Advertisement

Brain Structure and Function

, Volume 222, Issue 6, pp 2473–2485 | Cite as

Cortico-subthalamic inputs from the motor, limbic, and associative areas in normal and dopamine-depleted rats are not fully segregated

  • Marcus L. F. Janssen
  • Yasin Temel
  • Claire Delaville
  • Daphne G. M. Zwartjes
  • Tjitske Heida
  • Philippe De Deurwaerdère
  • Veerle Visser-Vandewalle
  • Abdelhamid Benazzouz
Original Article

Abstract

The subthalamic nucleus (STN) receives monosynaptic glutamatergic afferents from different areas of the cortex, known as the “hyperdirect” pathway. The STN has been divided into three distinct subdivisions, motor, limbic, and associative parts in line with the concept of parallel information processing. The extent to which the parallel information processing coming from distinct cortical areas overlaps in the different territories of the STN is still a matter of debate and the proposed role of dopaminergic neurons in maintaining the coherence of responses to cortical inputs in each territory is not documented. Using extracellular electrophysiological approaches, we investigated to what degree the motor and non-motor regions in the STN are segregated in control and dopamine (DA) depleted rats. We performed electrical stimulation of different cortical areas and recorded STN neuronal responses. We showed that motor and non-motor cortico-subthalamic pathways are not fully segregated, but partially integrated in the rat. This integration was mostly present through the indirect pathway. The spatial distribution and response latencies were the same in sham and 6-hydroxydopamine lesioned animals. The inhibitory phase was, however, less apparent in the lesioned animals. In conclusion, this study provides the first evidence that motor and non-motor cortico-subthalamic pathways in the rat are not fully segregated, but partially integrated. This integration was mostly present through the indirect pathway. We also show that the inhibitory phase induced by GABAergic inputs from the external segment of the globus pallidus is reduced in the DA-depleted animals.

Keywords

Subthalamic nucleus Cortico-subthalamic hyperdirect pathway Motor cortex Associative and limbic cortices Parkinson’s disease 

Notes

Acknowledgements

The authors declare no competing financial interests. They gratefully acknowledge the support of the BrainGain Smart Mix Programme of the Netherlands Ministry of Economic Affairs and the Netherlands Ministry of Education, Culture and Science (Grant No.: SSM06011). The study was also supported by the “Bordeaux University” and the “Centre National de la Recherche Scientifique” (CNRS, France). M. Janssen received travel grants from the Boehringer Ingelheim Foundation and the Dutch Parkinson Association. C. Delaville was supported by a fellowship from the “Ministère de l’Education Nationale, de la Recherche et de la Technologie” (France). We thank L. Cardoit for her technical assistance. The authors declare no competing financial interests.

