Advertisement

Brain Structure and Function

, Volume 222, Issue 5, pp 2041–2058 | Cite as

Interhemispheric resting-state functional connectivity of the claustrum in the awake and anesthetized states

  • Jared B. Smith
  • Zhifeng Liang
  • Glenn D. R. Watson
  • Kevin D. AllowayEmail author
  • Nanyin ZhangEmail author
Original Article

Abstract

The claustrum is a brain region whose function remains unknown, though many investigators suggest it plays a role in conscious attention. Resting-state functional magnetic resonance imaging (RS-fMRI) has revealed how anesthesia alters many functional connections in the brain, but the functional role of the claustrum with respect to the awake versus anesthetized states remains unknown. Therefore, we employed a combination of seed-based RS-fMRI and neuroanatomical tracing to reveal how the anatomical connections of the claustrum are related to its functional connectivity during quiet wakefulness and the isoflurane-induced anesthetic state. In awake rats, RS-fMRI indicates that the claustrum has interhemispheric functional connections with the mediodorsal thalamus (MD) and medial prefrontal cortex (mPFC), as well as other known connections with cortical areas that correspond to the connections revealed by neuroanatomical tracing. During deep isoflurane anesthesia, the functional connections of the claustrum with mPFC and MD were significantly attenuated, while those with the rest of cortex were not significantly altered. These changes in claustral functional connectivity were also observed when seeds were placed in mPFC or MD during RS-fMRI comparisons of the awake and deeply anesthetized states. Collectively, these data indicate that the claustrum has functional connections with mPFC and MD-thalamus that are significantly lessened by anesthesia.

Keywords

Anatomical connectivity Anesthesia Claustrum Consciousness Functional connectivity 

Notes

Acknowledgments

This work was supported by NIH Grants R01NS085200 and R01MH098003 awarded to N. Zhang, and NIH Grant R01NS37532 awarded to K.D. Alloway. J.B.S., N.Z. and K.D.A. designed research; J.B.S. and G.D.R.W. performed neuroanatomical tracing experiments and J.B.S. analyzed the data, Z.L. and N.Z. performed and analyzed all resting-state fMRI experiments. J.B.S., Z.L., and K.D.A. wrote the manuscript. All authors revised and approved the manuscript. The authors declare no competing financial interests.

