Skip to main content
Log in

Structural and functional alterations in the prefrontal cortex after post-weaning social isolation: relationship with species-typical and deviant aggression

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Although the inhibitory control of aggression by the prefrontal cortex (PFC) is the cornerstone of current theories of aggression control, a number of human and laboratory studies showed that the execution of aggression increases PFC activity; moreover, enhanced activation was observed in aggression-related psychopathologies and laboratory models of abnormal aggression. Here, we investigated these apparently contradictory findings in the post-weaning social isolation paradigm (PWSI), an established laboratory model of abnormal aggression. When studied in the resident-intruder test as adults, rats submitted to PWSI showed increased attack counts, increased share of bites directed towards vulnerable body parts of opponents (head, throat, and belly) and reduced social signaling of attacks. These deviations from species-typical behavioral characteristics were associated with a specific reduction in the thickness of the right medial PFC (mPFC), a bilateral decrease in dendritic and glial density, and reduced vascularization on the right-hand side of the mPFC. Thus, the early stressor interfered with mPFC development. Despite these structural deficits, aggressive encounters enhanced the activation of the mPFC in PWSI rats as compared to controls. A voxel-like functional analysis revealed that overactivation was restricted to a circumscribed sub-region, which contributed to the activation of hypothalamic centers involved in the initiation of biting attacks as shown by structural equation modeling. These findings demonstrate that structural alterations and functional hyperactivity can coexist in the mPFC of rats exposed to early stressors, and suggest that the role of the mPFC in aggression control is more complex than suggested by the inhibitory control theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ago Y, Araki R, Tanaka T, Sasaga A, Nishiyama S, Takuma K, Matsuda T (2013) Role of social encounter-induced activation of prefrontal serotonergic systems in the abnormal behaviors of isolation-reared mice. Neuropsychopharmacology 38(8):1535–1547. doi:10.1038/npp.2013.52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aksic M, Radonjic NV, Aleksic D, Jevtic G, Markovic B, Petronijevic N, Radonjic V, Filipovic B (2013) Long-term effects of the maternal deprivation on the volume and number of neurons in the rat neocortex and hippocampus. Acta Neurobiol Exp 73(3):394–403

    Google Scholar 

  • Arnsten AF, Rubia K (2012) Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: disruptions in neurodevelopmental psychiatric disorders. J Am Acad Child Adolesc Psychiatry 51(4):356–367. doi:10.1016/j.jaac.2012.01.008

    Article  PubMed  Google Scholar 

  • Badre D, D’Esposito M (2009) Is the rostro-caudal axis of the frontal lobe hierarchical? Nat Rev Neurosci 10(9):659–669. doi:10.1038/nrn2667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balleine BW, O’Doherty JP (2010) Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35(1):48–69. doi:10.1038/npp.2009.131

    Article  PubMed  Google Scholar 

  • Beiderbeck DI, Reber SO, Havasi A, Bredewold R, Veenema AH, Neumann ID (2012) High and abnormal forms of aggression in rats with extremes in trait anxiety–involvement of the dopamine system in the nucleus accumbens. Psychoneuroendocrinology 37(12):1969–1980. doi:10.1016/j.psyneuen.2012.04.011

    Article  CAS  PubMed  Google Scholar 

  • Bicks LK, Koike H, Akbarian S, Morishita H (2015) Prefrontal Cortex and Social Cognition in Mouse and Man. Front Psychol 6:1805. doi:10.3389/fpsyg.2015.01805

    Article  PubMed  PubMed Central  Google Scholar 

  • Blair RJ (2010) Psychopathy, frustration, and reactive aggression: the role of ventromedial prefrontal cortex. Br J Psychol (London, England: 1953) 101(Pt 3):383–399. doi:10.1348/000712609x418480

  • Blair RJ (2015) Psychopathic traits from an RDoC perspective. Curr Opin Neurobiol 30:79–84. doi:10.1016/j.conb.2014.09.011

    Article  CAS  PubMed  Google Scholar 

  • Boccardi M, Frisoni GB, Hare RD, Cavedo E, Najt P, Pievani M, Rasser PE, Laakso MP, Aronen HJ, Repo-Tiihonen E, Vaurio O, Thompson PM, Tiihonen J (2011) Cortex and amygdala morphology in psychopathy. Psychiatry Res 193(2):85–92. doi:10.1016/j.pscychresns.2010.12.013