References

  1. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375CrossRefPubMedGoogle Scholar
  2. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13(7):266–271CrossRefPubMedGoogle Scholar
  3. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381. doi: 10.1146/annurev.ne.09.030186.002041 CrossRefPubMedGoogle Scholar
  4. Benazzouz A, Gross C, Feger J, Boraud T, Bioulac B (1993) Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci 5(4):382–389CrossRefPubMedGoogle Scholar
  5. Benazzouz A, Boraud T, Feger J, Burbaud P, Bioulac B, Gross C (1996) Alleviation of experimental hemiparkinsonism by high-frequency stimulation of the subthalamic nucleus in primates: a comparison with L-Dopa treatment. Mov Disord 11(6):627–632. doi: 10.1002/mds.870110606 CrossRefPubMedGoogle Scholar
  6. Beyeler A, Kadiri N, Navailles S, Boujema MB, Gonon F, Moine CL, Gross C, De Deurwaerdere P (2010) Stimulation of serotonin2C receptors elicits abnormal oral movements by acting on pathways other than the sensorimotor one in the rat basal ganglia. Neuroscience 169(1):158–170CrossRefPubMedGoogle Scholar
  7. Chetrit J, Ballion B, Laquitaine S, Belujon P, Morin S, Taupignon A, Bioulac B, Gross CE, Benazzouz A (2009) Involvement of Basal Ganglia network in motor disabilities induced by typical antipsychotics. PLoS One 4(7):e6208CrossRefPubMedPubMedCentralGoogle Scholar
  8. De Deurwaerdere P, Stinus L, Spampinato U (1998) Opposite change of in vivo dopamine release in the rat nucleus accumbens and striatum that follows electrical stimulation of dorsal raphe nucleus: role of 5-HT3 receptors. J Neurosci 18(16):6528–6538PubMedGoogle Scholar
  9. Degos B, Deniau JM, Le Cam J, Mailly P, Maurice N (2008) Evidence for a direct subthalamo-cortical loop circuit in the rat. Eur J Neurosci 27(10):2599–2610. doi: 10.1111/j.1460-9568.2008.06229.x CrossRefPubMedGoogle Scholar
  10. Delaville C, Chetrit J, Abdallah K, Morin S, Cardoit L, De Deurwaerdere P, Benazzouz A (2012) Emerging dysfunctions consequent to combined monoaminergic depletions in Parkinsonism. Neurobiol Dis 45(2):763–773. doi: 10.1016/j.nbd.2011.10.023 CrossRefPubMedGoogle Scholar
  11. Fujimoto K, Kita H (1993) Response characteristics of subthalamic neurons to the stimulation of the sensorimotor cortex in the rat. Brain Res 609(1–2):185–192CrossRefPubMedGoogle Scholar
  12. Georges F, Aston-Jones G (2002) Activation of ventral tegmental area cells by the bed nucleus of the stria terminalis: a novel excitatory amino acid input to midbrain dopamine neurons. J Neurosci 22(12):5173–5187PubMedGoogle Scholar
  13. Groenewegen HJ, Berendse HW, Wolters JG, Lohman AH (1990) The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. Prog Brain Res 85:95–116 (discussion 116–118) CrossRefPubMedGoogle Scholar
  14. Groenewegen HJ, Berendse HW, Haber SN (1993) Organization of the output of the ventral striatopallidal system in the rat: ventral pallidal efferents. Neuroscience 57(1):113–142CrossRefPubMedGoogle Scholar
  15. Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM (2004) The subthalamic nucleus in the context of movement disorders. Brain 127(Pt 1):4–20CrossRefPubMedGoogle Scholar
  16. Hammond C, Yelnik J (1983) Intracellular labelling of rat subthalamic neurones with horseradish peroxidase: computer analysis of dendrites and characterization of axon arborization. Neuroscience 8(4):781–790CrossRefPubMedGoogle Scholar
  17. Haynes WI, Haber SN (2013a) The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for Basal Ganglia models and deep brain stimulation. J Neurosci 33(11):4804–4814. doi: 10.1523/JNEUROSCI.4674-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Haynes WI, Haber SN (2013b) The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for Basal Ganglia models and deep brain stimulation. J Neurosci 33(11):4804–4814. doi: 10.1523/JNEUROSCI.4674-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hollerman JR, Grace AA (1992) Subthalamic nucleus cell firing in the 6-OHDA-treated rat: basal activity and response to haloperidol. Brain Res 590(1–2):291–299CrossRefPubMedGoogle Scholar