References

  1. Akeju O, Loggia ML, Catana C, Pavone KJ, Vazquez R, Rhee J, Ramirez VC, Chonde DB, Izquierdo-Garcia D, Arabasz G, Hsu S, Habeeb K, Hooker JM, Napadow V, Brown E, Purdon PL (2014) Disruption of thalamic functional connectivity is a neural correlate of dexmedetomidine-induced unconsciousness. eLife 3:e04499 doi: 10.7554/eLife.04499
  2. Alkire MT (2008) Loss of effective connectivity during general anesthesia. Int Anesthesiol Clin 46(3):55–73. doi: 10.1097/AIA.0b013e3181755dc6 CrossRefPubMedGoogle Scholar
  3. Alkire MT, Miller J (2005) General anesthesia and the neural correlates of consciousness. Prog Brain Res 150:229–244. doi: 10.1016/S0079-6123(05)50017-7 CrossRefPubMedGoogle Scholar
  4. Alkire MT, Hudetz AG, Tononi G (2008) Consciousness and anesthesia. Science 322(5903):876–880. doi: 10.1126/science.1149213 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Alloway KD, Olson ML, Smith JB (2008) Contralateral corticothalamic projections from MI whisker cortex: potential route for modulating hemispheric interactions. J Comp Neurol 510:100–116. doi: 10.1002/cne.21782 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Alloway KD, Smith JB, Beauchemin KJ, Olson ML (2009) Bilateral projections from rat MI whisker cortex to the neostriatum, thalamus, and claustrum: forebrain circuits for modulating whisking behavior. J Comp Neurol 515(5):548–564. doi: 10.1002/cne.22073 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Alloway KD, Smith JB, Watson GDR (2014) Thalamostriatal projections from the medial posterior and parafasicular nuclei have distinct topographic and physiologic properties. J Neurophysiol 111:36–50. doi: 10.1152/jn.00399.2013 CrossRefPubMedGoogle Scholar
  8. Arrigo A, Mormina E, Calamuneri A, Gaeta M, Granata F, Marino S, Anastasi GP, Milardi D, Quartarone A (2015) Inter-hemispheric claustral connections in human brain: a constrained spherical deconvolution-based study. Clin Neuroradiol. doi: 10.1007/s00062-015-0492-x (in press)
  9. Barttfeld P, Bekinschtein TA, Salles A, Stamatakis EA, Adapa R, Menon DK, Sigman M (2015a) Factoring the brain signatures of anesthesia concentration and level of arousal across individuals. Neuroimage Clin 9:385–391. doi: 10.1016/j.nicl.2015.08.013 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Barttfeld P, Uhriq L, Sitt JD, Sigman M, Jarraya B, Dehaene S (2015b) Signature of consciousness in the dynamics of resting-state brain activity. Proc Natl Acad Sci USA 112(3):887–892. doi: 10.1073/pnas.1418031112 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bay HH, Cadvar SS (2013) Regional connections of the mediodorsal thalamic nucleus in the rat. J Integr Neurosci 12(2):201–219. doi: 10.1142/S021963521350012X CrossRefPubMedGoogle Scholar
  12. Biswal BB (2012) Resting state fMRI: a personal history. Neuroimage 62:938–944. doi: 10.1016/j.neuroimage.2012.01.090 CrossRefPubMedGoogle Scholar
  13. Boveroux MD, Vanhaudenhuyse A, Bruno M-A, Noirhomme Q, Lauwick S, Luxen A, Degueldre C, Plenevaux A, Schnakers C, Phillips C, Brichant J-F, Bonhomme V, Maquet P, Greicius MD, Laureys S, Boly M (2010) Breakdown of within- and between network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 113:1038–1053. doi: 10.1097/ALN.0b013e3181f697f5 CrossRefPubMedGoogle Scholar
  14. Chau A, Salazar AM, Krueger F, Cristofori I, Grafman J (2015) The effect of claustrum lesions on human consciousness and recovery of function. Conscious Cogn 36:256–264. doi: 10.1016/j.concog.2015.06.017 CrossRefPubMedGoogle Scholar
  15. Crick F, Koch C (1998) Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature 391(6664):245–250. doi: 10.1038/34584 CrossRefPubMedGoogle Scholar
  16. Crick FC, Koch C (2005) What is the function of the claustrum? Philos Trans R Soc Lond B Biol Sci 360(1458):1271–1279. doi: 10.1098/rstb.2005.1661 CrossRefPubMedPubMedCentralGoogle Scholar