    Article  PubMed  Google Scholar 

  • Carre JM, Murphy KR, Hariri AR (2013) What lies beneath the face of aggression? Social Cognit Affect Neurosci 8(2):224–229. doi:10.1093/scan/nsr096

    Article  Google Scholar 

  • Chudasama Y, Doobay VM, Liu Y (2012) Hippocampal-prefrontal cortical circuit mediates inhibitory response control in the rat. J Neurosci Off J Soc Neurosci 32(32):10915–10924. doi:10.1523/jneurosci.1463-12.2012

    Article  CAS  Google Scholar 

  • Contreras-Rodriguez O, Pujol J, Batalla I, Harrison BJ, Soriano-Mas C, Deus J, Lopez-Sola M, Macia D, Pera V, Hernandez-Ribas R, Pifarre J, Menchon JM, Cardoner N (2015) Functional connectivity bias in the prefrontal cortex of psychopaths. Biol Psychiatry 78(9):647–655. doi:10.1016/j.biopsych.2014.03.007

    Article  PubMed  Google Scholar 

  • Dalley JW, Theobald DE, Pereira EA, Li PM, Robbins TW (2002) Specific abnormalities in serotonin release in the prefrontal cortex of isolation-reared rats measured during behavioural performance of a task assessing visuospatial attention and impulsivity. Psychopharmacology 164(3):329–340. doi:10.1007/s00213-002-1215-y

    Article  CAS  PubMed  Google Scholar 

  • Davidson RJ, Putnam KM, Larson CL (2000) Dysfunction in the neural circuitry of emotion regulation–a possible prelude to violence. Science 289(5479):591–594

    Article  CAS  PubMed  Google Scholar 

  • Day-Wilson KM, Jones DN, Southam E, Cilia J, Totterdell S (2006) Medial prefrontal cortex volume loss in rats with isolation rearing-induced deficits in prepulse inhibition of acoustic startle. Neuroscience 141(3):1113–1121. doi:10.1016/j.neuroscience.2006.04.048

    Article  CAS  PubMed  Google Scholar 

  • Decety J, Porges EC (2011) Imagining being the agent of actions that carry different moral consequences: an fMRI study. Neuropsychologia 49(11):2994–3001. doi:10.1016/j.neuropsychologia.2011.06.024

    Article  PubMed  Google Scholar 

  • Deckel AW, Hesselbrock V, Bauer L (1996) Antisocial personality disorder, childhood delinquency, and frontal brain functioning: EEG and neuropsychological findings. J Clin Psychol 52(6):639–650. doi:10.1002/(sici)1097-4679(199611)52:6<639:aid-jclp6>3.0.co;2-f

    Article  CAS  PubMed  Google Scholar 

  • Dinn WM, Harris CL (2000) Neurocognitive function in antisocial personality disorder. Psychiatry Res 97(2–3):173–190

    Article  CAS  PubMed  Google Scholar 

  • Ermer E, Cope LM, Nyalakanti PK, Calhoun VD, Kiehl KA (2013) Aberrant paralimbic gray matter in incarcerated male adolescents with psychopathic traits. J Am Acad Child Adoles Psychiatry 52(1):94–103 e103. doi:10.1016/j.jaac.2012.10.013

  • Fahim C, He Y, Yoon U, Chen J, Evans A, Perusse D (2011) Neuroanatomy of childhood disruptive behavior disorders. Aggress Behav 37(4):326–337. doi:10.1002/ab.20396

    Article  PubMed  Google Scholar 

  • Ferris CF, Stolberg T, Kulkarni P, Murugavel M, Blanchard R, Blanchard DC, Febo M, Brevard M, Simon NG (2008) Imaging the neural circuitry and chemical control of aggressive motivation. BMC Neurosci 9:111. doi:10.1186/1471-2202-9-111

    Article  PubMed  PubMed Central  Google Scholar 

  • Fulwiler CE, King JA, Zhang N (2012) Amygdala-orbitofrontal resting-state functional connectivity is associated with trait anger. NeuroReport 23(10):606–610. doi:10.1097/WNR.0b013e3283551cfc

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbert R, Widom CS, Browne K, Fergusson D, Webb E, Janson S (2009) Burden and consequences of child maltreatment in high-income countries. Lancet (London, England) 373(9657):68–81. doi:10.1016/s0140-6736(08)61706-7

