451

    CAS  PubMed  Google Scholar 

  • Jacoby RA, Marshak DW (2000) Synaptic connections of DB3 diffuse bipolar cell axons in macaque retina. J Comp Neurol 416:19–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacoby R, Stafford D, Kouyama N, Marshak D (1996) Synaptic inputs to ON parasol ganglion cells in the primate retina. J Neurosci 16:8041–8056

    CAS  PubMed  Google Scholar 

  • Jacoby RA, Wiechmann AF, Amara SG, Leighton BH, Marshak DW (2000) Diffuse bipolar cell provide input to OFF parasol ganglion cells in the macaque retina. J Comp Neurol 416:6–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jusuf PR, Lee SCS, Grünert U (2004) Synaptic connectivity of the diffuse bipolar cell type DB6 in the inner plexiform layer of primate retina. J Comp Neurol 469:494–506

    Article  PubMed  Google Scholar 

  • Kántor O, Benkő Z, Énzsöly A, Dávid C, Naumann A, Nitschke R, Szabó A, Pálfi E, Orbán J, Nyitrai M, Németh J, Szél Á, Lukáts Á, Völgyi B (2016a) Characterization of connexin36 gap junctions in the human outer retina. Brain Struct Funct 221:2963–2984. doi:10.1007/s00429-015-1082-z

    Article  PubMed  Google Scholar 

  • Kántor O, Mezey S, Adeghate J, Naumann A, Nitschke R, Énzsöly A, Szabó A, Lukáts Á, Németh J, Somogyvári Z, Völgyi B (2016b) Calcium buffer proteins are specific markers of human retinal neurons. Cell Tissue Res 365:29–50. doi:10.1007/s00441-016-2376-z

    Article  PubMed  Google Scholar 

  • Kántor O, Varga A, Tóth R, Énzsöly A, Pálfi E, Kovács-Öller T, Nitschke R, Szél Á, Székely A, Völgyi B, Négyessy L, Somogyvári Z, Lukáts Á  (2015) Stratified organization and disorganization of inner plexiform layer revealed by TNAP activity in healthy and diabetic rat retina. Cell Tissue Res 359(2):409–421. doi:10.1007/s00441-014-2047-x

    Article  PubMed  Google Scholar 

  • Kihara AH, Mantovani de Castro L, Belmonte MA, Yan CY, Moriscot AS, Hamassaki DE (2006) Expression of connexins 36, 43, and 45 during postnatal development of the mouse retina. J Neurobiol 66:1397–1410

    Article  CAS  PubMed  Google Scholar 

  • Kihara AH, Santos TO, Osuna-Melo EJ, Paschon V, Vidal KS, Akamine PS, Castro LM, Resende RR, Hamassaki DE, Britto LR (2010) Connexin-mediated communication controls cell proliferation and is essential in retinal histogenesis. Int J Dev Neurosci 28:39–52. doi:10.1016/j.ijdevneu.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  • Kolb H, Linberg KA, Fischer SK (1992) Neurons of the human retina: A Golgi study. J Comp Neurol 318:147–187

    Article  CAS  PubMed  Google Scholar 

  • Kovács-Öller T, Debertin G, Raics K, Orbán J, Nyitrai M, Völgyi B (2014) Developmental changes in the expression level of connexin36 in the rat retina. Cell Tissue Res 358:289–302. doi:10.1007/s00441-014-1967-9

    Article  PubMed  Google Scholar 

  • Kuo SP, Schwartz GW, Rieke F (2016) Nonlinear spatiotemporal integration by electrical and chemical synapses in the retina. Neuron 90:320–332. doi:10.1016/j.neuron.2016.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EJ, Han JW, Kim HJ, Kim IB, Lee MY, Oh SJ, Chung JW, Chun MH (2003) The immunocytochemical localization of connexin 36 at rod and cone gap junctions in the guinea pig retina. Eur J Neurosci 18:2925–2934

    Article  PubMed  Google Scholar 

  • Lee SC, Weltzien F, Madigan MC, Martin PR, Grünert U (2016) Identification of AII amacrine, displaced amacrine, and bistratified ganglion cell types in human retina with antibodies against calretinin. J Comp Neurol 524:39–53. doi:10.1002/cne.23821

    Article  CAS  PubMed  Google Scholar 

  • Li W, Zhang J, Massey SC (2002) Coupling pattern of S1 and S2 amacrine cells in the rabbit retina. Vis Neurosci 19(2):119–131

    Article  PubMed  Google Scholar 

  • Lin B, Jakobs TC, Masland RH (2005) Different functional types of bipolar cells use different gap- junctional proteins. J Neurosci 25:6696–6701