  17. da Costa NM, Fursinger D, Martin KAC (2010) The synaptic organization of the claustral projection to the cat’s visual cortex. J Neurosci 30(39):13166–13170. doi: 10.1523/JNEUROSCI.3122-10.2010 CrossRefPubMedGoogle Scholar
  18. Deco G, Jirsa VK, McIntosh AR (2011) Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat Rev Neuro 12:43–56. doi: 10.1038/nrn2961 CrossRefGoogle Scholar
  19. Deshpande G, Kerssens C, Sebel PS, Hu X (2010) Altered local coherence in the default mode network due to sevoflurane anesthesia. Brain Res 1318:110–121. doi: 10.1016/j.brainres.2009.12.075 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Detsch O, Vahle-Hinz C, Kochs E, Siemers M, Bromm B (1999) Isoflurane induces dose-dependent changes of thalamic somatosensory information transfer. Brain Res 829(1–2):77–89CrossRefPubMedGoogle Scholar
  21. Detsch O, Kochs E, Siemers M, Bromm B, Vahle-Hinz C (2002) Differential effects of isoflurane on excitatory and inhibitory synaptic inputs to thalamic neurons in vivo. Br J Anaesth 89(2):294–300CrossRefPubMedGoogle Scholar
  22. Diamond ME, Armstrong-James M, Budway MJ, Ebner FF (1992) Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: dependence on the barrel field cortex. J Comp Neurol 319:66–84. doi: 10.1002/cne.903190108 CrossRefPubMedGoogle Scholar
  23. Duffau H, Mandonnet E, Gatignol P, Capelle L (2007) Functional compensation of the claustrum: lessons from low-grade glioma surgery. J Neurooncol 81:327–329. doi: 10.1007/s11060-006-9236-8 CrossRefPubMedGoogle Scholar
  24. Edelstein LR, Denaro FJ (2004) The claustrum: a historical review of its anatomy, physiology, cytochemistry and functional significance. Cell Mol Biol (Noisy-le-grand) 50(6):675–702Google Scholar
  25. Erickson SL, Melchitzky DS, Lewis DA (2004) Subcortical afferents of the lateral mediodorsal thalamus in cynomolgus monkeys. Neuroscience 129(3):675–690. doi: 10.1016/j.neuroscience.2004.08.016 CrossRefPubMedGoogle Scholar
  26. Fernandez-Miranda JC, Rhoton AL Jr, Kakizawa Y, Choi C, Alvarex-Linera J (2008) The claustrum and its projection system in the human brain: a microsurgical and tractographic anatomical study. J Neurosurg 108(4):764–774. doi: 10.3171/JNS/2008/108/4/0764 CrossRefPubMedGoogle Scholar
  27. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678. doi: 10.1073/pnas.0504136102 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Franceschini MA, Radhakrishnan H, Thakur K, Wu W, Ruvinskaya S, Carp S, Boas DA (2010) The effect of different anesthetics on neurovascular coupling. Neuroimage 51:1367–1377. doi: 10.1016/j.neuroimage.2010.03.060 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Friedberg MH, Lee SM, Ebner FF (1999) Modulation of receptive field properties of thalamic somatosensory neurons by the depth of anesthesia. J Neurophysiol 81(5):2243–2252PubMedGoogle Scholar
  30. Goll Y, Atlan G, Citri A (2015) Attention: the claustrum. Trends Neurosci 38(8):486–495. doi: 10.1016/j.tins.2015.05.006 CrossRefPubMedGoogle Scholar
  31. Gozzi A, Schwarz AJ (2016) Large-scale functional connectivity networks in the rodent brain. Neuroimage 127:496–509. doi: 10.1016/j.neuroimage.2015 CrossRefPubMedGoogle Scholar
  32. Grandjean J, Schroeter A, Batata I, Rudin M (2014) Optimization of anesthesia protocol for resting-state fMRI in mice based on differential effects of anesthetics on functional connectivity patterns. Neuroimage 102(2):838–847. doi: 10.1016/j.neuroimage.2014.08.043 CrossRefPubMedGoogle Scholar
  33. Greicius MD, Kiviniemi V, Tervonen O, Vainionpää V, Reiss AL, Menon V (2008) Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 29(7):839–847. doi: 10.1002/hbm.20537.Persistent CrossRefPubMedPubMedCentralGoogle Scholar
