Brain Structure and Function

, Volume 222, Issue 5, pp 2193–2202 | Cite as

The mirror neuron system also rests

  • Julio Plata-BelloEmail author
  • Cristián Modroño
  • Estefanía Hernández-Martín
  • Yaiza Pérez-Martín
  • Helga Fariña
  • Abril Castañón-Pérez
  • Francisco Marcano
  • José Luis González-Mora
Original Article


The mirror neuron system (MNS) is a brain network that has been associated with the understanding of the actions performed by others. The main areas of the brain that are considered as belonging to the MNS are the rostral part of the inferior parietal lobe (IPL) and the inferior frontal gyrus (IFG). Many studies have tried to focus on the relationship between the regions belonging to the MNS, but a little consideration has been given to the study of the MNS in resting conditions. In the present experiment, the MNS has been studied by two fMRI modalities (task-based fMRI and resting-fMRI) and three analytical procedures [task-block comparison, functional connectivity (FC), and independent component analysis (ICA)]. The task-fMRI with block design showed a mirror activity located in the rostral IPL. The coordinates of this local maximum voxel were defined as a region of interest (ROI) for an FC analysis of the resting-fMRI. This analysis revealed the existence of a functional connectivity within regions forming the core of MNS network and also with other regions with mirror properties. Finally, resting-state fMRI ICA showed the same functional network, although it was more restricted to the core MNS regions. To the best of our knowledge, this is the first study that approaches the MNS using the resting-state fMRI analysis using independent component analysis and functional connectivity at the same time.


Mirror neuron system Resting state Functional connectivity Independent component analysis 


Compliance with ethical standards

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

The study was approved by the University of La Laguna Ethics Committee, according to the Declaration of Helsinki.

Informed consent

Written informed consent was explained and signed by the patients and the control subjects.