  • Glenn AL, Johnson AK, Raine A (2013) Antisocial personality disorder: a current review. Curr Psychiatry Rep 15(12):427. doi:10.1007/s11920-013-0427-7

    Article  PubMed  Google Scholar 

  • Goethals I, Audenaert K, Jacobs F, Van den Eynde F, Bernagie K, Kolindou A, Vervaet M, Dierckx R, Van Heeringen C (2005) Brain perfusion SPECT in impulsivity-related personality disorders. Behav Brain Res 157(1):187–192. doi:10.1016/j.bbr.2004.06.022

    Article  PubMed  Google Scholar 

  • Halasz J, Toth M, Kallo I, Liposits Z, Haller J (2006) The activation of prefrontal cortical neurons in aggression–a double labeling study. Behav Brain Res 175(1):166–175. doi:10.1016/j.bbr.2006.08.019

    Article  PubMed  Google Scholar 

  • Halász J, Liposits Z, Kruk MR, Haller J (2002) Neural background of glucocorticoid dysfunction-induced abnormal aggression in rats: involvement of fear- and stress-related structures. Eur J Neurosci 15(3):561–569

    Article  PubMed  Google Scholar 

  • Haller J, Toth M, Halasz J, De Boer SF (2006) Patterns of violent aggression-induced brain c-fos expression in male mice selected for aggressiveness. Physiol Behav 88(1–2):173–182. doi:10.1016/j.physbeh.2006.03.030

    Article  CAS  PubMed  Google Scholar 

  • Haller J, Harold G, Sandi C, Neumann ID (2014) Effects of adverse early-life events on aggression and anti-social behaviours in animals and humans. J Neuroendocrinol 26(10):724–738. doi:10.1111/jne.12182

    Article  CAS  PubMed  Google Scholar 

  • Hermans EJ, Ramsey NF, van Honk J (2008) Exogenous testosterone enhances responsiveness to social threat in the neural circuitry of social aggression in humans. Biol Psychiatry 63(3):263–270. doi:10.1016/j.biopsych.2007.05.013

    Article  CAS  PubMed  Google Scholar 

  • Herpertz SC, Sass H (2000) Emotional deficiency and psychopathy. Behav Sci Law 18(5):567–580

    Article  CAS  PubMed  Google Scholar 

  • Hirono N, Mega MS, Dinov ID, Mishkin F, Cummings JL (2000) Left frontotemporal hypoperfusion is associated with aggression in patients with dementia. Arch Neurol 57(6):861–866

    Article  CAS  PubMed  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Hoppenbrouwers SS, Nazeri A, de Jesus DR, Stirpe T, Felsky D, Schutter DJ, Daskalakis ZJ, Voineskos AN (2013) White matter deficits in psychopathic offenders and correlation with factor structure. PLoS One 8(8):e72375. doi:10.1371/journal.pone.0072375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MJ, Loucks RA, Palmer AL, Brown AC, Solomon KM, Marchante AN, Whalen PJ (2011) The structural and functional connectivity of the amygdala: from normal emotion to pathological anxiety. Behav Brain Res 223(2):403–410. doi:10.1016/j.bbr.2011.04.025

    Article  PubMed  PubMed Central  Google Scholar 

  • Kruk MR, Van der Poel AM, Meelis W, Hermans J, Mostert PG, Mos J, Lohman AH (1983) Discriminant analysis of the localization of aggression-inducing electrode placements in the hypothalamus of male rats. Brain Res 260(1):61–79

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Hultman R, Hughes D, Michel N, Katz BM, Dzirasa K (2014) Prefrontal cortex reactivity underlies trait vulnerability to chronic social defeat stress. Nature Commun 5:4537. doi:10.1038/ncomms5537

    CAS  Google Scholar 

  • Liu XB, Jones EG (1996) Localization of alpha type II calcium calmodulin-dependent protein kinase at glutamatergic but not gamma-aminobutyric acid (GABAergic) synapses in thalamus and cerebral cortex. Proc Natl Acad Sci USA 93(14):7332–7336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotze M, Veit R, Anders S, Birbaumer N (2007) Evidence for a different role of the ventral and dorsal medial prefrontal cortex for social reactive aggression: an interactive fMRI study. Neuroimage 34(1):470–478. doi:10.1016/j.neuroimage.2006.09.028