  34. Greicius MD, Supekar K, Menon V, Dougherty F (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19:72–78. doi: 10.1093/cercor/bhn059 CrossRefPubMedGoogle Scholar
  35. He JH, Cui Y, Song M, Yang Y, Dang YY, Jiang TZ, Xu RX (2015) Decreased functional connectivity between the mediodorsal thalamus and default mode network in patients with disorders of consciousness. Acta Neurol Scand 131(3):145–151. doi: 10.1111/ane.12299 CrossRefPubMedGoogle Scholar
  36. Hintiryan H, Foster NN, Bowman I, Bay M, Song MY, Gou L, Yamashita S, Bienkowski MS, Zingg B, Zhu M, Yang XW, Shih JC, Toga AW, Dong H-W (2016) The mouse cortico-striatal projectome. Nat Neurosci 19:1100–1114. doi: 10.1038/nn.4332 CrossRefPubMedGoogle Scholar
  37. Honey CJ, Sporn O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P (2009) Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci USA 106(6):2035–2040. doi: 10.1073/pnas.0811168106 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hoover WB, Vertes RP (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212(2):149–179. doi: 10.1007/s00429-007-0150-4 CrossRefPubMedGoogle Scholar
  39. Hoover JE, Hoffer ZS, Alloway KD (2003) Projections from primary somatosensory cortex to the neostriatum: the role of somatotopic continuity in corticostriatal convergence. J Neurophysiol 89:1576–1687. doi: 10.1152/jn.01009.2002 CrossRefPubMedGoogle Scholar
  40. Hudetz AG (2012) General anesthesia and human brain connectivity. Brain Connect 2(6):291–302. doi: 10.1089/brain.2012.0107 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hutchison RM, Leung LS, Mirsattari SM, Gati JS, Menon RS, Everling S (2011) Resting-state networks in the macaque at 7T. NeuroImage 56(3):1546–1555. doi: 10.1016/j.neuroimage.2011.02.063 CrossRefPubMedGoogle Scholar
  42. Hwang E, Kim S, Han K, Choi JH (2012) Characterization of phase transition in the thalamocortical system during anesthesia-induced loss of consciousness. PLoS One 7(12):e50580. doi: 10.1371/journal.pone.0050580 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Jankowski MM, O’Mara SM (2015) Dynamics of place, boundary and object encoding in rat anterior claustrum. Front Behav Neurosci 9:250. doi: 10.3389/fnbeh.2015.00250 PubMedPubMedCentralGoogle Scholar
  44. Joksovic PM, Todorovic SM (2010) Isoflurane modulates neuronal excitability of the nucleus reticularis thalami in vitro. Ann NY Acad Sci 1199:36–42. doi: 10.1111/j.1749-6632.2009.05172.x CrossRefPubMedPubMedCentralGoogle Scholar
  45. Koubeissi MZ, Bartolomei F, Beltagy A, Picard F (2014) Electrical stimulation of a small brain area reversibly disrupts consciousness. Epilepsy Behav 37:32–35. doi: 10.1016/j.yebeh.2014.05.027 CrossRefPubMedGoogle Scholar
  46. Künzle H (1975) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia: an autoradiographic study in Macaca fascicularis. Brain Res 88(2):195–209CrossRefPubMedGoogle Scholar
  47. Langmoen IA, Larsen M, Berg-Johnsen J (1995) Volatile anaesthetics: cellular mechanisms of action. Eur J Anaesthesiol 12:51–58PubMedGoogle Scholar
  48. LeVay S, Sherk H (1981) The visual claustrum of the cat. II. The visual field map. J Neurosci 1(9):981–992PubMedGoogle Scholar
  49. Liachenko S, Tang P, Somogyi GT, Xu Y (1999) Concentration dependent isoflurane effects on depolarization-evoked glutamate and GABA outflows from mouse brain slices. Br J Pharmacol 127:131–138. doi: 10.1038/sj.bjp.0702543 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Liang Z, Jean K, Zhang N (2011) Uncovering intrinsic connectional architecture of functional networks in awake rat brain. J Neurosci 31(10):3776–3783. doi: 10.1523/JNEUROSCI.4557-10.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Liang Z, Jean K, Zhang N (2012) Intrinsic organization of the anesthetized brain. J Neurosci 32(30):10183–10191. doi: 10.1523/JNEUROSCI.1020-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Liang Z, Liu X, Zhang N (2015) Dynamic resting state functional connectivity in awake and anesthetized rodents. Neuroimage 104:89–99. doi: 10.1016/j.neuroimage.2014.10.013 CrossRefPubMedGoogle Scholar