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Ghosh KK, Martin PR, Grünert U (1999) Analysis of two types of cone bipolar cells in the retina of a New World monkey, the marmoset, Callithrix jacchus. Vis Neurosci 16:707–719

    Article  CAS  PubMed  Google Scholar 

  • Marc RE, Liu WL, Müller JF (1988) Gap junctions in the inner plexiform layer of the goldfish retina. Vision Res 28:9–24

    Article  CAS  PubMed  Google Scholar 

  • Marc RE, Jones BW, Watt CB, Anderson JR, Sigulinsky C, Lauritzen S (2013) Retinal connectomics: towards complete, accurate networks. Prog Retin Eye Res 37:141–162. doi:10.1016/j.preteyeres.2013.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Marshak DW, Yamada ES, Bordt AS, Perryman WC (2002) Synaptic input to an ON parasol ganglion cell in the macaque retina: a serial section analysis. Vis Neurosci 19:299–305

    Article  PubMed  PubMed Central  Google Scholar 

  • Masland D (2011) Cell Populations of the retina: the proctor lecture. Investig Ophthalmol Vis Sci 52:4581–4591

    Article  Google Scholar 

  • Masri RA, Percival KA, Koizumi A, Martin PR, Grünert U (2016) Connectivity between the OFF bipolar type DB3a and six types of ganglion cell in the marmoset retina. J Comp Neurol 524:1839–1858. doi:10.1002/cne.23925

    Article  CAS  PubMed  Google Scholar 

  • Massey SC, O’Brien JJ, Trexler EB, Li W, Keung JW, Mills SL, O’Brien J (2003) Multple neuronal connexins in the mammalian retina. Cell Commun Adhes 10:425–430

    Article  CAS  PubMed  Google Scholar 

  • Maxeiner S, Dedek K, Janssen-Bienhold U, Ammermüller J, Brune H, Kirsch T, Pieper M, Degen J, Krüger O, Willecke K, Weiler R (2005) Deletion of connexin45 in mouse retinal neurons disrupts the rod/cone signaling pathway between AII amacrine and ON cone bipolar cells and leads to impared visual transmission. J Neurosci 25:566–576

    Article  CAS  PubMed  Google Scholar 

  • Mills SL (1999) Unusual coupling patterns of a cone bipolar cell in the rabbit retina. Vis Neurosci 16:1029–1035

    Article  CAS  PubMed  Google Scholar 

  • Mills SL, O’Brien JJ, Li W, O’Brien J, Massey SC (2001) Rod pathways in the mammalian retina use connexin36. J Comp Neurol 436:336–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller LP, Dedek K, Janssen-Bienhold U, Meyer A, Kreuzberg MM, Lorenz S, Willecke K, Weiler R (2010) Expression and modulation of connexin 30.2, a novel gap junction protein in the mouse retina. Vis Neurosci 27:91–101. doi:10.1017/S0952523810000131

    Article  PubMed  Google Scholar 

  • Nelson R (1982) AII amacrine cells quicken time course of rod signals in the cat retina. J Neurophysiol 47:928–947

    CAS  PubMed  Google Scholar 

  • O’Brien JJ, Chen X, Macleish PR, O’Brien J, Massey SC (2012) Photoreceptor coupling mediated by connexin36 in the primate retina. J Neurosci 32:4675–4687. doi:10.1523/JNEUROSCI.4749-11.2012

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan F, Paul DL, Bloomfield SA, Völgyi B (2010) Connexin36 is required for gap junctional coupling of most ganglion cell subtypes in the mouse retina. J Comp Neurol 518:911–927. doi:10.1002/cne.22254

    Article  PubMed  PubMed Central  Google Scholar 

  • Percival KA, Martin PR, Grünert U (2011) Synaptic inputs to two types of koniocellular pathway ganglion cells in marmoset retina. J Comp Neurol 519:2135–2153. doi:10.1002/cne.22586

    Article  PubMed  Google Scholar 

  • Percival KA, Martin PR, Grünert U (2013) Organisation of koniocellular-projecting ganglion cells and diffuse bipolar cells in the primate fovea. Eur J Neurosci 37:1072–1089. doi:10.1111/ejn.12117

    Article  PubMed  Google Scholar 

  • Percival KA, Koizumi A, Masri RA, Buzás P, Martin PR, Grünert U (2014) Identification of a pathway from the retina to koniocellular layer K1 in the lateral geniculate nucleus of marmoset. J Neurosci 34:3821–3825. doi:10.1523/JNEUROSCI.4491-13.2014