    Article  CAS  PubMed  Google Scholar 

  • Madeira MD, Pereira A, Cadete-Leite A, Paula-Barbosa MM (1990) Estimates of volumes and pyramidal cell numbers in the prelimbic subarea of the prefrontal cortex in experimental hypothyroid rats. J Anat 171:41–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marquez C, Poirier GL, Cordero MI, Larsen MH, Groner A, Marquis J, Magistretti PJ, Trono D, Sandi C (2013) Peripuberty stress leads to abnormal aggression, altered amygdala and orbitofrontal reactivity and increased prefrontal MAOA gene expression. Translational psychiatry 3:e216. doi:10.1038/tp.2012.144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menegola M, Misonou H, Vacher H, Trimmer JS (2008) Dendritic A-type potassium channel subunit expression in CA1 hippocampal interneurons. Neuroscience 154(3):953–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miczek KA, de Boer SF, Haller J (2013) Excessive aggression as model of violence: a critical evaluation of current preclinical methods. Psychopharmacology 226(3):445–458. doi:10.1007/s00213-013-3008-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milad MR, Rauch SL, Pitman RK, Quirk GJ (2006) Fear extinction in rats: implications for human brain imaging and anxiety disorders. Biol Psychol 73(1):61–71. doi:10.1016/j.biopsycho.2006.01.008

    Article  PubMed  Google Scholar 

  • Montag C, Weber B, Trautner P, Newport B, Markett S, Walter NT, Felten A, Reuter M (2012) Does excessive play of violent first-person-shooter-video-games dampen brain activity in response to emotional stimuli? Biol Psychol 89(1):107–111. doi:10.1016/j.biopsycho.2011.09.014

    Article  PubMed  Google Scholar 

  • Motzkin JC, Newman JP, Kiehl KA, Koenigs M (2011) Reduced prefrontal connectivity in psychopathy. J Neurosci Off J Soc Neurosci 31(48):17348–17357. doi:10.1523/jneurosci.4215-11.2011

    Article  CAS  Google Scholar 

  • New AS, Hazlett EA, Newmark RE, Zhang J, Triebwasser J, Meyerson D, Lazarus S, Trisdorfer R, Goldstein KE, Goodman M, Koenigsberg HW, Flory JD, Siever LJ, Buchsbaum MS (2009) Laboratory induced aggression: a positron emission tomography study of aggressive individuals with borderline personality disorder. Biol Psychiatry 66(12):1107–1114. doi:10.1016/j.biopsych.2009.07.015

    Article  PubMed  PubMed Central  Google Scholar 

  • Paine TA, Asinof SK, Diehl GW, Frackman A, Leffler J (2013) Medial prefrontal cortex lesions impair decision-making on a rodent gambling task: reversal by D1 receptor antagonist administration. Behav Brain Res 243:247–254. doi:10.1016/j.bbr.2013.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascual R, Zamora-Leon SP (2007) Chronic (-)-deprenyl administration attenuates dendritic developmental impairment induced by early social isolation in the rat. Dev Neurosci 29(3):261–267. doi:10.1159/000096413

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Franklin KBG (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, San Diego

    Google Scholar 

  • Potegal M (2012) Temporal and frontal lobe initiation and regulation of the top-down escalation of anger and aggression. Behav Brain Res 231(2):386–395. doi:10.1016/j.bbr.2011.10.049

    Article  PubMed  Google Scholar 

  • Potts GF, George MR, Martin LE, Barratt ES (2006) Reduced punishment sensitivity in neural systems of behavior monitoring in impulsive individuals. Neurosci Lett 397(1–2):130–134. doi:10.1016/j.neulet.2005.12.003

    Article  CAS  PubMed  Google Scholar 

  • Raine A, Lencz T, Bihrle S, LaCasse L, Colletti P (2000) Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Arch Gen Psychiatry 57(2):119–127 (discussion 128–119)

  • Sagvolden T (2006) The alpha-2A adrenoceptor agonist guanfacine improves sustained attention and reduces overactivity and impulsiveness in an animal model of Attention-Deficit/Hyperactivity Disorder (ADHD). Behav Brain Funct BBF 2:41. doi:10.1186/1744-9081-2-41

    Article  PubMed  Google Scholar 

  • Sanada LS, Sato KL, Machado NL, Carmo Ede C, Sluka KA, Fazan VP (2014) Cortex glial cells activation, associated with lowered mechanical thresholds and motor dysfunction, persists into adulthood after neonatal pain. Int J Dev Neurosci Off J Int Soc Dev Neurosci 35:55–63. doi:10.1016/j.ijdevneu.2014.03.008