  53. Liu X, Zhu XH, Zhang Y, Chen W (2011) Neural origin of spontaneous hemodynamic fluctuations in rats under burst-suppression anesthesia condition. Cereb Cortex 21(2):374–384. doi: 10.1093/cercor/bhq105 CrossRefPubMedGoogle Scholar
  54. Liu X, Pillay S, Rupeng Li, Vizuete JA, Pechman KR, Schmainda KM, Hudetz AG (2013) Multiphasic modification of intrinsic functional connectivity of the rat brain during increasing levels of propofol. Neuroimage 83:581–592. doi: 10.1016/j.neuroimage.2013.07.003 CrossRefPubMedGoogle Scholar
  55. Lu H, Zou Q, Gu H, Raichle ME, Stein EA, Yang Y (2012) Rat brains also have a default mode network. Proc Natl Acad Sci USA 109(10):3979–3984. doi: 10.1073/pnas.1200506109 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Masamoto K, Kanno I (2012) Anesthesia and the quantitative evaluation of neurovascular coupling. J Cereb Blood Flow Metab 32:1233–1247. doi: 10.1038/jcbfm.2012.50 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Mashour GA (2006) Integrating the science of consciousness and anesthesia. Anesth Analg 103(4):975–982. doi: 10.1213/01.ane.0000232442.69757.4a CrossRefPubMedGoogle Scholar
  58. Mathur BN (2014) The claustrum in review. Front Syst Neurosci 8:48. doi: 10.3389/fnsys.2014.00048 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Mathur BN, Caprioli RM, Deutch AY (2009) Proteomic analysis illuminates a novel structural definition of the claustrum and insula. Cereb Cortex 19(10):2372–2379. doi: 10.1093/cercor/bhn253 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Mhuircheartaigh RN, Rosenorn-Lanng D, Wise R, Jbabdi S, Rogers R, Tracey I (2010) Cortical and subcortical connectivity changes during decreasing levels of consciousness in humans: a functional magnetic resonance imaging study using propofol. J Neurosci 30(27):9095–9102. doi: 10.1523/JNEUROSCI.5516-09.2010 CrossRefPubMedGoogle Scholar
  61. Milardi D, Bramanti P, Milazzo C, Finocchio G, Arrigo A, Santoro G, Trimarchi F, Quararone A, Anastasi G, Gaeta M (2013) Cortical and subcortical connections of the human claustrum revealed in vivo by constrained spherical deconvolution tractography. Cereb Cortex 25(2):406–414. doi: 10.1093/cercor/bht231 CrossRefPubMedGoogle Scholar
  62. Mitchell AS (2015) The mediodorsal thalamus as a higher order thalamic relay nucleus important for learning and decision-making. Neurosci Biobehav Rev 54:76–88. doi: 10.1016/j.neubiorev.2015.03.001 CrossRefPubMedGoogle Scholar
  63. Nasrallah FA, Tay HC, Chuang KH (2014) Detection of functional connectivity in the resting mouse brain. NeuroImage 86:417–424. doi: 10.1016/j.neuroimage.2013.10.025 CrossRefPubMedGoogle Scholar
  64. Negyessy L, Hamori J, Bentivoglio M (1998) Contralateral cortical projection to mediodorsal thalamic nucleus: origin and synaptic organization in the rat. Neuroscience 84(3):741–753CrossRefPubMedGoogle Scholar
  65. Olson CR, Graybiel AM (1980) Sensory maps in the claustrum of the cat. Nature 288:479–481CrossRefPubMedGoogle Scholar
  66. Park S, Tsyzka JM, Allman JM (2012) The claustrum and insula in Microcebus murinus: a high resolution diffusion imaging study. Front Neuroanat 6:21. doi: 10.3389/fnana.2012.00021 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates, 6th edn. Elsevier Academic Press, New YorkGoogle Scholar
  68. Peltier SJ, Kerssens C, Hamann SB, Sebel PS, Byas-Smith M, Hu X (2005) Functional connectivity changes with concentration of sevoflurane anesthesia. NeuroReport 16(3):285–288CrossRefPubMedGoogle Scholar