  20. Janssen ML, Zwartjes DG, Tan SK, Vlamings R, Jahanshahi A, Heida T, Hoogland G, Steinbusch HW, Visser-Vandewalle V, Temel Y (2012) Mild dopaminergic lesions are accompanied by robust changes in subthalamic nucleus activity. Neurosci Lett 508(2):101–105. doi: 10.1016/j.neulet.2011.12.027 CrossRefPubMedGoogle Scholar
  21. Janssen MLF, Duits AA, Tourai AM, Ackermans L, Leentjens AFG, van Kranen-Mastenbroek V, Oosterloo M, Visser-Vandewalle V, Temel Y (2014) Subthalamic nucleus high frequency stimulation for advanced Parkinson’s disease: motor and neuropsychological outcome after 10 years. Stereotact Funct Neurosurg 92(6):381–387. doi: 10.1159/000366066 CrossRefPubMedGoogle Scholar
  22. Joel D, Weiner I (1994) The organization of the basal ganglia-thalamocortical circuits: open interconnected rather than closed segregated. Neuroscience 63(2):363–379CrossRefPubMedGoogle Scholar
  23. Kaneoke Y, Vitek JL (1996) Burst and oscillation as disparate neuronal properties. J Neurosci Methods 68(2):211–223CrossRefPubMedGoogle Scholar
  24. Kita H (2007) Globus pallidus external segment. Prog Brain Res 160:111–133. doi: 10.1016/S0079-6123(06)60007-1 CrossRefPubMedGoogle Scholar
  25. Kita H, Kita T (2011) Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia. J Neurosci 31(28):10311–10322. doi: 10.1523/JNEUROSCI.0915-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kita T, Osten P, Kita H (2014) Rat subthalamic nucleus and zona incerta share extensively overlapped representations of cortical functional territories. J Comp Neurol 522(18):4043–4056. doi: 10.1002/cne.23655 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kitai ST, Deniau JM (1981) Cortical inputs to the subthalamus: intracellular analysis. Brain Res 214(2):411–415CrossRefPubMedGoogle Scholar
  28. Kolomiets BP, Deniau JM, Mailly P, Menetrey A, Glowinski J, Thierry AM (2001) Segregation and convergence of information flow through the cortico-subthalamic pathways. J Neurosci 21(15):5764–5772PubMedGoogle Scholar
  29. Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, Koudsie A, Limousin PD, Benazzouz A, LeBas JF, Benabid AL, Pollak P (2003) Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 349(20):1925–1934CrossRefPubMedGoogle Scholar
  30. Limousin P, Pollak P, Benazzouz A, Hoffmann D, Broussolle E, Perret JE, Benabid AL (1995) Bilateral subthalamic nucleus stimulation for severe Parkinson’s disease. Mov Disord 10(5):672–674CrossRefPubMedGoogle Scholar
  31. Magill PJ, Sharott A, Bevan MD, Brown P, Bolam JP (2004) Synchronous unit activity and local field potentials evoked in the subthalamic nucleus by cortical stimulation. J Neurophysiol 92(2):700–714. doi: 10.1152/jn.00134.200400134.2004 CrossRefPubMedGoogle Scholar
  32. Mailly P, Aliane V, Groenewegen HJ, Haber SN, Deniau JM (2013) The rat prefrontostriatal system analyzed in 3D: evidence for multiple interacting functional units. J Neurosci 33(13):5718–5727. doi: 10.1523/JNEUROSCI.5248-12.2013 CrossRefPubMedGoogle Scholar
  33. Mallet L, Schupbach M, N’Diaye K, Remy P, Bardinet E, Czernecki V, Welter ML, Pelissolo A, Ruberg M, Agid Y, Yelnik J (2007) Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc Natl Acad Sci USA 104(25):10661–10666. doi: 10.1073/pnas.0610849104 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Maurice N, Deniau JM, Glowinski J, Thierry AM (1998) Relationships between the prefrontal cortex and the basal ganglia in the rat: physiology of the corticosubthalamic circuits. J Neurosci 18(22):9539–9546PubMedGoogle Scholar
  35. Maurice N, Deniau JM, Glowinski J, Thierry AM (1999) Relationships between the prefrontal cortex and the basal ganglia in the rat: physiology of the cortico-nigral circuits. J Neurosci 19(11):4674–4681PubMedGoogle Scholar
  36. Miyachi S, Lu X, Imanishi M, Sawada K, Nambu A, Takada M (2006) Somatotopically arranged inputs from putamen and subthalamic nucleus to primary motor cortex. Neurosci Res 56(3):300–308. doi: 10.1016/j.neures.2006.07.012 CrossRefPubMedGoogle Scholar
  37. Nambu A, Takada M, Inase M, Tokuno H (1996) Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J Neurosci 16(8):2671–2683PubMedGoogle Scholar
  38. Nambu A, Tokuno H, Hamada I, Kita H, Imanishi M, Akazawa T, Ikeuchi Y, Hasegawa N (2000) Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol 84(1):289–300PubMedGoogle Scholar