    Article  PubMed  Google Scholar 

  • Pereda A, O’Brien JO, Nagy JI, Bukauskas F, Davidson KGV, Kamasawa N, Yasumura T, Rash JE (2003) Connexin35 mediates electrical transmission at mixed synapses on Mauthner cells. J Neurosci 23:7489–7503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petrasch-Parwez E, Habbes HW, Weickert S, Löbbecke-Schumacher M, Striedinger K, Wieczorek S, Dermietzel R, Epplen JT (2004) Fine-structural analysis and connexin expression in the retina of a transgenic model of Huntington’s disease. J Comp Neurol 479:181–197

    Article  CAS  PubMed  Google Scholar 

  • Puthussery T, Gayet-Primo J, Taylor WR (2010) Localization of the calcium-binding protein secretagogin in cone bipolar cells of the mammalian retina. J Comp Neurol 518:513–525. doi:10.1002/cne.22234

    Article  CAS  PubMed  Google Scholar 

  • Rash JE, Kamasawa N, Davidson KGV, Yasumura T, Pereda AE, Nagy JI (2012) Connexin composition in apposed gap junction hemiplaques revealed by matched double-replica freeze-fracture replica immunogold labeling. J Membr Biol 245:333–344. doi:10.1007/s00232-012-9454-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raviola E, Gilula NB (1975) Intramembrane organization of specialized contacts in the outer plexiform layer of the retina. A freeze-fracture study in monkeys and rabbits. J Cell Biol 65:192–222

    Article  CAS  PubMed  Google Scholar 

  • Regus-Leidig H, Specht D, Tom Dieck S, Brandstätter JH (2010) Stability of active zone components at the photoreceptor ribbon complex. Mol Vis 16:2690–2700

    PubMed  PubMed Central  Google Scholar 

  • Regus-Leidig H, Fuchs M, Löhner M, Leist SR, Leal-Ortiz S, Chiodo VA, Hauswirth WW, Garner CC, Brandstätter JH (2014) In vivo knockdown of Piccolino disrupts presynaptic ribbon morphology in mouse photoreceptor synapses. Front Cell Neurosci 8:259. doi:10.3389/fncel.2014.00259

    Article  PubMed  PubMed Central  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  • Schubert T, Degen J, Willecke K, Hormuzdi SG, Monyer H, Weiler R (2005a) Connexin36 mediates gap junctional coupling of alpha-ganglion cells in mouse retina. J Comp Neurol 485:191–201

  • Schubert T, Maxeiner S, Krüger O, Willecke K, Weiler R (2005b) Connexin45 mediates gap junctional coupling of bistratified ganglion cells in the mouse retina. J Comp Neurol 490:29–39

  • Söhl G, Joussen A, Kociok N, Willecke K (2010) Expression of connexin genes in the human retina. BMC Ophthalmol 10:27. doi:10.1186/1471-2415-10-27

    Article  PubMed  PubMed Central  Google Scholar 

  • Toader O, Forte N, Orlando M, Ferrea E, Raimondi A, Baldelli P, Benfenati F, Medrihan L (2013) Dentate gyrus network dysfunctions precede the symptomatic phase in a genetic mouse model of seizures. Front Cell Neurosci 7:138. doi:10.3389/fncel.2013.00138

  • Tomassy GS, Morello N, Calcagno E, Giustetto M (2014) Developmental abnormalities of cortical interneurons precede symptoms onset in a mouse model of Rett syndrome. J Neurochem 131:115–127. doi:10.1111/jnc.12803

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto Y, Omi N (2015) OFF bipolar cells in macaque retina: type-specific connectivity in the outer and inner synaptic layers. Front Neuroanat 9:122 doi:10.3389/fnana.2015.00122

    PubMed  PubMed Central  Google Scholar 

  • Umino O, Maehara M, Hidaka S, Kita S, Hashimoto Y (1994) The network properties of bipolar-bipolar cell coupling in the retina of teleost fishes. Vis Neurosci 11:533–548

    Article  CAS  PubMed  Google Scholar 

  • Usrey WM, Reid RC (1999) Synchronous activity in the visual system. Annu Rev Physiol 61:435–456

    Article  CAS  PubMed  Google Scholar 

  • Van Haesendonck E, Missotten L (1983) Interbipolar contacts in the dorsal inner plexiform layer in the retina of Callionymus lyra L. J Ultrastruct Res 83:303–311

    Article  PubMed  Google Scholar 

  • Vaney DI (1997) Neuronal coupling in rod-signal pathways of the retina. Invest Ophthalmol Vis Sci 38(2):267–273