  69. Reep RL, Corwin JV (2009) Posterior parietal cortex as part of a neural network for directed attention in rats. Neurobiol Learn Mem 91(2):104–113. doi: 10.1016/j.nlm.2008.08.010 CrossRefPubMedGoogle Scholar
  70. Remedios R, Logothetis NK, Kayser C (2010) Unimodal responses prevail within the multisensory claustrum. J Neurosci 30(30):19902–19907. doi: 10.1523/JNEUROSCI.2937-10.2010 Google Scholar
  71. Ries CR, Puil E (1999a) Mechanism of anesthesia revealed by shunting actions of isoflurane on thalamocortical neurons. J Neurophysiol 81:1795–1801PubMedGoogle Scholar
  72. Ries CR, Puil E (1999b) Ionic mechanism of isoflurane’s action on thalamocortical neurons. J Neurophysiol 81:1802–1809PubMedGoogle Scholar
  73. Reser DH, Majka P, Snell S, Chan J, Watkins K, Worthy K, Quiroga DM, Rosa, MGP (2016) Topography of claustrum and insula projections to medial prefrontal and anterior cingulate cortex of the common marmoset (Callithrix jacchus). J Comp Neurol. doi: 10.1002/cne.24009/cne.24009 (in press)
  74. Schroter MS, Spoormaker VI, Schorer A, Wohlschlager A, Czisch M, Kochs EF, Zimmer C, Hemmer B, Schneider G, Jordan D, Ilg R (2012) Spatiotemporal reconfiguration of large-scale brain functional networks during propofol-induced loss of consciousness. J Neurosci 32(37):12832–12840. doi: 10.1523/JNEUROSCI.6046-11.2012 CrossRefPubMedGoogle Scholar
  75. Schwarz A, Gass N, Sarorius A, Zheng L, Spedding M, Schenker E, Meyer-Lindberg A, Weber-Fahr W (2013) Anti-correlated cortical networks of intrinsic connectivity in the rat brain. Brain Connect 3:503–511. doi: 10.1089/brain.2013.0168 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GGH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356. doi: 10.1523/JNEUROSCI.5587-06.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Sforazzini F, Bertero A, Dodero L, David G, Galbusera A, Scattoni M, Pasqualetti M, Gozzi A (2014a) Altered functional connectivity networks in acallosal and socially impaired BTBR mice. Brain Struct Func. doi: 10.1007/s00429-014-0948-9 Google Scholar
  78. Sforazzini F, Schwarz AJ, Galbusera A, Bifone A, Gozzi A (2014b) Distributed BOLD and CBV-weighted resting-state networks in the mouse brain. Neuroimage 87:403–415. doi: 10.1016/j.neuroimage.2013.09.050 CrossRefPubMedGoogle Scholar
  79. Sherk H (1986) The claustrum and the cerebral cortex. In: Peters A (ed) Jones EG. Plenum, New York, pp 467–499Google Scholar
  80. Sherk H (2014) Physiology of the claustrum. In: Smythies JR, Edelstein LR, Ramachandran VS (eds) The claustrum: structural, functional, and clinical neuroscience. Academic Press/Elsevier Inc, San Diego, pp 177–191CrossRefGoogle Scholar
  81. Sherman SM, Guillery RW (1998) On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators”. Proc Natl Acad Sci USA 95:7121–7126CrossRefPubMedPubMedCentralGoogle Scholar
  82. Shima K, Hoshi E, Tanji J (1991) Neuronal activity of the claustrum of the monkey during performance of multiple movements. J Neurophysiol 76(3):2115–2119Google Scholar
  83. Shirey MJ, Smith JB, Kudlik DE, Huo BX, Greene SE, Drew PJ (2015) Brief anesthesia, but not voluntary locomotion, significantly alters cortical temperature. J Neurophysiol 114(1):309–322. doi: 10.1152/jn.00046.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Smith JB, Alloway KD (2010) Functional specificity of claustrum connections in the rat: interhemispheric communication between specific parts of motor cortex. J Neurosci 30(50):16832–16844. doi: 10.1523/JNEUROSCI.4438-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Smith JB, Alloway KD (2014) Interhemispheric claustral circuits coordinate sensory and motor cortical areas that regulate exploratory behaviors. Front Syst Neurosci 8:93. doi: 10.3389/fnsys.2014.00093 PubMedPubMedCentralGoogle Scholar