  1. Amici S, Gorno-Tempini ML, Ogar JM et al (2006) An overview on primary progressive aphasia and its variants. Behav Neurol 17:77–87CrossRefPubMedPubMedCentralGoogle Scholar
  2. Birn RM, Diamond JB, Smith MA, Bandettini PA (2006) Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage 31:1536–1548. doi: 10.1016/j.neuroimage.2006.02.048 CrossRefPubMedGoogle Scholar
  3. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541CrossRefPubMedGoogle Scholar
  4. Buccino G, Binkofski F, Fink GR et al (2001) Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci 13:400–404PubMedGoogle Scholar
  5. Caspers S, Geyer S, Schleicher A et al (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage 33:430–448. doi: 10.1016/j.neuroimage.2006.06.054 CrossRefPubMedGoogle Scholar
  6. Caspers S, Eickhoff SB, Geyer S et al (2008) The human inferior parietal lobule in stereotaxic space. Brain Struct Funct 212:481–495. doi: 10.1007/s00429-008-0195-z CrossRefPubMedGoogle Scholar
  7. Castiello U (2005) The neuroscience of grasping. Nat Rev Neurosci 6:726–736CrossRefPubMedGoogle Scholar
  8. Cattaneo L, Rizzolatti G (2009) The mirror neuron system. Arch Neurol 66:557–560CrossRefPubMedGoogle Scholar
  9. Cohen AL, Fair DA, Dosenbach NUF et al (2008) Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage 41:45–57. doi: 10.1016/j.neuroimage.2008.01.066 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Damoiseaux JS, Rombouts SARB, Barkhof F et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853. doi: 10.1073/pnas.0601417103 CrossRefPubMedPubMedCentralGoogle Scholar
  11. De Luca M, Beckmann CF, De Stefano N et al (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29:1359–1367. doi: 10.1016/j.neuroimage.2005.08.035 CrossRefPubMedGoogle Scholar
  12. Doucet G, Naveau M, Petit L et al (2011) Brain activity at rest: a multiscale hierarchical functional organization. J Neurophysiol 105:2753–2763. doi: 10.1152/jn.00895.2010 CrossRefPubMedGoogle Scholar
  13. Eickhoff SB, Stephan KE, Mohlberg H et al (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335. doi: 10.1016/j.neuroimage.2004.12.034 CrossRefPubMedGoogle Scholar
  14. Fazio P, Cantagallo A, Craighero L et al (2009) Encoding of human action in Broca’s area. Brain 132:1980–1988. doi: 10.1093/brain/awp118 CrossRefPubMedGoogle Scholar
  15. Filimon F, Nelson JD, Hagler DJ, Sereno MI (2007) Human cortical representations for reaching: mirror neurons for execution, observation, and imagery. Neuroimage 37:1315–1328. doi: 10.1016/j.neuroimage.2007.06.008 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fishman I, Keown CL, Lincoln AJ et al (2014) Atypical cross talk between mentalizing and mirror neuron networks in autism spectrum disorder. JAMA Psychiatry 71:751–760. doi: 10.1001/jamapsychiatry.2014.83 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fogassi L, Ferrari PF, Gesierich B et al (2005) Parietal lobe: from action organization to intention understanding. Science 308(80):662–667CrossRefPubMedGoogle Scholar
  18. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711. doi: 10.1038/nrn2201 CrossRefPubMedGoogle Scholar
  19. Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119(Pt 2):593–609CrossRefPubMedGoogle Scholar
  20. Gallese V, Keysers C, Rizzolatti G (2004) A unifying view of the basis of social cognition. Trends Cogn Sci 8:396–403. doi: 10.1016/j.tics.2004.07.002 CrossRefPubMedGoogle Scholar
  21. Gardner T, Goulden N, Cross ES (2015) Dynamic modulation of the action observation network by movement familiarity. J Neurosci 35:1561–1572. doi: 10.1523/JNEUROSCI.2942-14.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gazzola V, Keysers C (2009) The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cereb Cortex 19:1239–1255. doi: 10.1093/cercor/bhn181 CrossRefPubMedGoogle Scholar
  23. Gorno-Tempini ML, Dronkers NF, Rankin KP et al (2004) Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol 55:335–346. doi: 10.1002/ana.10825 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Haller S, Chapuis D, Gassert R et al (2009) Supplementary motor area and anterior intraparietal area integrate fine-graded timing and force control during precision grip. Eur J Neurosci 30:2401–2406CrossRefPubMedGoogle Scholar