    CAS  PubMed  Google Scholar 

  • Völgyi B, Deans MR, Paul DL, Bloomfield SA (2004) Convergence and segregation of the multiple rod pathways in mammalian retina. J Neurosci 24:11182–11192

    Article  PubMed  PubMed Central  Google Scholar 

  • Völgyi B, Abrams J, Paul DL, Bloomfield SA (2005) Morphology and tracer coupling pattern of alpha ganglion cells in the mouse retina. J Comp Neurol 492:66–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Völgyi B, Chheda S, Bloomfield SA (2009) Tracer coupling patterns of the ganglion cell subtypes in the mouse retina. J Comp Neurol 512:664–687. doi:10.1002/cne.21912

    Article  PubMed  PubMed Central  Google Scholar 

  • Völgyi B, Kovács-Oller T, Atlasz T, Wilhelm M, Gábriel R (2013a) Gap junctional coupling in the vertebrate retina: variations on one theme? Prog Retin Eye Res 34:1–18. doi:10.1016/j.preteyeres.2012.12.002

  • Völgyi B, Pan F, Paul DL, Wang JT, Huberman AD, Bloomfield SA (2013b) Gap junctions are essential for generating the correlated spike activity of neighboring retinal ganglion cells. PLoS One 8:e69426. doi:10.1371/journal.pone.0069426

  • Weltzien F, Dimarco S, Protti DA, Daraio T, Martin PR, Grünert U (2014) Characterization of secretagogin-immunoreactive amacrine cells in marmoset retina. J Comp Neurol 522:435–455. doi:10.1002/cne.23420

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by OTKA K105247 to B. V. and by the Hungarian Brain Research Program (KTIA_NAP_13-2-2015-0008) to B. V. This research was also supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP- 4.2.4.A/2–11/1-2012-0001 ‘National Excellence Program’ to B. V. The technical assistance of Zsuzsanna Vidra is gratefully appreciated. The authors are thankful to Wilhelm Koch providing the recoverin anibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béla Völgyi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

429_2016_1360_MOESM1_ESM.tif

Cx36 immunolabeling in the human inner retina. Cross section displays the distribution of Cx36 plaques (green) in the human retina. Nuclei of retinal neurons are revealed by DAPI (blue). Cx36 plaques are scattered throughout the IPL but they occur most frequently in the ON sublamina (strata 4 and 5). In addition, Cx36 plaques also display a local maximum in strata 1 and 2. Inset shows an enlarged area of the IPL. This higher magnification reveals faint punctate labels in the middle of the IPL (stratum 3) that are invisible at lower power magnification. Abbreviations: OPL—outer plexiform layer, INL—inner nuclear layer, IPL—inner plexiform layer, GCL—ganglion cells layer. Scale bar: 10 µm (TIF 1960 KB)

429_2016_1360_MOESM2_ESM.tif

Control immunohistochemistry experiments. Rotational control experiments were performed for immunohistochemical labels to validate colocalizations of Cx36 plaques with neuronal markers of this study. Colocalization of Cx36 plaques with dense CaR/CaB labeled AII amacrine cell processes in both the ON and OFF sublamina and sparse Rec+ flat midget BC axons in the OFF sublamina were selected to show that they occure considerably more often than chance. a Colocalization of Cx36 plaques was tested with CaR and CaB labels in IPL strata 1-2 by comparing the number of colocalizations in the original labels (left column) with those of single channel rotated pairs (see Methods). Colocalizations of Cx36 plaques with CaR/CaB labeled AII (magenta) and CaR + non-AII (blue) processes occurred more often prior channel rotation. In contrast, counts of non colocalizing plaques (black) were significantly higher following channel rotation. Examples of colocalization tests in original and rotated panels are shown under the corresponding columns. Blue and magenta circles display examples of colocalizing Cx36 puncta with the corresponding CaB or CaR/CaB labeled neuronal profiles. b Colocalization of Cx36 plaques was tested with CaR and CaB labels in IPL strata 4-5 by comparing the number of colocalizations in the original labels (left column) with those of single channel rotated pairs. Colocalizations of Cx36 plaques with CaR/CaB labeled AII (magenta) and CaR + non-AII (blue) processes occurred more often prior channel rotation. In contrast, counts of non colocalizing plaques (black) were significantly higher following channel rotation. Examples of colocalization tests in original and rotated panels are shown under the corresponding columns. Blue and magenta circles display examples of colocalizing Cx36 puncta with the corresponding CaB or CaR/CaB labeled neuronal profiles. c Colocalization of Cx36 plaques was tested with Rec labeled flad bidget BC axon terminals in IPL strata 1-2 by comparing the number of colocalizations in the original labels (left column) with those of single channel rotated pairs. Although most Cx36 plaques showed no colocalization with Rec+ processes (black) colocalization (magenta) occurred almost twice more often in normal images (left) than expected by chance (rotated images on the right) shown in unrotated and rotated pie diagram pairs, respectively. Examples of colocalization tests in original and rotated panels are shown under the corresponding columns. Magenta circles display examples of colocalizing Cx36 puncta with Rec labeled neuronal profiles. Position 1-3 reflects retinal locations where plaque counts were performed (TIF 17110 KB)