  86. Smith JB, Mowery TM, Alloway KD (2012a) Thalamic POm projections to the dorsolateral striatum of rats: potential pathway for mediating stimulus-response associations for sensorimotor habits. J Neurophysiol 108:160–174. doi: 10.1152/jn.00142.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Smith JB, Radhakrishnan H, Alloway KD (2012b) Rat claustrum coordinates but does not integrate somatosensory and motor cortical information. J Neurosci 32(25):8583–8888. doi: 10.1523/JNEUROSCI.1524-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Smythies J, Edelstein L, Ramachandran VS (2012) Hypotheses relating to the function of the claustrum. Front Integr Neurosci 6:53. doi: 10.3389/fnint.00053 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Smythies J, Edelstein L, Ramachandran VS (2014) The claustrum: structural, functional, and clinical neuroscience. Academic Press/Elsevier Inc., San DiegoGoogle Scholar
  90. Spector I, Hassmannova J, Albe-Fessard D (1974) Sensory properties of single neurons of cat’s claustrum. Brain Res 66:39–65CrossRefGoogle Scholar
  91. Taqliazucchi E, Chialvo DR, Siniatchkin M, Amico E, Brichant JF, Bonhomme V, Noirhomme Q, Laufs H, Laurey S (2016) Large-scale signatures of unconsciousness are consistent with a departure from critical dynamics. J R Soc Interface 13(114). doi: 10.1098/rsif.2015.1027
  92. Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ, Bruno MA, Boveroux P, Schnakers C, Soddu A, Perlbarg V, Ledoux D, Brichant JF, Moonen G, Maquet P, Greicius MD, Laureys S, Boly M (2010) Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 133:161–171. doi: 10.1093/brain/awp313 CrossRefPubMedGoogle Scholar
  93. Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51(1):32–58. doi: 10.1002/syn.10279 CrossRefPubMedGoogle Scholar
  94. Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME (2007). Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447(7140):83–86. doi: 10.1038/nature05758
  95. Wakamori M, Ikemoto Y, Akaike N (1991) Effects of two volatile anesthetics and a volatile convulsant on the excitatory and inhibitory amino acid responses in dissociated CNS neurons of the rat. J Neurophysiol 66:2014–2021PubMedGoogle Scholar
  96. Wang Q, Ng L, Harris JA, Feng D, Li Y, Royall JJ, Oh SW, Bernard A, Sunkin SM, Koch C, Zeng H (2016) Organization of the connections between claustrum and cortex in the mouse. J Comp Neurol. doi: 10.1002/cne.24047 (in press)
  97. Ying SW, Werner DF, Homanics GE, Harrison NL, Goldstein PA (2009) Isoflurane modulates excitability in the mouse thalamus via GABA-dependent and GABA-independent mechanisms. Neuropharmacology 56(2):438–447. doi: 10.1016/j.neuropharm.2008.09.015 CrossRefPubMedGoogle Scholar
  98. Zingg B, Hinitryan H, Gou L, Song MY, Bay M, Bienkowski MS, Foster NN, Yamashita S, Bowman I, Toga AW, Dong HW (2014) Neural networks of the mouse neocortex. Cell 156(5):1096–1111. doi: 10.1016/j.cell.2014.02.023 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jared B. Smith
    • 1
    • 2
    • 5
    • 6
  • Zhifeng Liang
    • 2
    • 3
    • 4
    • 7
  • Glenn D. R. Watson
    • 2
    • 4
    • 5
  • Kevin D. Alloway
    • 2
    • 4
    • 5
    Email author
  • Nanyin Zhang
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of Engineering Science and MechanicsPenn State UniversityUniversity ParkUSA
  2. 2.Center for Neural EngineeringPenn State UniversityUniversity ParkUSA
  3. 3.Department of Biomedical EngineeringPenn State UniversityUniversity ParkUSA
  4. 4.The Huck Institutes of Life SciencesPenn State UniversityUniversity ParkUSA
  5. 5.Department of Neural and Behavioral SciencesPenn State UniversityHersheyUSA
  6. 6.Molecular Neurobiology LaboratorySalk Institute for Biological StudiesLa JollaUSA
  7. 7.Laboratory of Comparative NeuroimagingInstitute of Neuroscience, Chinese Academy of SciencesShanghaiChina

Personalised recommendations