  25. Himberg J, Hyvärinen A, Esposito F (2004) Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 22:1214–1222. doi: 10.1016/j.neuroimage.2004.03.027 CrossRefPubMedGoogle Scholar
  26. Iacoboni M, Mazziotta JC (2007) Mirror neuron system: basic findings and clinical applications. Ann Neurol 62:213–218. doi: 10.1002/ana.21198 CrossRefPubMedGoogle Scholar
  27. Iacoboni M, Woods RP, Brass M et al (1999) Cortical mechanisms of human imitation. Science 286:2526–2528CrossRefPubMedGoogle Scholar
  28. Iacoboni M, Koski LM, Brass M et al (2001) Reafferent copies of imitated actions in the right superior temporal cortex. Proc Natl Acad Sci USA 98:13995–13999. doi: 10.1073/pnas.241474598 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Iacoboni M, Molnar-Szakacs I, Gallese V et al (2005) Grasping the intentions of others with one’s own mirror neuron system. PLoS Biol 3:e79. doi: 10.1371/journal.pbio.0030079 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Igelström KM, Webb TW, Graziano MSA (2015) Neural processes in the human temporoparietal cortex separated by localized independent component analysis. J Neurosci 35:9432–9445. doi: 10.1523/JNEUROSCI.0551-15.2015 CrossRefPubMedGoogle Scholar
  31. Jeannerod M (2006) The origin of voluntary action: history of a physiological concept. C R Biol 329:354–362. doi: 10.1016/j.crvi.2006.03.017 CrossRefPubMedGoogle Scholar
  32. Jonas M, Siebner HR, Biermann-Ruben K et al (2007) Do simple intransitive finger movements consistently activate frontoparietal mirror neuron areas in humans? Neuroimage 36(Suppl 2):T44–T53CrossRefPubMedGoogle Scholar
  33. Kiviniemi V, Starck T, Remes J et al (2009) Functional segmentation of the brain cortex using high model order group PICA. Hum Brain Mapp 30:3865–3886. doi: 10.1002/hbm.20813 CrossRefPubMedGoogle Scholar
  34. Kokal I, Gazzola V, Keysers C (2009) Acting together in and beyond the mirror neuron system. Neuroimage 47:2046–2056. doi: 10.1016/j.neuroimage.2009.06.010 CrossRefPubMedGoogle Scholar
  35. Koski L, Iacoboni M, Dubeau M-C et al (2003) Modulation of cortical activity during different imitative behaviors. J Neurophysiol 89:460–471. doi: 10.1152/jn.00248.2002 CrossRefPubMedGoogle Scholar
  36. Lui F, Buccino G, Duzzi D et al (2008) Neural substrates for observing and imagining non-object-directed actions. Soc Neurosci 3:261–275. doi: 10.1080/17470910701458551 CrossRefPubMedGoogle Scholar
  37. McKeown MJ, Sejnowski TJ (1998) Independent component analysis of fMRI data: examining the assumptions. Hum Brain Mapp 6:368–372CrossRefPubMedGoogle Scholar
  38. McKeown MJ, Makeig S, Brown GG et al (1998) Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp 6:160–188CrossRefPubMedGoogle Scholar
  39. Mesulam MM (2001) Primary progressive aphasia. Ann Neurol 49:425–432CrossRefPubMedGoogle Scholar
  40. Molenberghs P, Cunnington R, Mattingley JB (2012) Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neurosci Biobehav Rev 36:341–349. doi: 10.1016/j.neubiorev.2011.07.004 CrossRefPubMedGoogle Scholar
  41. Mukamel R, Ekstrom AD, Kaplan J et al (2010) Single-neuron responses in humans during execution and observation of actions. Curr Biol 20:750–756. doi: 10.1016/j.cub.2010.02.045 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Nichols T, Brett M, Andersson J et al (2005) Valid conjunction inference with the minimum statistic. Neuroimage 25:653–660CrossRefPubMedGoogle Scholar
  43. Obrig H, Neufang M, Wenzel R et al (2000) Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults. Neuroimage 12:623–639. doi: 10.1006/nimg.2000.0657 CrossRefPubMedGoogle Scholar
  44. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMedGoogle Scholar
  45. Peña-Casanova J, Gramunt Fombuena N (2004) Tests neuropsicológicos. Fundamentos para una neuropsicología clínica basada en evidencias. Elsevier España S. L., BarcelonaGoogle Scholar
  46. Perry A, Stein L, Bentin S (2011) Motor and attentional mechanisms involved in social interaction—evidence from mu and alpha EEG suppression. Neuroimage 58:895–904. doi: 10.1016/j.neuroimage.2011.06.060 CrossRefPubMedGoogle Scholar
  47. Plata Bello J, Modroño C, Marcano F, González-Mora JL (2013) Observation of simple intransitive actions: the effect of familiarity. PLoS One 8:e74485CrossRefPubMedPubMedCentralGoogle Scholar