429_2016_1360_MOESM3_ESM.tif

Histograms exhibit numbers of colocalizing Cx36 plaques with Neurolucide reconstructed axons of flat midget BC (n=6), giant bistratified BC (n=11) and diffuse type 3 BC (n=8) cells. Values on the x axis represent the order of axonal braches where Cx36 plaques were located (for details see Table 3). High SD values (error bars over each column) suggest significant variability in the location of Cx36 plaques for all three BC subtypes. However, there is a clear tendency for Cx36 GJ to locate towards the terminal axon of flat midget BCs, whereas those colocalize with giant bistratified BC and diffuse type 3 BC axons display a mid-axonal preference (TIF 37 KB)

429_2016_1360_MOESM4_ESM.tif

Colocalization of Cx36 plaques with BC neurochemical markers in the human retina. a Histogram shows the coverage factors of neurochemical marker in the human retina. CaB and CaR displayed the highest coverage in both the OFF (white bars) and ON sublaminas (gray bars), whereas PKCα and Rec were less frequent and constrained to the ON and OFF sublaminas, respectively. Each column represents average coverage values of selected retinal areas of the same stack, error bars show SD values. b Cx36 colocalized with CaR and CaB most frequently throughout the IPL but displayed significantly less colocalizations with PV, PKCα and Rec. c Colocalizations of Cx36 puncta were weighed with coverage factors of each marker to reveal the relative probability of colocalizations versus chance. The histogram shows that contrary to low colocalizations of Cx36 and Rec labels, their weighed colocalization is the highest among all markers indicating a high probability of real colocalizations. Abbreviations: CaR—calretinin, CaB—calbindin, PV—parvalbumin, PKCα—protein kinase C alpha subunit, Rec—recoverin, str—stratum (TIF 25024 KB)

429_2016_1360_MOESM5_ESM.tif

Two hypotheses for the functionality of heterologous BC GJs in the mammalian retina. a Magnocellular diffuse type 3 BC and/or parvocellular flat midget BC cells (gray) receive inputs from cone photoreceptors (green arrow). Signal from these BCs then are passed to GC targets via conventional glutamatergic chemical synapses thereby creating GC center receptive field (RF). In addition, upon opening of heterologous BC GJs (orange GJ symbols) signals also flow to blue cone giant bistratified BCs that summate responses of many BCs to establish a uniform surround signals for small and/or large bistratified GCs of the blue signaling stream. b flat midget BCs and/or diffuse type 3 BC BC (gray) currents evoked by focal light stimuly at the center RF are transmitted to postsynaptic GCs via glutamatergic synapses. Upon opening of heterologous GJs (left panel, orange GJ symbols), however, some evoked current is sinked (green open arrow) by GJ coupled giant bistratified BCs (black BC) thereby impeding flat midget BC-to-midget and/or diffuse type 3 BC-to-parasol GC signaling. In this scenario only high amplitude flat midget BC and/or diffuse type 3 BC depolarizations (evoked by likely high contrast) can be translated to a midget and parasol GCs, respectively (yellow arrows). On the other hand, when light stimuli are spatially extended (right panel) a simultaneous depolarization of giant bistratified BCs and electrically coupled flat midget BC and/or diffuse type 3 BC cells occurs. When giant bistratified BCs are depolarized the current sinking mechanism is less effective (red open arrow), thus midget and parasol BCs can transmit much of their signals to the corresponding postsynaptic GCs (green arrows). Such mechanism could tune visual acuity to percieve small objects against high contrast background, and low contrasts are only translated to GC signals if they reach a certain size. Abbreviations: c – cone, cBC – cone bipolar cell, flat midget BC—flat midget bipolar, diffuse type 3 BC—diffuse bipolar 3, giant bistratified BC—giant bistratified bipolar, GC—ganglion cell (TIF 20427 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kántor, O., Varga, A., Nitschke, R. et al. Bipolar cell gap junctions serve major signaling pathways in the human retina. Brain Struct Funct 222, 2603–2624 (2017). https://doi.org/10.1007/s00429-016-1360-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1360-4

Keywords

Navigation