    Article  Google Scholar 

  • Sandi C, Haller J (2015) Stress and the social brain: behavioural effects and neurobiological mechanisms. Nat Rev Neurosci 16(5):290–304. doi:10.1038/nrn3918

    Article  CAS  PubMed  Google Scholar 

  • Schneider F, Habel U, Kessler C, Posse S, Grodd W, Muller-Gartner HW (2000) Functional imaging of conditioned aversive emotional responses in antisocial personality disorder. Neuropsychobiology 42(4):192–201

    Article  CAS  PubMed  Google Scholar 

  • Schubert MI, Porkess MV, Dashdorj N, Fone KC, Auer DP (2009) Effects of social isolation rearing on the limbic brain: a combined behavioral and magnetic resonance imaging volumetry study in rats. Neuroscience 159(1):21–30. doi:10.1016/j.neuroscience.2008.12.019

    Article  CAS  PubMed  Google Scholar 

  • Siegel A, Roeling TA, Gregg TR, Kruk MR (1999) Neuropharmacology of brain-stimulation-evoked aggression. Neurosci Biobehav Rev 23(3):359–389

    Article  CAS  PubMed  Google Scholar 

  • Siever LJ (2008) Neurobiology of aggression and violence. The American journal of psychiatry 165(4):429–442. doi:10.1176/appi.ajp.2008.07111774

    Article  PubMed  PubMed Central  Google Scholar 

  • Skupio U, Tertil M, Sikora M, Golda S, Wawrzczak-Bargiela A, Przewlocki R (2015) Behavioral and molecular alterations in mice resulting from chronic treatment with dexamethasone: relevance to depression. Neuroscience 286:141–150. doi:10.1016/j.neuroscience.2014.11.035

    Article  CAS  PubMed  Google Scholar 

  • Spitzer M, Fischbacher U, Herrnberger B, Gron G, Fehr E (2007) The neural signature of social norm compliance. Neuron 56(1):185–196. doi:10.1016/j.neuron.2007.09.011

    Article  CAS  PubMed  Google Scholar 

  • Spivey JM, Shumake J, Colorado RA, Conejo-Jimenez N, Gonzalez-Pardo H, Gonzalez-Lima F (2009) Adolescent female rats are more resistant than males to the effects of early stress on prefrontal cortex and impulsive behavior. Dev Psychobiol 51(3):277–288. doi:10.1002/dev.20362

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi A, Nagayasu K, Nishitani N, Kaneko S, Koide T (2014) Control of intermale aggression by medial prefrontal cortex activation in the mouse. PLoS One 9(4):e94657. doi:10.1371/journal.pone.0094657

    Article  PubMed  PubMed Central  Google Scholar 

  • Tebartz van Elst L, Hesslinger B, Thiel T, Geiger E, Haegele K, Lemieux L, Lieb K, Bohus M, Hennig J, Ebert D (2003) Frontolimbic brain abnormalities in patients with borderline personality disorder: a volumetric magnetic resonance imaging study. Biol Psychiatry 54(2):163–171

    Article  PubMed  Google Scholar 

  • Tiihonen J, Rossi R, Laakso MP, Hodgins S, Testa C, Perez J, Repo-Tiihonen E, Vaurio O, Soininen H, Aronen HJ, Kononen M, Thompson PM, Frisoni GB (2008) Brain anatomy of persistent violent offenders: more rather than less. Psychiatry Res 163(3):201–212. doi:10.1016/j.pscychresns.2007.08.012

    Article  PubMed  Google Scholar 

  • Toth M, Fuzesi T, Halasz J, Tulogdi A, Haller J (2010) Neural inputs of the hypothalamic “aggression area” in the rat. Behav Brain Res 215(1):7–20. doi:10.1016/j.bbr.2010.05.050

    Article  PubMed  Google Scholar 

  • Toth M, Mikics E, Tulogdi A, Aliczki M, Haller J (2011) Post-weaning social isolation induces abnormal forms of aggression in conjunction with increased glucocorticoid and autonomic stress responses. Horm Behav 60(1):28–36. doi:10.1016/j.yhbeh.2011.02.003