  39. Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci Res 43(2):111–117CrossRefPubMedGoogle Scholar
  40. Ni ZG, Bouali-Benazzouz R, Gao DM, Benabid AL, Benazzouz A (2001) Time-course of changes in firing rates and firing patterns of subthalamic nucleus neuronal activity after 6-OHDA-induced dopamine depletion in rats. Brain Res 899(1–2):142–147CrossRefPubMedGoogle Scholar
  41. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev 20(1):128–154CrossRefPubMedGoogle Scholar
  42. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, New YorkGoogle Scholar
  43. Percheron G, Filion M (1991) Parallel processing in the basal ganglia: up to a point. Trends Neurosci 14(2):55–59CrossRefPubMedGoogle Scholar
  44. Percheron G, Yelnik J, Francois C (1984) A Golgi analysis of the primate globus pallidus. III. Spatial organization of the striato-pallidal complex. J Comp Neurol 227(2):214–227CrossRefPubMedGoogle Scholar
  45. Rodriguez-Oroz MC, Zamarbide I, Guridi J, Palmero MR, Obeso JA (2004) Efficacy of deep brain stimulation of the subthalamic nucleus in Parkinson’s disease 4 years after surgery: double blind and open label evaluation. J Neurol Neurosurg Psychiatry 75(10):1382–1385CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ryan LJ, Clark KB (1991) The role of the subthalamic nucleus in the response of globus pallidus neurons to stimulation of the prelimbic and agranular frontal cortices in rats. Exp Brain Res Experimentelle Hirnforschung 86(3):641–651CrossRefPubMedGoogle Scholar
  47. Schweizer N, Pupe S, Arvidsson E, Nordenankar K, Smith-Anttila CJ, Mahmoudi S, Andren A, Dumas S, Rajagopalan A, Levesque D, Leao RN, Wallen-Mackenzie A (2014) Limiting glutamate transmission in a Vglut2-expressing subpopulation of the subthalamic nucleus is sufficient to cause hyperlocomotion. Proc Natl Acad Sci USA 111(21):7837–7842. doi: 10.1073/pnas.1323499111 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86(2):353–387CrossRefPubMedGoogle Scholar
  49. Tan S, Vlamings R, Lim L, Sesia T, Janssen ML, Steinbusch HW, Visser-Vandewalle V, Temel Y (2010) Experimental deep brain stimulation in animal models. Neurosurgery 67(4):1073–1079. doi: 10.1227/NEU.0b013e3181ee3580 (discussion 1080) CrossRefPubMedGoogle Scholar
  50. Temel Y, Blokland A, Steinbusch HW, Visser-Vandewalle V (2005) The functional role of the subthalamic nucleus in cognitive and limbic circuits. Prog Neurobiol 76(6):393–413CrossRefPubMedGoogle Scholar
  51. Temel Y, Kessels A, Tan S, Topdag A, Boon P, Visser-Vandewalle V (2006) Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism Relat Disord 12(5):265–272CrossRefPubMedGoogle Scholar
  52. Visser-Vandewalle V, van der Linden C, Temel Y, Celik H, Ackermans L, Spincemaille G, Caemaert J (2005) Long-term effects of bilateral subthalamic nucleus stimulation in advanced Parkinson disease: a four year follow-up study. Parkinsonism Relat Disord 11(3):157–165CrossRefPubMedGoogle Scholar
  53. Volkmann J, Daniels C, Witt K (2010) Neuropsychiatric effects of subthalamic neurostimulation in Parkinson disease. Nat Rev Neurol 6(9):487–498. doi: 10.1038/nrneurol.2010.111 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Marcus L. F. Janssen
    • 1
    • 2
    • 3
    • 4
  • Yasin Temel
    • 3
    • 5
  • Claire Delaville
    • 1
    • 2
  • Daphne G. M. Zwartjes
    • 6
  • Tjitske Heida
    • 6
  • Philippe De Deurwaerdère
    • 1
    • 2
  • Veerle Visser-Vandewalle
    • 7
  • Abdelhamid Benazzouz
    • 1
    • 2
  1. 1.Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293Bordeaux CedexFrance
  2. 2.CNRS, Institut des Maladies Neurodégénératives, UMR 5293BordeauxFrance
  3. 3.School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
  4. 4.Department of NeurologyMaastricht University Medical CenterMaastrichtThe Netherlands
  5. 5.Department of NeurosurgeryMaastricht University Medical CenterMaastrichtThe Netherlands
  6. 6.MIRA Institute for Biomedical Technology and Technical Medicine, Department of Electrical Engineering, Mathematics and Computer Science, Biomedical Signals and Systems groupTwente UniversityEnschedeThe Netherlands
  7. 7.Department of Stereotactic and Functional NeurosurgeryUniversity of CologneCologneGermany

Personalised recommendations