  48. Plata Bello J, Modroño C, Marcano F, González-Mora JL (2014) The mirror neuron system and motor dexterity: what happens? Neuroscience 275:285–295CrossRefPubMedGoogle Scholar
  49. Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192. doi: 10.1146/annurev.neuro.27.070203.144230 CrossRefPubMedGoogle Scholar
  50. Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res 153:146–157. doi: 10.1007/s00221-003-1588-0 CrossRefPubMedGoogle Scholar
  51. Rizzolatti G, Sinigaglia C (2010) The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat Rev Neurosci 11:264–274. doi: 10.1038/nrn2805 CrossRefPubMedGoogle Scholar
  52. Rizzolatti G, Camarda R, Fogassi L et al (1988) Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Exp Brain Res 71:491–507CrossRefPubMedGoogle Scholar
  53. Rizzolatti G, Fogassi L, Gallese V (1997) Parietal cortex: from sight to action. Curr Opin Neurobiol 7:562–567CrossRefPubMedGoogle Scholar
  54. Rizzolatti G, Fogassi L, Gallese V (2002) Motor and cognitive functions of the ventral premotor cortex. Curr Opin Neurobiol 12:149–154CrossRefPubMedGoogle Scholar
  55. Sasaki AT, Kochiyama T, Sugiura M et al (2012) Neural networks for action representation: a functional magnetic-resonance imaging and dynamic causal modeling study. Front Hum Neurosci 6:236. doi: 10.3389/fnhum.2012.00236 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Schmidt RC, Fitzpatrick P, Caron R, Mergeche J (2011) Understanding social motor coordination. Hum Mov Sci 30:834–845. doi: 10.1016/j.humov.2010.05.014 CrossRefPubMedGoogle Scholar
  57. Schubotz RI, von Cramon DY (2004) Sequences of abstract nonbiological stimuli share ventral premotor cortex with action observation and imagery. J Neurosci 24:5467–5474. doi: 10.1523/JNEUROSCI.1169-04.2004 CrossRefPubMedGoogle Scholar
  58. Singer T (2012) The past, present and future of social neuroscience: a European perspective. Neuroimage 61:437–449. doi: 10.1016/j.neuroimage.2012.01.109 CrossRefPubMedGoogle Scholar
  59. Smith BW, Mitchell DGV, Hardin MG et al (2009) Neural substrates of reward magnitude, probability, and risk during a wheel of fortune decision-making task. Neuroimage 44:600–609. doi: 10.1016/j.neuroimage.2008.08.016 CrossRefPubMedGoogle Scholar
  60. Song X-W, Dong Z-Y, Long X-Y et al (2011) REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One 6:e25031. doi: 10.1371/journal.pone.0025031 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Van Overwalle F, Baetens K (2009) Understanding others’ actions and goals by mirror and mentalizing systems: a meta-analysis. Neuroimage 48:564–584. doi: 10.1016/j.neuroimage.2009.06.009 CrossRefPubMedGoogle Scholar
  62. Wang L, Liu X, Guise KG et al (2010) Effective connectivity of the fronto-parietal network during attentional control. J Cogn Neurosci 22:543–553. doi: 10.1162/jocn.2009.21210 CrossRefPubMedGoogle Scholar
  63. Wang J, Fan L, Zhang Y et al (2012) Tractography-based parcellation of the human left inferior parietal lobule. Neuroimage 63:641–652. doi: 10.1016/j.neuroimage.2012.07.045 CrossRefPubMedGoogle Scholar
  64. Wheaton LA, Hallett M (2007) Ideomotor apraxia: a review. J Neurol Sci 260:1–10. doi: 10.1016/j.jns.2007.04.014 CrossRefPubMedGoogle Scholar
  65. Wise RG, Ide K, Poulin MJ, Tracey I (2004) Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. Neuroimage 21:1652–1664. doi: 10.1016/j.neuroimage.2003.11.025 CrossRefPubMedGoogle Scholar
  66. Zhang S, Li C-SR (2014) Functional clustering of the human inferior parietal lobule by whole-brain connectivity mapping of resting-state functional magnetic resonance imaging signals. Brain Connect 4:53–69. doi: 10.1089/brain.2013.0191 PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Julio Plata-Bello
    • 1
    • 2
    Email author
  • Cristián Modroño
    • 1
  • Estefanía Hernández-Martín
    • 1
  • Yaiza Pérez-Martín
    • 3
  • Helga Fariña
    • 1
  • Abril Castañón-Pérez
    • 1
  • Francisco Marcano
    • 1
  • José Luis González-Mora
    • 1
  1. 1.Department of Physiology, Faculty of MedicineUniversity of La LagunaLa LagunaSpain
  2. 2.Department of NeurosurgeryHospital Universitario de CanariasLa LagunaSpain
  3. 3.Department of NeurologyHospital Universitario de CanariasLa LagunaSpain

Personalised recommendations