    Article  CAS  PubMed  Google Scholar 

  • Toth M, Tulogdi A, Biro L, Soros P, Mikics E, Haller J (2012) The neural background of hyper-emotional aggression induced by post-weaning social isolation. Behav Brain Res 233(1):120–129. doi:10.1016/j.bbr.2012.04.025

    Article  PubMed  Google Scholar 

  • Tóth M, Halász J, Mikics E, Barsy B, Haller J (2008) Early social deprivation induces disturbed social communication and violent aggression in adulthood. Behav Neurosci 122(4):849–854. doi:10.1037/0735-7044.122.4.849

    Article  PubMed  Google Scholar 

  • Tulogdi A, Toth M, Halasz J, Mikics E, Fuzesi T, Haller J (2010) Brain mechanisms involved in predatory aggression are activated in a laboratory model of violent intra-specific aggression. Eur J Neurosci 32(10):1744–1753. doi:10.1111/j.1460-9568.2010.07429.x

    Article  PubMed  Google Scholar 

  • Tulogdi A, Biro L, Barsvari B, Stankovic M, Haller J, Toth M (2015) Neural mechanisms of predatory aggression in rats-implications for abnormal intraspecific aggression. Behav Brain Res 283:108–115. doi:10.1016/j.bbr.2015.01.030

    Article  PubMed  Google Scholar 

  • Van De Werd HJ, Uylings HB (2008) The rat orbital and agranular insular prefrontal cortical areas: a cytoarchitectonic and chemoarchitectonic study. Brain Struct Funct 212(5):387–401. doi:10.1007/s00429-007-0164-y

    Article  Google Scholar 

  • van Praag H, Lucero MJ, Yeo GW, Stecker K, Heivand N, Zhao C, Yip E, Afanador M, Schroeter H, Hammerstone J, Gage FH (2007) Plant-derived flavanol (-)epicatechin enhances angiogenesis and retention of spatial memory in mice. J Neurosci Off J Soc Neurosci 27(22):5869–5878. doi:10.1523/jneurosci.0914-07.2007

    Article  Google Scholar 

  • Veit R, Lotze M, Sewing S, Missenhardt H, Gaber T, Birbaumer N (2010) Aberrant social and cerebral responding in a competitive reaction time paradigm in criminal psychopaths. Neuroimage 49(4):3365–3372. doi:10.1016/j.neuroimage.2009.11.040

    Article  PubMed  Google Scholar 

  • Vollm B, Richardson P, McKie S, Reniers R, Elliott R, Anderson IM, Williams S, Dolan M, Deakin B (2010) Neuronal correlates and serotonergic modulation of behavioural inhibition and reward in healthy and antisocial individuals. J Psychiatr Res 44(3):123–131. doi:10.1016/j.jpsychires.2009.07.005

    Article  PubMed  Google Scholar 

  • Wall VL, Fischer EK, Bland ST (2012) Isolation rearing attenuates social interaction-induced expression of immediate early gene protein products in the medial prefrontal cortex of male and female rats. Physiol Behav 107(3):440–450. doi:10.1016/j.physbeh.2012.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YC, Ho UC, Ko MC, Liao CC, Lee LJ (2012) Differential neuronal changes in medial prefrontal cortex, basolateral amygdala and nucleus accumbens after postweaning social isolation. Brain Struct Funct 217(2):337–351. doi:10.1007/s00429-011-0355-4

    Article  PubMed  Google Scholar 

  • Wolansky T, Pagliardini S, Greer JJ, Dickson CT (2007) Immunohistochemical characterization of substance P receptor (NK(1)R)-expressing interneurons in the entorhinal cortex. J Comp Neurol 502(3):427–441

    Article  CAS  PubMed  Google Scholar 

  • Wolf RC, Pujara MS, Motzkin JC, Newman JP, Kiehl KA, Decety J, Kosson DS, Koenigs M (2015) Interpersonal traits of psychopathy linked to reduced integrity of the uncinate fasciculus. Hum Brain Mapp 36(10):4202–4209. doi:10.1002/hbm.22911

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by National Research, Development and Innovation Office Fund (NKFI) Grant No. 112907.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozsef Haller.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biro, L., Toth, M., Sipos, E. et al. Structural and functional alterations in the prefrontal cortex after post-weaning social isolation: relationship with species-typical and deviant aggression. Brain Struct Funct 222, 1861–1875 (2017). https://doi.org/10.1007/s00429-016-1312-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1312-z

Keywords

Navigation